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Abstract

We define a binary metric as a symmetric, distributive lattice ordered magma-
valued function of two variables, satisfying a “triangle inequality”. Using the
notion of a Kuratowski topology, in which topologies are specified by closed
sets rather than open sets, we prove that every topology is induced by a binary
metric. We conclude with a discussion on the relation between binary metrics
and some separation axioms.
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1. Introduction

Topology generalizes the theory of metric spaces. In [? ], quasi-metrics
are used as the generalized metric. In [? ], generalized metrics were explored
whose codomain is an ordered commutative monoid, in [? ] the codomain is an
abelian `-group, and in [? ] the codomain is a value lattice which was chosen
“to allow as many of the usual constructions as possible”. By constructing
continuity spaces [? ], Kopperman showed that any topology may be induced
by a generalized metric having values in an additive semigroup (Γ,+). The
paper [? ] refined that work by showing that one can replace Γ by {0, 1}I
for some indexing set I. For any topological space (X, T ), the {0, 1}–valued
quasi-metric ξ : X ×X → {0, 1}T was defined as follows: for each U ∈ T and
for every x, y ∈ X,

πU (ξ(x, y)) =

{
1, if x ∈ U and y /∈ U,
0, otherwise.
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We note here that the terminology “quasi-metric” used in [? ] matches what
[? , Definition 6.1.1] calls a “hemi-metric” or what [? ] calls a “quasi-pseudo-
metric”. Both of those references use “quasi-metric” to refer to a T0 hemi-metric,
i.e. one for which d(x, y) = d(y, x) = 0 implies x = y. Thus, the main result
in [? ] that all topologies may be represented as a “{0, 1}-valued quasi-metric”
is a generalization of Wilson’s Theorem [? , Theorem 6.3.13] that all second-
countable topological spaces are hemi-metrizable.

In this setting, one might think that a natural generalization of the metric
open balls is given as follows: for every x ∈ X and ε ∈ {0, 1}I ,

Bε(x) =
{
y ∈ X

∣∣ξ(x, y) < ε}.

Unfortunately, if we use this definition of open balls, any intersection of an
arbitrary collection of open sets containing x can be written as an open ball
around x. This would imply that every non T0 topology is discrete, which is
obviously false. In the article [? ], the authors did not use the above definition,
but rather chose to use a definition in which ε = 0 or ε = 1, circumventing this
issue.

In this paper, we define a generalized metric that is valued in a power,
{0, 1}T , of {0, 1}. In doing so we switch our gaze from the conventional approach
to topology, which focuses on the open sets of a space, to its equivalent, closure
system based counterpart, which we call the Kuratowski topology. This view
of topology originated with Kazimierz Kuratowski [? ] using closure operators,
and in some recent work, one finds that it is sometimes preferable, for example
in the study of representation spaces [? ]. Below is an equivalent definition.

Definition 1.1. Consider a set X and let C be a family of subsets of X. We
say that C is a Kuratowski topology on X if and only if

1. {∅, X} ⊆ C,

2. any intersection of elements of C is an element of C, and

3. any finite union of elements of C is an element of C,

in which case, we call (X, C) a Kuratowski space.
An element of the Kuratowski topology is called a closed set while an element
whose complement is in the Kuratowski topology is called an open set.

Other authors [? , p.48] have used Kuratowski’s definition of a topological
space in terms of closed set systems as a starting point for investigation of
lattices, called Kuratowski lattices, in pointless topology.

Definition 1.2. Let (X, C) be a Kuratowski space. We define

TC :=
{
X \A

∣∣A ∈ C} .
It is easy to see that (X, TC) is a conventional topological space. Every

conventional topology has a basis of open sets; similarly the Kuratowski topol-
ogy has a basis of closed sets, and we will refer to it as a closed basis of the
Kuratowski topology.
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Definition 1.3. Consider a Kuratowski space (X, C). A subset B of C is called
a closed basis of C if and only if for every x ∈ X,

1. there exists B ∈ B not containing x,

2. for any A ∈ C not containing x, there exists B ∈ B not containing x such
that A ⊆ B.

The elements of B are called basic closed sets. We say that B generates C since
for any closed set A in C, there is a collection basic closed sets {jB|j ∈ J } ⊆ B
such that

A =
⋂
j∈J

jB.

On the other hand, given any set X, a closed basis is a collection of subsets
of X whose arbitrary intersection generates a Kuratowski topology on X.

Definition 1.4. Consider a set X. A collection B of subsets of X is called a
closed basis on X if and only if for every x ∈ X,

1. there exists B ∈ B not containing x,

2. for any B1, B2 ∈ B not containing x, there exists B ∈ B not containing
x such that B1 ∪B2 ⊆ B.

In practice, any collection H of subsets of X satisfying the first axiom is
called a closed subbasis on X, and can be extended to a closed basis on X in the
following manner

BH =

{
n⋃
i=1

iH
∣∣n ∈ N, iH ∈ H

}⋃{
∅, X

}
.

In ??, we introduce a lattice ordered magma, the algebra needed to work with
our generalized metric having values in {0, 1}I , thus providing the prerequisites
for the study of binary metrics. In Section 3, we continue to lay the ground work
for the study of binary metrics and their associated spaces. Specifically, we there
define binary metrics and closed balls, and we present some of their fundamental
properties. In ??, we prove that any Kuratowski topology is induced by a binary
metric, illustrating the robustness of the theory of binary metrics. In ??, we
define some separation axioms for Kuratowski spaces, characterize them in terms
of binary metrics, and correlate them to their analogs in conventional topology.

2. Binary Lattice

Notation 2.1. Let I be an indexing set. We denote

Γ = {−1, 0, 1}, ΓI = {−1, 0, 1}I , and ΓI+ = {0, 1}I .
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As we will see in ??, in ΓI , ΓI+ is a natural analogue to a nonnegative cone.
For completeness, we define

ΓI− = {−1, 0}I .

For any element a ∈ ΓI , b ∈ Γ,and i ∈ I, we denote

1. ai = πi(a) i.e. the projection of a along the ith coordinate,

2. −a =
∏
i∈I(−ai),

3. b̄ =
∏
i∈I(b), i.e.

−1̄ =
∏
i∈I

(−1), 0̄ =
∏
i∈I

(0), and 1̄ =
∏
i∈I

(1).

Definition 2.2. For any a and b in ΓI , we define ≤I as the product order on
ΓI :

a ≤I b if and only if for any index i ∈ I, ai ≤ bi.

Definition 2.3. We define a binary operation ⊕ on Γ by

⊕ −1 0 1

−1 −1 −1 0
0 −1 0 1
1 0 1 1

We denote (a⊕I b)i = ai ⊕ bi.

The operation ⊕ will be our substitute for the addition of traditional metric
spaces.

Definition 2.4. We define a“subtraction” operation 	I on ΓI by

a	I b = a⊕I (−b).

Working in (ΓI+,⊕I ,≤I) is quite straightforward. We list some properties
below:

Proposition 2.5. Consider the lattice ordered magma (ΓI+,⊕I ,≤I). If a, b, c,
and d are elements of ΓI+, then

1. a⊕I a = a,

2. for every n ∈ N, (n+ 1)a = a; hence, by convention 0a = 0̄,

3. a⊕I b = b⊕I a,

4. a⊕I 0̄ = a,

5. if a ≤I b and c ≤I d then a⊕I c ≤I b⊕I d,
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6. if a ≤I b then a	I c ≤I b	I c,

7. a⊕I 1̄ = 1̄,

8. (a⊕I b)⊕I c = a⊕I (b⊕I c),

9. a ≤I b if and only if a⊕I b = b,

10. (a	I b)⊕I (c	I d) = (a	I d)⊕I (c	I b),

11. (a⊕I b)	I c ≤I a⊕I (b	I c) = (a	I c)⊕I b,

12. 1̄ = max(ΓI+) and 0̄ = min(ΓI+); hence, ΓI+ is bounded,

13. a⊕I b =
∏
i∈I(ai ⊕ bi) = max{a, b} making ΓI+ a lattice.

Unfortunately, for (ΓI ,⊕I ,≤I), ?? (7)–(11) do not hold, and (12) and (13)
are replaced by the following property.

Property 2.6. If a and b are elements in (ΓI ,⊕I ,≤I), then

1. −(a⊕I b) = (−a)⊕I (−b),

2. 1̄ = max(ΓI) and −1̄ = min(ΓI); hence, ΓI is bounded,

3. a⊕I b =
∏
i∈I(ai ⊕ bi) =

∏
i∈I sgn(ai + bi)

⌈
|ai+bi|

2

⌉
.

As the following lemma shows, (ΓI ,⊕I) is not associative.

Lemma 2.7. Let a be a maximum of an ordered magma (Ω, ∗,≤) with identity
e 6= a. If a−1 ∈ Ω then ∗ is not associative.

Proof. The element a of Ω is the maximum, hence e ≤ a. In an ordered magma,
the operation is compatible with the order. Therefore,

e ∗ a ≤ a ∗ a⇔ a ≤ a ∗ a⇔ a = a ∗ a.

Now
(a−1 ∗ a) ∗ a = (e) ∗ a = a,

whereas
a−1 ∗ (a ∗ a) = a−1 ∗ (a) = e,

completing the proof.
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3. Binary Metric

The following definition is from [? ].

Definition 3.1. Consider a set X and an indexing set I. For every i ∈ I,
let gi : X × X → {0, 1}. Then, gi is said to be a {0, 1}−valued generalized
quasi-metric if it satisfies the following axioms: for all x, y, z ∈ X, for every
i ∈ I,
(g−lbnd): 0 = gi(x, x) ≤ gi(x, y),
(g−inq): gi(x, y) ≤ gi(x, z) + gi(z, y).

As we will show in ??, any Kuratowski topology can be induced by what we
will call a binary metric.

Definition 3.2. Consider a set X and an indexing set I. Let ξ : X×X → ΓI+.
Then, ξ is said to be a binary metric if it satisfies the following axioms: for all
x, y, z ∈ X
(ξ–lbnd): ξ(x, x) ≤I ξ(x, y), (also known as small self-distance),
(ξ–sym): ξ(x, y) = ξ(y, x), and
(ξ–inq): ξ(x, y) ≤I ξ(x, z)⊕I [ξ(z, y)	I ξ(z, z)].

We note here that our binary metric could be described as a “generalized
partial pseudo-metric” because it is not real-valued and obeys a weakening of
the axioms of partial metrics appearing in [? , Definition 3.1]. We will retain
the terminology “binary metric” because it is intuitive.

Remark 3.3. By ?? (10),

ξ(x, z)⊕I [ξ(z, y)	I ξ(z, z)] = [ξ(x, z)	I ξ(z, z)]⊕I ξ(z, y).

Additionally, ξ(x, x) = 0̄ may seem as an important restriction. But, as shown
in ?? below, it is not needed.

Remark 3.4. The reader may notice the lack of a separation axiom i.e. an
axiom used to deduce x = y by looking at ξ(x, y). This is in fact intentional.
One of the main purposes of this paper is to prove that any Kuratowski topology
can be induced by a binary metric. If a topology is not T0, then there should
be at least two distinct points x and y that are not topologically distinguishable
from each other. Hence, the corresponding induced binary metric should not be
able to distinguish them either.

Definition 3.5. Consider a set X and an indexing set I. Let ξ : X×X → ΓI+

be a binary metric.

1. We say that ξ is a strong binary metric if and only if (ξ-lbnd) is replaced
by a strict inequality.

2. We say that ξ is a separating binary metric if and only if it is a binary
metric along with the extra axiom
(ξ–sep): ξ(x, x) = ξ(x, y) = ξ(y, y) if and only if x = y.
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Clearly, any strong binary metric is a separating binary metric, and any
separating binary metric is a binary metric. With extra conditions, we can
achieve separation in binary metric spaces using the following more restrictive
binary metrics, as we will show in ??. Also, similar to earlier, a separating
binary metric may be called a “generalized partial metric”.

Given a set X and a Kuratowski topology C on X, we can define a binary
metric on X by taking a closed basis B of C as the indexing set.

Proposition 3.6. Let (X, C) be a Kuratowski space with a closed basis B.
Define a function ξ : X ×X → ΓC+ by: for every x, y ∈ X, for every closed set
A ∈ B,

ξ(x, y)A =

{
0 if x ∈ A and y ∈ A,

1 otherwise.

Then, ξ is a binary metric.

Proof. (ξ−lbnd): Let A ∈ B, if ξ(x, x)A = 1 then x /∈ A i.e ξ(x, y)A = 1 and,
hence,

ξ(x, x) ≤B ξ(x, y).

(ξ−sym): Is straightforward.
(ξ−inq): Let x, y, z ∈ X and A ∈ B, if ξ(x, y)A = 1 then either x ∈ A and
y /∈ A, x /∈ A and y ∈ A, or x /∈ A and y /∈ A.
Case 1: x ∈ A and y /∈ A

If z ∈ A
ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 0⊕ 1 = 1.

If z /∈ A
ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 1⊕ 0 = 1.

Case 2: x /∈ A and y ∈ A
If z ∈ A

ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 1⊕ 0 = 1.

If z /∈ A
ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 1⊕ 0 = 1.

Case 3: x /∈ A and y /∈ A
If z ∈ A

ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 1⊕ 1 = 1.

If z /∈ A
ξ(x, z)A ⊕ [ξ(z, y)A 	 ξ(z, z)A] = 1⊕ 0 = 1.

And, hence
ξ(x, y) ≤B ξ(x, z)⊕B [ξ(z, y)	 ξ(z, z)],

completing the proof.

Definition 3.7. Let (X, C) be a Kuratowski space with a closed basis B. The
canonical binary metric determined by B is the binary metric illustrated above
in ??.
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In [? ], an equivalent version of the binary metric is given to refine the
work done in [? ]. The balls they proposed were open balls but defined on
the projections of ΓI+ rather than ΓI+ itself. To be able to define a ball with
radius in ΓI+, we needed to consider closed balls and, therefore, Kuratowski
topologies. We start by defining ξ−closed balls.

Definition 3.8. Let ξ be a binary metric on a set X with I as the indexing set.
For every x ∈ X and ε ∈ ΓI+, the ξ−closed ball around x of radius ε is defined
by

Bε(x) = {y ∈ X|ξ(x, y)	I ξ(x, x) ≤I ε}.

We notice that due to a lack of separation axiom, when ε = 0̄, the ball may
contain elements other than x. Additionally, for any ε ∈ ΓI+, x ∈ Bε(x). By
??, the set of ξ−closed balls can be used as a subbasis i.e.

B =

{
n⋃
i=1

Biε(
ix)
∣∣n ∈ N, ix ∈ X and iε ∈ ΓI+

}⋃{
∅, X

}
forms a closed basis on X.

Lemma 3.9. Let ξ be a binary metric on a set X with I as the indexing set.
For every x, y ∈ X, for every ε ∈ ΓI+,

y ∈ Bε(x) if and only if Bε(y) ⊆ Bε(x).

Proof. If y ∈ Bε(x), i.e. ξ(x, y) 	I ξ(x, x) ≤I ε, then for every z ∈ Bε(y), i.e.
ξ(y, z)	I ξ(y, y) ≤I ε we have

ξ(x, z)	I ξ(x, x)

by (ξ−inq)
≤I

(
ξ(x, y)⊕I [ξ(y, z)	I ξ(y, y)]

)
	I ξ(x, x)

by ?? (10)
≤I

(
[ξ(x, y)	I ξ(x, x])⊕I [ξ(y, z)	I ξ(y, y)]

)
by ?? (8)

≤I ε⊕I ε = ε

and, hence, z ∈ Bε(x). The converse is trivial, completing the proof.

4. Kuratowski Topology

Now that we have shown how to obtain a Kuratowski topology from a binary
metric, we show that any Kuratowski topology C can be induced by the canonical
binary metric determined by a closed basis B of C. Our approach is similar to [?
] albeit, using closed sets and a different generalized metric. Also, the following
result generalizes the results in [? ] to arbitrary topological spaces.
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Theorem 4.1. Let (X, C) be a Kuratowski space having B as a closed basis.
The canonical binary metric determined by B induces C.

Proof. Let ξ be the canonical binary metric determined by B as defined in ??.
We start by showing that every the ξ−closed ball Bε(x) is in C. For every x ∈ X
and ε ∈ ΓB+, let

Hε(x) = {A ∈ B
∣∣x ∈ A and εA = 0}

and
K =

⋂
A∈Hε(x)

A.

Note that K is an element of C. We claim that in fact, K = Bε(x). To prove
this let y ∈ Bε(x), i.e. ξ(x, y) ≤B ε. For every A ∈ Hε(x), we know that x ∈ A
and 0 ≤ ξ(x, y)A ≤B εA = 0 therefore, y ∈ A and hence,

y ∈
⋂

A∈Hε(x)

A

giving us
Bε(x) ⊆ K.

Conversely, let y ∈ K, and D ∈ B,
Case 1: If εD = 1 then it is trivial that

ξ(x, y)D 	 ξ(x, x)D ≤ εD.

Case 2: If εD = 0 and x /∈ D then

ξ(x, y)D 	 ξ(x, x)D = 1	 1 = 0 ≤ εD.

Case 3: If εD = 0 and x ∈ D , then D ∈ Hε(x) and, hence, y ∈ K ⊆ D
giving us that

ξ(x, y)D = 0 ≤ εD.

Therefore,
K ⊆ Bε(x)

and hence,
Bε(x) = K.

To show that ξ−closed balls determine C, it is not sufficient to merely show that
every ξ−closed ball is closed. We will show that every closed set is a ξ− closed
ball.
Let D be a nontrivial closed set in C. Because B is a basis of C, it follows that

D =
⋂
j∈J

jB such that, for all j ∈ J ⊆ I, jB ∈ B.
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Let x ∈ D, we now define δ ∈ ΓB+ as: for every A ∈ B,

δA =

{
0 A = jB for some j ∈ J ,
1 otherwise.

Then,
D = Bδ(x).

Step 1: We need only consider the case where δA = 0 i.e. A = jB. For every
y ∈ D, x, y ∈ jB, so that ξ(x, y)jB = 0 ≤ δjB = 0, we obtain

D ⊆ Bδ(x).

Step 2: For every y ∈ Bδ(x), ξ(x, y)jB ≤ δjB = 0 and hence, y ∈ jB. Therefore,

Bδ(x) =
⋂
j∈J

jB = D,

completing the proof.

Notation 4.2. Let ξ be a binary metric on a set X. We denote by Bξ the
closed basis on X induced by ξ as in ??. We denote by (X, ξ) the Kuratowski
space on X generated by Bξ.

5. Separation Propositions

We now explore separation axioms from a Kuratowski perspective, translate
them to binary metric language, and compare them to the standard separation
axioms. To do that, we establish the following lemma.

Lemma 5.1. Let (X, ξ) be a binary metric space. For any two distinct points
x and y in X, ξ(x, y) 6= ξ(x, x) if and only of there is a closed set A such that
x ∈ A and y /∈ A.

Proof. (⇒): We take A to be the ξ−closed ball

B0I (x) =
{
z ∈ X

∣∣ξ(x, z)	I ξ(x, x) ≤I 0I
}
.

Since ξ(x, y) 6= ξ(x, x) and, by (ξ − lbnd), ξ(x, x) ≤ ξ(x, y), then there is an
i ∈ I such that iξ(x, x) = 0 and iξ(x, y) = 1. Therefore, ξ(x, y)	I ξ(x, x) > 0I

and hence, y /∈ B0I (x).
(⇐): If there exists a closed set A such that x /∈ A and y ∈ A, then by ?? and
??, there exists a finite number of ξ−closed balls such that

x ∈ A ⊆
n⋃
i=1

Biε(
ix) and y /∈

n⋃
i=1

Biε(
ix).

Hence, there exists an i ∈ {1, ..., n} such that

x ∈ Biε(
ix) and y /∈ Biε(

ix)
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by ??
x ∈ Biε(x) ⊆ Biε(

ix) and hence, y /∈ Biε(x)

therefore, ξ(x, y)	I ξ(x, x) > 0I .

The following definition is a Kuratowski space analogue of a topological
space being T0.

Definition 5.2. Let (X, C) be a Kuratowski space. We say that (X, C) is K0 if
and only if for any two distinct elements x and y in X, there is a closed set A
in C such that

[x ∈ A and y /∈ A] or [x /∈ A and y ∈ A].

The following theorem characterizes the property of being K0 in terms of
the binary metric.

Theorem 5.3. A binary metric space (X, ξ) is K0 if and only if ξ is a separating
binary metric i.e. for any two distinct elements x and y in X

ξ(x, y) 6= ξ(x, x) or ξ(x, y) 6= ξ(y, y).

The next theorem demonstrates that Definition ?? gives a natural analogue
of the T0 property and its proof follows directly from Theorem ??.

Theorem 5.4. A Kuratowski space (X, C) is K0 if and only if (X, TC) is T0.

Similarly, we define a Kuratowski space analogue of being T1.

Definition 5.5. Let (X, C) be a Kuratowski space. We say that (X, C) is K1 if
and only if for any two distinct elements x and y in X, there is a closed set A
in C such that

[x ∈ A and y /∈ A] and [x /∈ A and y ∈ A].

We now characterize being K1 in terms of the binary metric.

Theorem 5.6. A binary metric space (X, ξ) is K1 if and only if ξ is a strong
binary metric, i.e. for any two distinct elements x and y in X,

ξ(x, y) 6= ξ(x, x) and ξ(x, y) 6= ξ(y, y).

The next theorem demonstrates that Definition ?? gives a natural analogue
to the T1 property and its proof follows directly from Theorem ??.

Theorem 5.7. A Kuratowski space (X, C) is K1 if and only if (X, TC) is T1.

Acknowledgment: The authors would like to personally thank the anonymous
referee for their valuable comments in improving the article.
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6. Conclusion

We presented the definition of a binary metric as an alternative to that of
a {0, 1}-valued generalized quasi-metric introduced by Ercan and Vural in [?
]. We have shown that any topology may be realized in a natural way using a
binary metric. In addition, we elucidated the relationship between Kuratowski
spaces, binary metric spaces, and topological spaces as presented traditionally.
This includes characterizations of important separation properties in terms of
binary metrics. Further work can investigate other separation axioms, character-
izations of compactness, traditional metrizability, and topological completeness
in terms of binary metrics.
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[12] Jan Pavĺık, Unified approach to graphs and metric spaces., Math. Slovaca
67 (2017), no. 5, 1213–1238.

12


	Binary Metrics
	Recommended Citation

	tmp.1583759149.pdf.WsSct

