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Abstract—In this paper, a rigorous theoretical approach,

adopted in order to generalize the Vectorial Cylindrical-

Harmonics (VCH) expansion of an inhomogeneous elliptically

polarized plane wave, is presented. An application of the VCH

expansion to analyze electromagnetic field scattered by an in-

finite circular cylinder is presented. The results are obtained

using the so-called complex-angle formalism reaching a su-

perposition of Vectorial Cylindrical-Harmonics. To validate

the method, a Matlab code was implemented. Also, the valid-

ity of the methodology was confirmed through some compar-

isons between the proposed method and the numerical results

obtained based on the Finite Element Method (FEM) in the

canonical scenario with a single cylinder.

Keywords—electromagnetic scattering, inhomogeneous wave

dispersion, vectorial cylindrical-harmonics.

1. Introduction

The problem of solving Maxwell’s equations in order to de-

termine the field scattered by an object has been the focus

of many researchers for several decades now. All aspects of

electromagnetic scattering, approached from a purely geo-

metrical point of view, have already been analyzed. In lit-

erature, several works can be found on canonical scattering

caused by spherical, spheroidal, conical, cylindrical and el-

lipsoidal objects [1]–[6]. More complex scenarios have also

been considered, such as buried spheres, cylinders and ax-

ially symmetric objects [7]–[13]. Ensembles of scattering

objects can be found in literature as well [14]–[18]. Fur-

thermore, different types of materials that the scatterer is

made of have been studied too [19]–[23].

This article introduces a rigorous method relied upon to

represent an elliptically inhomogeneous plane wave polar-

ized as an expansion of Vectorial Cylindrical-Harmonics

(VCH). This subject is very interesting because of the gen-

eral representation of an electromagnetic wave as an inho-

mogeneous wave. In fact, when an electromagnetic wave

propagates in a lossy medium, the wave vector represent-

ing it is of a complex nature, as it comprises two compo-

nents – a phase vector and an attenuation vector. In nature,

a wave rarely propagates in a completely lossless medium,

especially in the field of biology, where water is the main

constituent.

Ivlev was the first author to present a work on an inhomo-

geneous elliptically polarized plane wave [22], [23], deter-

mining the basic structure of propagation and exploring its

energy fallout. Subsequently, he proposed the first applica-

tion of an infinite cylinder. In particular, in these studies,

the Adler-Chu-Fano formulation (the phase and attenuation

vectors) [24] was used, achieving a result equally elegant

as complex. In the current study, the use of the complex-

angle [25] formulation showed that the representation of the

incident field as a superposition of VCH could be obtained

with much less complexity. Moreover, this approach will be

generalized and related to scattering caused by a cylinder

immersed in a lossy medium.

The paper will also provide numerical comparisons for vari-

ous developments in cylindrical vector waves. Furthermore,

results pertaining to an infinite perfect electric conductor

(PEC) cylinder immersed in a lossy medium will be pro-

vided. Matlab was used for the implementation of the var-

ious formulations, while the relevant model was simulated

with COMSOL Multiphysics, a commercial software based

on the finite element method (FEM).

The article is structured in the following manner. In Sec-

tion 2, the formalisms are introduced with the purpose of

representing an inhomogeneous wave and of providing the

formulas used to proceed from a formalism to another. Sub-

sequently, theoretical aspects are illustrated in order to at-

tain a representation of an inhomogeneous elliptically polar-

ized electric field as a superposition of VCHs. In Section 3,

some numerical validations are shown, comparing the nu-

merical results of the formulations implemented in Matlab

with the ones obtained with the use of COMSOL Multi-

physics. Furthermore, new results for the scattering of an

elliptically polarized plane wave at oblique incidence from
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a PEC cylinder in a lossy medium are presented. Finally,

the conclusions are drawn in Section 6.

2. Theoretical Approach

In literature, it is known that an inhomogeneous wave prop-

agating in a lossy medium can be represented through

two formalisms. The best one, known as the Adler-Chu-

Fano formulation, has a complex propagation vector ki =
β i + iα i represented by the phase and attenuation vectors,

β i,α i ∈ ℜ, respectively. The second one, known as the

complex-angle formulation ki = kR + ikI has the propaga-

tion vector represented by a superposition of real and imag-

inary parts which form a complex angle with an axis of the

Cartesian reference system ϑ̄i = ϑR + iϑI [25], see Fig. 1.

We have used the ϑ̄ symbol to highlight the complex nature

of the angle.

Fig. 1. In the left-hand side figure, the complex wave vector of

an inhomogeneous plane wave is presented with the use of phase

and attenuation vectors. In the right-hand side picture, the same

vector is represented with the use of the complex-angle formalism.

This article demonstrates how to use the complex-angle

formalism in order to obtain a simple representation of the

field expressed as a superposition of elementary cylindri-

cal waves. Let us consider the following wave, in which

the vectors αi and βi are forming the angles ζi and ηi with

axis z, are positioned on the same plane passing through the

z-axis and are forming a real angle ϕ with axis x (see

Fig. 1). In this case, the relations between the two for-

malisms are [25]:

cosϑR =
kRβ cosξ + kIα cosη

√

k2
Rβ 2 − k2

I α2 +2(kRkI)2
, (1)

sinϑR =
kRβ sinξ + kIα sinη

√

k2
Rβ 2 − k2

I α2 +2(kRkI)2
, (2)

ϑI =
1
2

atanh

(

2βα
k2

)

, (3)

where η and ξ are the angles that the vectors α and β
form, respectively, with axis z. Both Eqs. (1) and (2) are

needed in order to avoid the indetermination of the value

assumed by ϑR. For the sake of simplicity, we have worked

on the plane ϕ = 0. However, the following considerations

can easily be extended to each plane with ϕ 6= 0.

It is known that by resolving the scalar Helmholtz equation,

the following scalar solution is obtained [26]–[32]:

ψm = Aeimϕ Zm(kρρ)eikzz−iωt , (4)

having indicated with ρ , φ , z the three variables indepen-

dent of the cylindrical coordinate system, with A – a com-

plex constant, and with kρ and kz the transverse and lon-

gitudinal components of the wave vector, respectively, that

are defined as:

k2
ρ + k2

z = k2 , (5)

with kx = kρ cosϕ and ky = kρ sinϕ which are the projec-

tions of transversal vector kρ on plane z = 0. The func-

tion Zm(kρρ) represents Jm(kρρ), Ym(kρρ), H(1)
m (kρρ) and

H(2)
m (kρρ), the first, second, third, and fourth Bessel func-

tions, respectively.

At this point, the harmonic vector is defined as follows [27],

[30], [32]:

M = ∇× (ẑ0ψ), N =
1
k

∇×M , (6)

it is always possible to define the electric and the magnetic

fields as superpositions of these vectorial functions:

E =
+∞

∑
m=−∞

(amMm +bmNm) , (7)

H =
k

iωµ

+∞

∑
m=−∞

(amNm +bnMm) . (8)

Let us consider a simple inhomogeneous plane wave, using

the Fourier series formulas and mathematical identities of

the exponential functions [27], [30], [33], [34]. The fol-

lowing is obtained:

ei(kxx+kyy) = eikρ ρ cos(ϕ−ϕi) (9)

=
+∞

∑
m=−∞

Jm(kρρ)eim(ϕ−ϕi)eim π
2 . (10)

Now, multiplying both members of Eq. (9) by eikzz and

considering Eq. (4), the following is reached:

eik·r =
+∞

∑
m=−∞

ψme−imϕieim π
2 . (11)

Multiplying both members of Eq. (11) by ∇×z0, and con-

sidering Eq. (6), the following result is achieved:

∇× z0eik·r =
+∞

∑
m=−∞

Mm(kr)e−imϕi eim π
2 , (12)

where the first member, using the following identities ∇×

z0eik·r = ik×z0eik·r =−ikρh0(ϑ̄i,ϕi)eik·r can be written as

follows:

h0(ϑ̄i,ϕi)eik·r =
i

kρ

+∞

∑
m=−∞

imMm(kr)e−imϕi , (13)

37



Fabio Mangini, Lorenzo Dinia, and Fabrizio Frezza

with h0 the unit vector contained in (x,y) plane. Now,

considering the further mathematical identities ∇ ×

h0(ϑ̄i,ϕi)eik·r = ik×h0(ϑ̄i,ϕi)eik·r = ikv0(ϑ̄i,ϕi)eik·r, and

taking into account the curl of both members, we obtain:

v0(ϑ̄i,ϕi)eik·r =
1
kρ

+∞

∑
m=−∞

imNm(kr)e−imϕi , (14)

having indicated with v0 the vertical unit vector with re-

spect to the plane (x,y). For an exhaustive exposition, the

formulations for the vertical and horizontal components on

a Cartesian reference system are reported:

vi0 = cos ϑ̄i cosϕix0 + cos ϑ̄i sinϕiy0 − sin ϑ̄iz0 , (15)

hi0 = −sinϕix0 + cosϕiy0 . (16)

Ultimately, we can affirm that any obliquely polarized el-

liptical field, with respect to the surface of a cylinder, can

be represented as a linear combination of two components,

one vertical and one horizontal, each multiplied by its po-

larization coefficient (Evi and Ehi, respectively):

E(r) =
[

Eviv0(ϑ̄i,ϕi)+Ehih0(ϑ̄i,ϕi)
]

eik·r

=
1
kρ

+∞

∑
m=−∞

im [iEhiMm(kr)−EviNm(kr)]e−imϕi (17)

Imposing the following definitions [32]:

am =
Ehi

kρ
im+1e−imϕi , (18)

bm = −
Evi

kρ
ime−imϕi , (19)

ki = k
(

sin ϑ̄i cosϕix0 + sin ϑ̄i sinϕiy0 + cos ϑ̄iz0
)

, (20)

Mm = mmeimϕ eikzz−iωt , (21)

Nm = nmeimϕ eikzz−iωt , (22)

with

mm = im
Zm(kρρ)

ρ
ρ0 − kρ

∂Zm(kρρ)

∂ρ
ϕ0 , (23)

nm = i
kzkρ

k
∂Zm(kρρ)

∂ρ
ρ0 −

mkz

k
Zm(kρρ)

ρ
ϕ0

+
k2

ρ

k
Zm(kρρ)z0 , (24)

the electric field can be written in the following elegant

way:

Ei(kr) =
+∞

∑
m=−∞

[amMm(kr)+bmNm(kr)] . (25)

We can extend what has been done so far to a more generic

case, where the phase vector, attenuation vector, and the

z axis are not positioned on the same plane. In this case,

angle ϕ̄i is complex as well. Following the same logical

reasoning as adopted in the previous case and exploiting

the mathematical identities [33], the following is obtained:

Ei(kr) =
+∞

∑
m=−∞

[

āmMm(k∗r)+ b̄mNm(k∗r)
]

, (26)

with

ām =
Ehi

kρ
(−i)m−1e−imϕ̄i , (27)

b̄m = −
Evi

kρ
(−i)me−imϕ̄i , (28)

ki = k∗
(

sin ϑ̄i cos ϕ̄ix0 + sin ϑ̄i sin ϕ̄iy0 + cosϑ̄iz0
)

, (29)

and with k∗ the complex conjugate of the wave number k.

Fig. 2. Comparison of the absolute value of the inhomogeneous

electric field as a function of ϕ and ρ in the case of ϕ ∈ R, see

Eq. (25). The upper figure shows the results implementing the

inhomogeneous plane wave – see the first member of Eq. (25);

in the lower figure, results implementing the superposition of the

VCHs are shown – see the second member of Eq. (25). (For color

pictures visit www.nit.eu/publications/journal-jtit)
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Fig. 3. Comparison of the absolute value of the inhomogeneous

electric field as a function of ϕ and ρ in the case of ϕ ∈ I – see

Eq. (26). The upper figure shows the results implementing the in-

homogeneous plane wave– see the first member of Eq. (26), while

the lower figure shows the results implementing the superposition

of VCHs – see the second member of Eq. (26).

Fig. 4. Statement of the validation problem. A complex wave

vector of an inhomogeneous plane wave (with ϑ and ϕ ∈ I) is

impinging on an infinite circular PEC cylinder with radius a and

with its longitudinal axis parallel to axis z.

3. Validation and Numerical Results

Validation was performed by comparing the determined for-

mulation and the canonical case of electromagnetic scatter-

ing. In particular, an infinite PEC cylinder has been con-

sidered and Eqs. (25) and (26) have been taken into con-

sideration. Equation (25) has been validated considering

the inhomogeneous plane wave with the following param-

eters k = 2− i2 1/m, ρ = [0,1] m, ϑ = π/2, ϕ = [−π ,π ].
The results representing the inhomogeneous plane wave and

its representation in the form of a VCH superposition were

found to be perfectly compatible (see Fig. 2). Subsequently,

the most general case of an inhomogeneous plane wave

with ϕ complex was validated. In particular, the follow-

ing fictitious parameters of k = 2− i2 1/m, ρ = [0.1,1] m,

ϑ = π/2, ϕ = [−π + i,π + i] were considered. Once again,

the comparison between the inhomogeneous plane wave

and its representation in the form of a VCH superposition

showed that they are perfectly stackable (see Fig. 3).

After the validation, the actual method to study the scat-

tered electric field by an infinite PEC cylinder immersed in

a lossy medium was implemented (see Fig. 4). For this pur-

pose, the following representation of the electric scattered

field was considered [32], [35]:

Esc(k∗r) =
+∞

∑
m=−∞

[

cmM(3)
m (k∗r)+dmN(3)

m (k∗r)
]

, (30)

having indicated with the apex (3) that we are considering

the third Bessel function in the VCHs, and where:

cm = −am
J̇m(k∗ρa)

Ḣ(1)
m (k∗ρa)

, (31)

dm = −bm
Jm(k∗ρa)

H(1)
m (k∗ρa)

, (32)

are the scattering coefficients [32], and where a is the cylin-

der radius.

To validate this last scenario, the results obtained by verify-

ing Eq. (31) in Matlab and COMSOL were compared. The

results were computed based on the following input values:

frequency 300 MHz, ϕi = 0 rad, E0h = 1 V/m, E0v = 0 V/m,

ε = 1+1i (relative dielectric constant), µ = 1 (relative mag-

netic permeability), cylinder radius 12.5 cm, ξ = π/8 rad,

and η = π/6 rad. The scattered electric field was calcu-

lated along the line x = −25 cm, y = [−25÷ 25] cm, and

z = 0 cm. Figure 5 shows the results achieved with two

different numerical methods, with a perfect match between

them.

4. Conclusions

In this paper, a rigorous method applied in order to expand

an elliptically polarized plane wave that is inhomogeneous

in terms of vectorial cylinder harmonics is presented. The

solution has been achieved using the complex-angle formal-

ism focusing on the problem of determining the expansion
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Fig. 5. Comparison of numerical results obtained with Matlab

code (red, dashed line) and COMSOL simulations (blue, solid

line) for the three components of the scattered electric field along

a line of the following coordinates: x = −25, y = [−25÷ 25],
z = 0 cm.

coefficients. In this way, an elegant and light formalism was

obtained. To validate the procedure, some numerical results

have been presented. Furthermore, comparisons with simu-

lations performed in the COMSOL environment have been

performed. In particular, the case of scattering caused by

a perfectly conductive electric cylinder with a circular sec-

tion and of infinite length was considered to compare the

results, and perfect accordance was reached in all scenarios.

Thanks to the minimal invasiveness of the formalism, the

cylindrical harmonics defined for the complex angle enjoy

all the same properties as the simple cylindrical harmonics.

Therefore, they are elegantly applicable to more complex

cases, such as an ensemble of cylinders or cylinders buried

in lossy media.
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G. Schettini, “Plane-wave expansion of cylindrical functions”, Op-

tics Commun., vol. 95, pp. 192–198, 1993

(doi: 10.1016/0030-4018(93)90661-N).

[35] X.-S. Zhou, Vector Wave Functions in Electromagnetic Theory.

Rome: Aracne, 1994 (ISBN: 9788879990714).

Fabio Mangini received his

B.Sc. in Clinical Engineering

in 2005 and M.Sc. degree in

Biomedical Engineering “cum

laude” from “La Sapienza” Uni-

versity of Rome, Italy in 2008.

He earned his Ph.D. in Elec-

tromagnetism from the Depart-

ment of Information Engineer-

ing, Electronics and Telecom-

munications of the same Uni-

versity in 2014. In June 2014 and in May 2015, he won

the prize “Young Scientist Award” from URSI (Interna-

tional Union of Radio Science). In January 2017, he won

the “PhD ITalents” prize, and in October 2018, he won the

“Marabelli prize”. between 2009 and 2015 he worked at the

Laboratory of Electromagnetic Fields II at “La Sapienza”

University of Rome. His research activities focus on guiding

structures, numerical methods, theoretical scattering mod-

els, optical propagation, anisotropic media, metamaterials,

biomedical applications, and cultural-heritage applications.

Since April 2019, he has been working as a researcher

at the Electromagnetic Fields and Photonics Group at the

University of Brescia.

https://orcid.org/0000-0001-5474-8952

E-mail: fabio.mangini@unibs.it

Department of Information Engineering (DII)

University of Brescia

Via Branze 38

25123 Brescia, Italy

Department of Information Engineering, Electronics

and Telecommunications (DIET)

“La Sapienza” University of Rome

Via Eudossiana 18

00184 Rome, Italy

Lorenzo Dinia received his

M.Sc. in Biomedical Engineer-

ing in Rome, earning a 4.0

GPA. In 2014, he received a

second M.Sc. in Industrial En-

gineering from the NYU Tan-

don School of Engineering.

In February 2019, he com-

pleted a Ph.D. program in

Mathematical Models for Engi-

neering, Electromagnetics and

Nanosciences, majoring in Electromagnetics, at the “La

Sapienza” University of Rome. The primary topic of his

research was the fiber Bragg grating sensor and its appli-

cations – mainly the conservation of the original condition

of artwork. He has three years of experience as a medical

equipment Maintenance Manager at two major hospitals

in Rome. He was responsible for coordinating the work

of a team of technicians performing corrective and pre-

ventive maintenance and quality inspections. During his

professional career, he held different engineering roles in

the USA. In 2015, he was a Process Technical Engineer at

a manufacturing company in Brooklyn. In 2016, he worked

as a Field Service Engineer at a packaging company in New

Jersey, and, currently, he is working as a Quality Engineer

II at a company manufacturing medical equipment.

https://orcid.org/0000-0001-5725-0930

E-mail: lorenzo.dinia@gmail.com

Department of Information Engineering, Electronics

and Telecommunications (DIET)

“La Sapienza” University of Rome

Via Eudossiana 18

00184 Rome, Italy

41



Fabio Mangini, Lorenzo Dinia, and Fabrizio Frezza

Fabrizio Frezza received his

“Laurea” (degree) “cum laude”

in Electronic Engineering in

1986 and his Ph.D. degree

in Applied Electromagnetics

and Electrophysical Sciences in

1991, both from “La Sapienza”

University of Rome. In 1986, he

joined the Department of Elec-

tronics of the same University,

where he held the position of

a Researcher from 1990 to 1998, a temporary Professor of

Electromagnetic Fields from 1994 to 1998, an Associate

Professor from 1998 to 2004. He has been a Full Pro-

fessor of Electromagnetic Fields since 2005. His research

activities focus on electromagnetic waveguides, antennas

and resonators, mathematical and numerical methods, elec-

tromagnetic scattering, optics, free electromagnetic propa-

gation, thermonuclear-plasma heating, anisotropic media,

artificial materials and metamaterials, plasmonics, biomed-

ical applications, cultural-heritage and environment appli-

cations, application of artificial intelligence in electromag-

netic sensing and diagnostics, magnetic-resonance applica-

tions, electrical transmission lines, electromagnetic compat-

ibility, spectroscopy, terahertz applications, technological

transfer, history of science and technology. He is the author

of over 500 scientific papers and 3 patents and an author

or editor of 4 scientific books; he has also authored 4 text-

books on basic and advanced electromagnetics. Dr. Frezza

is a Member of Sigma Xi and a Senior Member of IEEE

and OSA.

https://orcid.org/0000-0001-9457-7617

E-mail: fabrizio.frezza@uniroma1.it

Department of Information Engineering, Electronics

and Telecommunications (DIET)

“La Sapienza” University of Rome

Via Eudossiana 18

00184 Rome, Italy

42


