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Abstract

Econometrics mode sfor traffic behaviour as modal-split, car ownership, travel purpose, etc. is often based onthe
assumption that individual behaviour can be decomposed into a finite set of discrete choice. However, in some
circumstances, for instance in modelling actual demand measured astrip length, this approach failsto fit reality. This
paper present a simultaneous model sat-up for the joint decision of modal-split and trip length being continuous.
The modd isestimated in a general maximum likelihood framework and is based on a Stratified sample for Aarhus,
the second largest city in Denmark.

Introduction

Most traffic behaviour can in anatural way be decomposed into discrete chooses. By gpplying stochastic utility theory
it ispossible to assign acertain amount of utility for every event relevant to the respondent in the choice set. The
amount of utility is measured by the indirect conditional utility function. Based on this utility function the usua
stochastic modelsfor polytomous response, so asjoint logit, nested logit and probit models can be implemented.
These modelswork very well for at large number of problemsincluding modal-split, car ownership and travel
purpose. However, in investigating certain control parameters affecting monetary travel cost and level of service it's
necessary to realise that especially travel demand measured by trip length is far from exogenous. A gasoline tax for
instance will affect the pure modal-split but also the average trip length. This is so because respondents in the short
run will reorganise their shopping pattern and leisure activity to save travel costs. The long run effect comes from the
fact that the higher cost will actually affect the location of work and residents. By denying this fact one will
automatically underestimate the effect of these control parameters.

To take account of the endogenous nature of the travel demand one have to formulate models both
including modal-split and travel demantiaking this step it's first of all important to realise that even though the
nature of modal-split is discrete the travel demand is only poorly described in a discrete content. To avoid this
situation a pure continuous formulation of travel demand will be used. The model structure is inspired by Ben-Akiva
and Watanatada 1981.

! This paper is part of the methodically work underlying ALTRANS and was presented at Traffic daysat AUC 1996.
ALTRANS sanationa research project financed by The National Transport Council, The National Environmental Research
Ingtitute and The Danish Environmental Protection Agency.

2 In principle there are several endogenous componentsin the choice situation. Important onesto be neglected in the former
paper iscar ownership and purpose. However, if we only seek elasticities for variable travel costs, including both monetary
costs and travel speed the above setup seems appropriate.
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A discrete formulation

The conceptual issues and general understanding of the continuous mode to be deve oped isimproved by looking a
the discrete counterpart. The wdl known joint logit for modal-split and destination has the following form

@ Pmd= _———— mOMOdOD, 0Ot=1...T and YD, =M’
t

Vl,m'd'

Wheretheindirect conditional utility function is represented by V; ., , include both exogenous variables and model
parameters. Note that the choice sets M, and D, representing mode and destingtion choice respectively are specific

at theindividud level indicating that al respondentsin genera have different possibilities. The more precise these

sets can be formulated on the individual level the more efficient the estimation will be. Theset M istheentire
geography. To make the argumentation against the joint logit model more preciselet A(Q) be an areaoperator. If we

let d betheaverageareafor zonesin D, , then

for A(d) - O estimation impossible
for A(d) -~ M’ Bad spatial description — bad mode for travel demand®

Thefirg gatement isrelated to pure numerical cons derations. One thing being even more relevant isthe data
collection problem. For d being very small the time and money spend on collecting spatia datawill be enormous. In
practice however there is often no possibility to change the way datais collected, one smply hasto adapt the quality
and amount available. Ben-Akivaand Watanatada 1981 writes

“The discrete summation form cannot be used in actual applications when the number of spatial alternatives and
individuals are large...”

The second statement refersto the problem of modelling trip length on the basis of regionswith aruff zond partition.
It's essential to remember that the precision of the choice of trip length in a discreteisdittiitgd to the size of the
zones.

Spatial choice represented by continuous functions

Motivated by the discussion above lets look at a 2-dimensional continuous counterpart of the discrete logit. This is
done by thinking of the actual geography placed in an ordinary co-ordinate system letting the x and y-axis represent
east-west and north-south direction respectively. The scale is in kilometre. The usual discreteictimice

recognised as a co-ordindte, g} .

Define first a spatial choice function

G, (m{ p, q}{x, y}) : The probability that respondentocated in{x, y} chooses the spatial alternative located in
{p, g} by modem. This probability is clearly affected by several things, the most important ones being

e Attraction in the destination.

3 Of coursethelimit A(d) — M reduces equation (1) to apure modal-split.
* This can be done by forcing the choice of trip length into diunctiveintervals.



e Tripgenerationintheorigin area.

e Levd of service between different locations and by different modes.
*  Mondary travel codts.

»  Socio-economic characteritic.

Therefore define the following

M({ P, q}) : The density of attraction in the spatial location { p, 0} -
S m : Socio-economic characteristic.

The probability thet respondent t choosesaspatid aternative located in zone j isthen given by

@ R(mj

{x}) = [f&(m{p.a}{x y})M({p.o})dpda

zone
J

By assuming the I1A-property and further letting A(j) — O the continuouslogit appears asthe infinitesma limit of
the ordinary joint logit with probability

K (m.{p.a})M({p.a})dpdg

2 I (m {p.ah)M({p.q})dpdq

m {p,gfom®

©) R(m.dpdg M) =

Here dpdq denote ainfinitesma areaand the spatial choice function K, (D])] isnow afunction of mode and

destination alone. In other words, we reg ect the dependence of zonal trip generation event though this could be
included in asimilar manner to attraction”.

Application for the city of Aarhus

In order to understand applicability and how to implement the model above we shall ook at a stratified TU-sample®
for the city of Aarhus. The sample consst of 1008 records, each representing atrip in the areaof Aarhuscity. Only
public transport and car as driver have been andysed as mode choice. In other words we have abinary choice
situation neglecting cycling and car as passenger. Thisisfar from satisfactory since cycling cannot be assumed to be
equally competitiveto car as driver and public transport. Look at figure 1. for a dightly compressed picture of the
region.

A

N

Figure 1- Aarhuspartitioned in TU-zones

® Consult Ben-Akivaand Watanatada 1981 for further details.
® The TU-sampleis result of an ongoing national data collection project financed by The Ministery of Transport.



Theregion is separated into 13 TU-zonesin which aggregate attraction measuresis available by combining the TU-

database with databases from Denmark’s Statistics.

The functional form of the utility function is supposed to be linear in parameters. More precisely let the function be of
the following form, vectors being represented by bold.

4) Vimd = 8nSi +0,.Cig + b,V

S,, . {Constant, male, number of cars, distance to bus}
C,, : {Costs/income, travel time/trip length}

yq - {attraction density}

FormulatingS, , perfectly is difficult. This specification has been developed only as a primary Tirenseries of
C,is a function of several things such as, price of gasoline, tax deduction, age of car, cold staftancbunate.
It is important because scenarios typically originate from different specifications of these underlyirlg factors

Substituting this in the joint logit form gives

eamstm yd eb mcmﬂ

(5) R(md)= Z S Z y PG

Now the remaining task is to formulate a continuous counterpart from the above model for the prépahil) .

This is done by transforming the ordinary rectangular co-ordinate system to one measured in polar co-ordinates. In
other words letd ={x,y} - {L,&}. By this we get

* Ct,md - Ct,m(L’e)
. yd — y(L,e)

The smart thing about this is that we can tieas the endogenous travel demand. This is done by shifting the centre
of the co-ordinate system for every so that the new centre is the origin from where respondeatels. The new

city geometry is illustrated in figure 2. Using this trick the new model for the probsz(iny, deH) is given as

R (m,dLdé) = G,(m,{L,6})dLd8

e* >y (L,0)e" -9 dLdg
6) - v
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"Moreinsight about variables affecting the modal split using TU-data can be gained from ALTRANS internal working paper
no.2 1996, Nogle forelgbige resultater i ALTRANS.

8 Taking account of different kilometer costs for public transport in different counties.

® For further details consul ALTRANS internal working paper no.1 1996, K onstruktion af rejseomkostninger for
bil og kollektiv.
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Figure2- Polar city geometry for Aarhus

Where v constrains the possible geography from the bay of Aarhus. Nate that when dLd & approaches 0 then
P,(m, dLd&) approaches P,(m{L, 6}).

Congderationsof the y(L,60) - form

Toillustrate how the form of the spatiad component (L, &) could be gpproximated by asimple function look at a

spline-gpproximation of a discrete attraction dendty defined by employed inretail per square meters. Thisis
illugtrated in figure 3. below



Figure3 - Spline approximation of attraction density

Thefigureisdeveloped in ARC/VIEW 3.0 and the main thing to noticeis the systematic decreasing attraction density
asafunction of distance from the city-centre. It is more convenient to look a avertical cut of the above surface. This
isplotted below infigure 4.

The exponentia function illustrated in figure 4. seemsto be areasonably gpproximation. Thefunctiona formisgiven
by

(7) y(L,6)~0.4460* 0.999534"

Where L isthe distance from the city centre.



Unfortunately even simple
Exponential fit of average attraction densty functional forms like the one
above is quite difficult to handle
due to the integral in the
denominator of (6). Firstly of all
there is no closed form expression
S0 it's necessary to evaluate the
double integral by numerical
integration. Secondly the

domain for the integration will
change in a quite complex
manner. These two things means
that function call's becomes
extremely expensive and this
connected to the fact that an
estimation needs at least 20

238288833833838383828883 ions call
BB Y LUIBVLIBIVNIILSY functlo_nscallsmake_sthe
T NN ® 0SS S0 wn oo | ayymercal burden quite hedlyro
Meters from city center overcome this problem we
chooses the gamma function even

_ more simple as
Figure4
® y(L,O)=y

Using the above featurd ess plane for the attraction density have some nice computable implications aswe shal see
below. The smplification have on the other hand someimplications related to modd structure and leve of andysis.

Firgt of al the featureless plane only alow arelative geographica description of travel behaviour, meaning that the
spatial pattern for trips defined by origin co-ordinates and destination co-ordinates is not modelled. So if we're
interested in modelling locations of work and residence we have to seek a more generay{dn@pfor simply

turn back to the good old discrete formulation. Note here that even though we have a mathematical correct description
of the attraction density we cannot allocate individuals more precise than the observation allow. For instance, in the
case of Aarhus the spatial allocation of trips (origins and destinations) is measured at a TU-zonal level. Another thing
to note is that the above simple gamma function does not prevent us from using discrete attraction measures as
explanatory variablés

In summarising the above it's fair to say that the featureless continuous logit seems to be a good short run model for
travel behaviour conditional on attraction and generation.

Model Estimation

With the above utility form and specification of attraction density the denominator integral can be evaluated exact.
We have that

19 Note that for every call of thelikelihood function we need to evaluate N integrals. In our small example we will need to
evaluate the denominator integral at least 20000 times.
! The exogenious trestment of atraction is also the casein thejoint-logit in (1).
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Itisnow possible to gate the probability for the combined choice of modal-split and travel demand assuming a
featurdessplane as

360 giningnCn(t)
(10) ( {L 8}) Ei bm1+bmz D
% Sun 0 t€ (B(bm'l + bm'z) _1)D
m'LM, E (bm’l + bm’2)2 E

The smart thing about the festurel ess attraction plane from anumerical point of view isthet for al T denominator
integrals can make an artificial co-ordinate shift assuming that the centreis exactly where respondent t begin histrip.
Sincedl varidbles are rdaiveto trip length the above form will do.

Unfortunately thismode is not covered by standard software packages. However, the modd can be programmed in a
SASIML environment. Firgtly specify the log-likelihood function

(11) ]
Na,.b,)= > Y Ve log(P, (i, dLd6))

™ MM,

- TIogfES0F
728 (B, +Byyp) — 1)

T O q+ebm,1+b
— am'stm'
E Bl bt

m LM,

a,,and b being parameter vectors associated to individua specific and mode specific variables. Further

_ [ if individual t chose m
ytm - %) EISG

The maximum likelihood estimates™ is now given by

12 Since the above likelihood function is not globally concave we must be careful to ensure that the parametersis asymptotically
identified, meaning that A(@) > A(¢) O¢ O where ¢ aset of parametersand © the complete range of parameters. Thisis
done more or less automaticaly in SAS/IML by choosing several numerica optimization routinesincluding conjugate gradient
optimization. This routine generate a cycle of conjugated search directions. For more about these tecnical issues consult
SAS/IML User guide and SAYIML Changes and Enchancements.



[ Paameter _ Gradient ____ AgmptoticPValue |

constant -4.430233 0.0000253 5.11E-10|
number of cars 4.835476 -0.0000131 1.37E-10|
mele 3.335879 0.0000246 4.83E-10)
distance from bus 0.566504 0.0000195 3.03E-10|
time for car driver -0.149246 0.0000797 5.07E-09|
time for public transport -0.02492 -0.000268 5.73E-08|
costsfor car driver -0.122078 0.0000816 5.31E-09|
Costsfor Public transport -0.231764 -0.000223 3.97E-08|

All parameters are significant™ and al signs seem to be right. However, asthe model is non-linear in the exogenous
variablesthe margina effects have to beinvestigated using eadticities.

Elagticitiesand marginal effects

The main purpose of the modd isto determine the sensibility of demand after public trangport due to changesin travel
time and monetary codts. Thefirst thing to caculate isthe dadticities related to the pure modal split, measuring there-
dlocation potentid from aenvironmentd point of view. The computation of the elagticitiesis based on theform for
theindividud eadticities given by

erm = R0 X

12
( ) Xijk @(tjk R(I)

However we're in no way interested in elasticities on an individual basis but in aggregate elasticities being defined as

i P (i)
IR L0

Measuring elasticities on the aggregate modal-split probability due to changesBelow is the direct elasticities
(i = j) outlined”.

. |Timeforcardriver | Timefor public  Costforcar | Costfor public
- trangport driver transport

elasticities for modal- -0.1826 -0.4069 -0.0299 -0.4486
split probabilities

Even though the elasticities all have the right sign the range of the size estimated can be discussed. However, when
looking at a stratified sample it's necessary to be careful when interpreting these numbers. For more serious analysis
much more effort has to be put into the specification of the conditional utility function.

13 Since the covariance matrix is quite hard to program exact we use the following asymptotical estimator

%@;(f ﬁ E@f % for the information matrix. Since SAS rapports d);(@

this estimator becomes cheap.

14 A little tecnical hint that might save sometimein front of the compuiter is: Evaluate the differential kvotient numerically when
caculating the elsaticities.



The next effect to investigate is the effect on the trip length. In other words, how much costs and travel time affect the
average trip length. This can be done in a quite simple manner. First of all we're finding the marginal function for trip
length given by

(g + bmz)Le(bm1+bm2)L
(1+ e nB (g, +byp)B-1)

14) e (Lim) =

Then recognise that

lim f(Um)= (b, +b,,) Le-Cn*n)
s dim_f(Lim)= (b, +by.)
= F(2, bml + bmz)

For B < oo the above gamma-distribution becomes truncated. For reasonabl iegg0 km in this model ) the
truncated distribution becomes a very good approximation to the asymptotic gamma function. This indicates that the
mean of the truncated distribution in practice will approximate the mean of the above gamma function given by

2

b, +b

m2

. Toillustrate lets assume that travel speed for public transport is changed. Then two sets of parameters

occurs. Let these be given {Jﬁml Emz} and{@ml, @mz} the first one being before change and the second being
after. Now the change in percentage of average trip length for méglgiven by

(16) El e
U

One of the main advances of this model seems to be the quite precise elasticities for monetary costs and travel speed
as we are modelling directly on trip length. This is particularly important when we want to investigate the effect of
service for public transport measured as differences in travel time.

To validate the model furthiéook at some results derived from the above trip distribution function.

Trip length distribution by mode Average estimated trip length in

deviation from observed

9
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Figure5

> For the pure modal-split model the 1IA-property has been tested using a LR-test and it is easily accepted. However it's not
evident how to test the infinitesimal IIA used to construct equation (6). Moreover note should be taken that it is impossible to
test the precise gumbel assumption underlying the logit model as we're dealing with a latent variable situation not knowing the
true utility function.



Asmentioned the abovetrip length digtribution in figure 5 is actudly atruncated gammafunction. Ben-Akivaand
Watanatada 1981 point out that thisform has actually been observed in severa urban aress.

Another interesting marginal probability isthe probability measuring the modal-split share. By some agebraone can
find that

_ e (g, ) B-D](b, +by)
" =S gt (e %, +b,)B- Dby +Bye)

Estimated modal-split gainst observed As shown there seems to be a good degre_e of
accordance between the observed and estimated
450 modal-split. Also the estimated average trip length
400 - m Estimated seems to be reasonably good.
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Conclusion

In the short run it's reasonably to assume fixed locations of working places and residents. By using a simple
featureless plane of attraction it is possible to formulate a combined model for trip length and modal-split. Since we
are modelling directly on the observed travel length, it seems likely that elasticities for service and travel costs will
differ from those obtained from discrete models. This might result in more precise knowledge about marginal effects
of public service measured as time-in-vehicle, terminal-time and waiting time being one of the main tasks in
ALTRANS.

The model in this paper is only the first attempt to seek to test technical issues and possibilities. However, the model
turns out to be quite successful for our purpose and it will enter as part of the ALTRANS project.

The model estimated in this paper uses an extremely simple functional form for the attraction density. In order to
implement more complex functions numerical mathematics have to be developed. In an idealigéd,Bycould

be a parametric spline function. One thing that might point in a positive direction for further development is that the
numerical problem can be formulated quite precisely leaving some hope, that even middle sized problems could be
solved this way. However, the numerical motivation for choosing the continuous logit seems to disappear when
choosing more complex forms gfL, 6) .
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