The natural frequency of oscillation of gas bubbles in tubes
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A numerical study is presented of the natural frequency of the volume oscillations of gas bubbles in
a liquid contained in a finite-length tube, when the bubble is not small with respect to the tube
diameter. Tubes rigidly terminated at one end, or open at both ends, are considered. The open ends
may be open to the atmosphere or in contact with a large mass of liquid. The numerical results are
compared with a simple approximation in which the bubble consists of a cylindrical mass of gas
filling up the cross section of the tube. It is found that this approximation is very good except when
the bubble radius is much smaller than that of the tube. An alternative approximate solution is
developed for this case. The viscous energy dissipation in the tube is also estimated and found
generally small compared with the thermal damping of the bubble. This work is motivated by the
possibility of using gas bubbles as actuators in fluid-handling microdevicesl998 Acoustical
Society of America.S0001-4968)02606-X]

PACS numbers: 43.35.PHEB]

INTRODUCTION While the scale that we envisage is of the order of one
millimeter or less and the flow velocities relatively small, so
An extensive literature exists on the small-amplitudethat viscous effects would not be negligible, it seems natural
volume oscillations of gas bubbles in unbounded liquidsfor a first analysis of this problem to start from a consider-
near rigid plane boundaries and free surfasee, e.g., Stras- ation of the inviscid case, treating viscous effects in an ap-
berg, 1953; Howkins, 1965; Blue, 1966; Plesset and Prospeproximate way(see Sec. 1Y. The attending simplification
etti, 1977; Apfel, 1981; Scott, 1981; Prosperettial, 1988;  enables us to focus with greater clarity on the inertial aspects
Oguz and Prosperetti, 1990; Prosperetti, 1909lhe case of of the bubble—fluid interaction, which are one of the domi-
bubbles confined in channels and tubes, however, does nfaknt aspects of the system. Second, it will be easier to estab-
seem to have been considered before except in a brief uffish a connection with the available results for the unbounded
published report by Devitt1961). Of course, when the ra- case. Third, one can envisage situations in which viscosity is
dius of the tube is much larger than the bubble—as would béndeed negligible, such as an oscillation frequency so large
the case, for example, for bubbles entrained in ordinary machat the viscous boundary layer is much thinner than the
roscopic flows—the results for bubbles in unbounded liquidgype,
can be used to a good approximation. In the situations of  Since, in order to maximize the effectiveness of the ac-
concern here, however, the size of the bubble is not smatator, it is desirable to operate near resonance conditions,
and the effect of the proximity of the boundary very signifi- the natural frequency of the bubble is the most significant
cant. quantity to be determined. This is the objective of this paper.
The situations considered in this paper are all axisymin the future we shall consider forced oscillations, damping
metric and are sketched in Fig. 1. The bubble is inside gnechanisms, and nonlinear effects.
liquid-filled, finite-length, rigid-walled tube that may be open
at both end$Fig. 1(a), ('), and(b)], or rigidly terminated at
one end and open at the othj&ig. 1(c) and(d)]. The open
ends) of the tube may be in contact with the atmosphere

[F!g. 1(b) and (d)], or with a large mass of the same liquid As shown by Strasber(l953; see also Qg and Pros-
[Fig. 1(a)_, @), an_d ©] . ) peretti, 1990, it is possible to obtain a relation for the natural
Our interest in these problems is motivated by the poStrequency directly by using the analogy with the capacitance

sibility to use gas bubbles as actuators in the small fluidyplem of electrostatics. To this end we start from the con-

handling systems that advances in silicon manufacturingjsion expressing the balance of normal forces at the bubble
technology are rendering possiliee, e.g., Fujita and Gab- ¢, f5ce:

riel, 1991; Lin et al, 1991; Graveseret al, 1993. These
include bioassay chips, integrated micro-dosing systems,
miniaturized chemical analysis systems, and others. The ad-
vantage of bubbles in this setting would be the possibility to
power them remotely by ultrasonic beams with no need foHere,p; is the pressure in the bubble, assumed spatially uni-
direct contact between the actuator and the power supply. form, p, the pressure in the liquid at the bubble surfage,
particularly intriguing possibility in this regard may be of- the surface tension coefficient, adthe local curvature of
fered by the ability of ultrasound to propagate through livingthe interface. Upon using thdinearized Bernoulli integral
tissue. to expressp, in terms of the velocity potentia¢p and the

|. FORMULATION

pi=p.to?. @
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For linear oscillations at a single frequensyany variable is
proportional to any other so that we may write

dpi _ dp, dV
a9t v ar ®)

whereV is the instantaneous bubble volume ag /dV a
possibly complex constant. Furthermore,

dv P
- azLu-n dSES<a—f>, (6)

wheren is the outward directed unit normal to the bubble
surfaceS. With the neglect of gravity, the equilibrium con-
figuration of the bubble is necessarily spherical, although the
instantaneous shape during volume oscillations is not neces-
sarily so. However, again in the linear approximation, it is
easy to show that
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FIG. 1. The various configurations of a bubble in a tube considered in this - <Z/> =<Z’o> -—/, (7)
paper:(a) open tube with infinite thickness immersed in an unbounded lig- dt d

uid; () open tube with negligible thickness immersed in an unbounded S\ . .
liquid; (b) partially filled tube with liquid surfaces exposed to the atmo- Where(%O)_Z/a is the curvature of a sphencal bubble of

sphere;(c) rigidly terminated tube in the bottom of a large containeh; ~ radiusa. Upon substituting these results into Hd), and

partially filled tube closed at one end. further writingi w for d/dt, we find
1( dp 20\ 1 /¢
i ; i w’=——|S——+—=| — ( —). (8)
static pressur@.,, the previous relation becomes dv ' aZ) (¢) \on
d¢ . For a spherical bubble in an infinite liquidb=(a2/r)
Pi=—p S tP=to?, (2 x(da/dt) (wherer is the distance from the bubble center

andda/dt the radial velocity and this expression reduces to

wherep is the liquid density. The bubble internal presspre
1 S dp| n 20

can be assumed to remain spatially uniform at all times. wg_
Sincep.. is a constant, this equation implies then thawill ap dv  a

remain essentially uniform over the bubble surface provideql,vherew0 denotes the bubble angular frequency in this case.

it is uniform (e.g., equal to zejoat the initial time, and on taking the ratio with Eq(8) and introducing the fre-
provided the surface curvature is either uniform or Sma”-quenciesf=w/2w, fo=wo/27, we thus have

The former possibility prevails in the case of small bubbles, )
which tend to remain spherical, while the latter one is en- l _a [
countered for large bubbles for which the surface tension “(¢)y \on]/’

fo
contribution is negligible. Upon balancing variations in cur- . . .
vature and variations in internal pressure, it is found that th V;’:'Cuheﬁzprsf‘:’ﬁ: It?uabt():lc;n:j%aecigotrh”e] threesgrﬁggeo;nb?fngztﬁégl
appropriate scale to judge whether a bubble is o be ConSijfhg valid¥ty of this result presupposeg of course that/dV .
e e i 8.0 e same vl 2 for a bubl nan i
' luid. This assumption may be justified as follows. The rate

ters.With the assumption of a uniform internal pressure, av_of char_wge of the internal pressure with volume is deter_mined
eraging Eq.2) over the bubble surface, we have essentially by the thermal processes in the bubble. It is well
known that, to an excellent approximation, these can be
a evaluated assuming the bubble surface temperature to remain
pi:_P<W> + Pt o(7), (3 undisturbed(see, e.g., Kamatfet al, 1993, which effec-
tively decouples the thermal problem from the environment
where(...) denotes the surface average. In the linear approxisurrounding the bubble.
mation, to which we confine ourselves, the surface average If the length of the tube were infinite, volume changes of
of any first-order quantity can consistently be calculated orthe bubble would only be possible in a compressible fluid.
the unperturbed equilibrium surface, rather than on the movHowever, if the length of the tube is much smaller than the
ing one. As a consequence, time differentiation and surfaceavelength of sound in the liquid, we may use the incom-
averaging commute and therefore, upon differentiating oncgressible approximation so that the velocity potential satis-

: (€)

(10

more with respect to time, we find fies Laplace’s equatiofi?¢= 0. For simplicity we only con-
5 sider axisymmetric situations. The boundary condition on the
d_ _ %+ i 3 surrounding solid boundaries is of courseV ¢=0. If the
Pae (¢)= dt 7 dt () @ liquid mass in the tube is bounded by a free surface in con-
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tact with the atmosphere, as in Figbland(d), ¢=0 is the 1 2 a3

appropriate boundary condition there. Furthermore, unless |:§ h:§ A (12

the bubble is very close to this surface, there will be little

error in assuming it to be plane. If, on the other hand, thenust be subtracted from botty andL,. If the tube’s ends

tube is part of an extenddihfinite) mass of liquid, as in Fig. are in contact with the atmosphéiféig. 1(b) and(d)], this is

1(a), (&), and(c), ¢ is required to vanish at infinity. the only adjustment to the lengths of the liquid columns. If
As noted before, provided the bubble is either relativelyan end is immersed in an unbounded liqlidg. 1(a), (&),

small or relatively large, one may assume tlfaremains and (c)], however, there is an added mass effect that can be

uniform over the bubble surface. Since the problemgias ~ accounted for by augmenting the geometrical length by an

linear and, aside from the boundary condition on the bubbl@mountAL. For the situation of Fig. () one can simply

surface, it is homogeneous, it follows tHatg/Jn) will also  estimate this end correction by noting that, from the point of

be proportional to the average value ¢fevaluated on the View of the fluid outside the tube, the effect of the liquid

bubble surface. It is therefore sufficient to calculate the surentering and exiting the tube opening is similar to the pulsa-

face averages appearing in Hq_O) by So|ving Lap|ace’s tions of a “half-bubble” with diameter equal to the hydrau-

equation subject to the boundary conditigi=1 on the un- lic diameterDy, of the tube.(The hydraulic diameter is four

disturbed spherical bubble. times the ratio of the cross-sectional ake#o the perimeter
The solution of the potential problem formulated beforeP of the tube) Since such a bubble in an unbounded liquid

can readily be obtained by using the boundary integrawould have an added, or virtual, massr@®;/2)°p, the

method (see, e.g., Pozrikidis, 19820ur version of this added mass for the half-bubble is@D,/2)°p, which can be

method is already well documented in the literature, to whichaccounted for by extending the tube by an amadbtcho-

the reader is referre@ee, e.g., Ogz and Prosperetti, 1990 Sen so thahAL contains an equal mass of liquid. The result
The derivation of the numerical results shown below, thelS

accuracy of which was verified by the standard convergence A2

and grid-independence tests, did not require a very high de- AL=16mx 3

gree of discretization. The line representing the bubble sur-

face in the meridian plane was approximated by cubicand equals R for a circular tube. This result can also be

splines with 10 nodal points. Up to 70 points were used orgerived in an alternative, more rigorous w&@guz and

the tube’s wall, depending on its length. In situations wherezeng, 1995, 1997 The same procedure applied to the thin-

the solid boundary extends to infinifFig. 1(a) and(c)], the  walled tube of Fig. (&) is inaccurate, however, as shown by

integration over its surface must be stopped at some largeevine and Schwingef1948. In this case, for a circular

distance from the axis of symmetry. Ten tube radii provedtube, one finddAL=1.22R.

sufficient for convergence. On the basis of these arguments we define equivalent

lengths of the liquid columns on the two sides of the bubble

by
Le=L—1+AL, i=12 (14

(13

Il. APPROXIMATIONS

The numerical calculation of the natural frequency ac- h . ded il . ival
cording to the method described before is a matter of somgt € syEstergsls' regar ?V .as an oscillator, Its equivalent mass
complexity and it is useful therefore to obtain approximate'® [see Eq(33) in Sec. V]

expressions. We consider separately the case of large and 1 1\71
small bubbles. Meq=pA| e T 2| (15
1 2
A. Large bubbles while the “spring constant” is
When the radius of the bubble is not small compared d
with the radiusR of the tube, an obvious approximation to K=—A2 ﬁ. (16)
the situation envisaged here is that of a one-dimensional dv
“slice” of gas filling the entire cross section of the tube and The natural frequency of the system is therefore
with a thicknessh adjusted to give the same volume as the
real bubble: 2o K :_(iJri) Adp 17
4.3 a7 M, LS LS/ p dV’
Ah=3ma”, (11 q 1 =2

whereA is the tube’s cross sectional area. Since the considWith fa=w,/2m, upon taking the ratio of this expregsion to
erations that follow are applicable to tubes of general crosd1® natural frequency of a bubble of equal radius in an un-
section, we do not specialize the formulae to circular tubes iffounded liquidineglecting surface tension effef;tsve find

this subsection. f.\2 A
Let the bubble center be at a distaricefrom one end <f—>

of the tube and.,=L —L, from the other. For greater accu- 0

racy, these geometrical parameters can be adjusted to reflect If one of the ends is rigidly terminated, we assume that

more closely the physical situation. In the first place, in ordetthe liquid on that side does not partake of the motion in this

to preserve the total volume, an amount one-dimensional approximation. This limit is contained in

= Ly 1) (18)
4ra \LS ' LS)
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the previous formulae by taking the corresponding effectivdrom these three homogeneous boundary conditions one can
length to be infinite. It will be seen in the next section thatconceptually think of expressiry,, C,, andD,, in terms of

this is a good approximation. the A,,, which are in turn determined by the pressure condi-
tion on the bubble surface.
B. Small bubbles If the bubble radius is small, the magnitude of the

‘higher-order terms of the Legendre polynomial expansion is

The model just described is evidently a poor approxima- "~ . B
tion when the bubble is small compared with the tube radiusrap'dly decr'easmg and .ther.efore we 'trun.cate this |'nf|n|te sum
We now turn to this case considering explicitly a tube opento just the first term which, in the cylindrical coordinate sys-

at the two ends. The adjustme(i4) to the length of the tem used to express the other terms, is

liquid columns permits one to adapt the results to the other a a
cases depicted in Fig. 1. Ao~ Po=hAo o g2 (23)
. ; . . , P [r*+(z—d)"]
It is particularly convenient to use the following special
representation of the velocity potential: whered is the position of the bubble center. Using well-
" " known orthogonality properties we then have from E@S)
antt nar\ = nmz to (22):
$=2 Ay —r1 Pn(COS0)+ 2, Bylg - /sh T '
n=o0 P n=1 B, 2 1 L R _ (nwz)d
o ) —=— sin z,
ic z . L—z+ c sinh a,(Z/R) A, nmly(nwRIL) Jo [R*+(z—d)?]?? L
oL "o T & | M sinhay(L/R) (24)
sinh a,(L—2)/R r Do 2 JR Ty
- - = — —=—= ———dr, (25
" sinha(L/R) 20| % R)" 19 A7 R G
Here theP,’s are Legendre polynomials, andland 6 are 2 R r r
polar coordinates centered at the bubble cemtemdz are —=- —— f Jo< an —) dr, (26)
cylindrical coordinates with the two free surfaces of the qu-AO R%Jo(an) Jo r#+d? R
uid at z=0 andz=L. The modified and ordinary Bessel c 2 (R
functions of order 0 are denoted by andJ,, the @,'s are =0 _ _ — f . dr, (27)
the zeros of);, and the coefficient&,, B,, C,, D,are Ao R™ Jo Jr2+(L—d)?
to be determined from the boundary conditions. This particu-
lar form for ¢ is constructed in such a way that the firstCn 2 J’R r ] e 29
summation describes the flow near the bubble, the secondl, R2J5(ay) Jo JrZF(L—d)2 of ¥ g™

one in the tube away from the bubble, the next two terms the o ] ) .
bulk translation of the liquid away from the bubble, and the I principle, Ao should now be determined by imposing
last summation the end effects. The proof that @§) gives & cond|t|pn or¢) _at the bubble surface. As is e_wdent from
an accurate representation of the potential follows from thdh€ previous relations, however, all the coefficients are pro-
fact that, as will be seen shortly, all the coefficients arePortional toAq and it will be recalled from Eq(10) that we
uniquely determined and all the boundary conditions are saf'® only interested in the ratio (1))(d¢/dn) that is obvi-

isfied. ously independent of\. It is therefore unnecessary to im-
On the tube wall the velocity must vanish, which re- POS€ the last boundary condition explicitly aAgd can sim-
quires ply be taken as 1.

Of course, it is not necessary to truncate the spherical
harmonic expansion in E419) at the first term. In principle,
one can retain any number of terms in the sums. Upon taking
scalar products, one is then reduced to a linear system for the

- nT [(nmR\ = nmwz coefficients. As discussed in the next section, we have found
+r121 Bo 1( sin—4—=0. (200 that the truncation used here is sufficient for the present pur-
poses of approximation. Solutioil9), however, is in prin-
At the lower and upper free surfaces of the tube,0 and  ¢jple exact and represents a valid alternative to the boundary
z=L, the condition of vanishing pressure perturbation sim-iyteqral calculation, at least for situations of the type shown

n+1

i i AL p 0
or = npn+1 n(COS )

L

ply requires¢=0, i.e., in Fig. 1(b) and(d). It is interesting to note that this proce-
o antl o r dure can be extended to deal with bubbles off-axis, and tubes
> A, T P,(cos6)+ >, DnJo< an ﬁ) +Dy=0, of noncircular cross section, more simply than the boundary
n=0 n=1

integral method.

Devin (1961) calculated the natural frequency for the
situation of Fig. 1&’) in terms of the potential and kinetic
+Cp=0. (22)  energies of the system. The former is simply expressed in

terms of the relation between the pressure and volume of the
A consideration of these boundary conditions furnishes a rabubble, which he assumed to be adiabatic. To estimate the
tionale for the representatiofi9) of the potential. Indeed, kinetic energy, he used the solution for a point source in an

(21)

n+1 *°

- r
E An —71 Pn(cos ‘9)2 Chdo| an ﬁ
n=0 P n=1
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FIG. 2. The natural frequency of a bubble of radaum a tube of radiuR G 3. The natural frequency of a bubble of radium a tube of radiuR
and lengttL as a function of the axial distance of the bubble center from theyng jengthi_ as a function of the axial distance of the bubble center from the
tube bottom forl./R=10, a/R=0.5. The dotted lines show the result given y,pe pottom for./R=10, a/R=0.5. The dotted lines show the result given

by the approximate formulél8) and the symbols show the boundary inte- p the approximate formulél8) and the symbols show the boundary inte-
gral results;O case of Fig. 1a); (I case of Fig. 1&'); A case of Fig. (). gral results:O case of Fig. {c); O case of Fig. (d).

infinite tube up to a distance of 1.1(8 from the bubble

center(at which point the potential along the axis vanighes ted lines are the large-bubble approximation of Sec. Il A, and

combined with that of solid-body motion of the liquid in the the solid lines the small-bubble approximations of Sec. Il B.

remainder of the tube. His argument for chosing the particu-  Figures 2 and 3 give the ratio'f, as a function of the

lar value 1.108 is that, in this way, “the decrease in the tubgposition of the bubble center along the tube for the five situ-

potential from the surface of the bubble... is exactly equal tations depicted in Fig. 1. Here the tube’s radius is twice that

the decrease in the free field potential from the surface of anf the bubble. Figures 4 and 5 are graphg/df, as a func-

identical bubble to a point at infinity.” His final result is  tion of a/R for L/R=10, again for four of the situations of
1 Fig. 1. Here the bubble center is at the midpoint of the tube

fo)? 2a [ sL+AL
( fo) RITR

_1.108 29 axis. The small-bubble approximation of Sec. II(Bolid
' lines) has been evaluated retaining oy, Cy, C;, Dy,
. . ndD;.
Here the bubble is assum_ed tq be located at the m|dpq|nt 06} The first obvious feature shown by these figures is that
the tube and\L=1.22R. It is evident from the manner of its .
N . . : the effect of the tube can be large. For example, from Fig. 3,
derivation that the result is only applicable provided the : .
A we see that a bubble in a tube closed at one [&igl 1(c)
bubble radius is much smaller than that of the tube, and that 0 L
the term in brackets is greater than 1 and (d)] has a 59/0 rgductlon in the natgral frequency when
' the tube radius is twice the bubble radius and the depth of

Ill. RESULTS

1.2

Any one of the situations shown in Fig. 1 is character-
ized by four dimensional lengths: the bubble radaysthe 1.01
tube radiusR, the tube length_, and the distance of the
bubble center from the lower end of the tulaes sketched in 0.8+
Fig. 1), z. [In the case of Fig. '), the tube thickness would °
also appear, but we take it as negligibly small in the follow- Q 0.6¢
ing.] One can thus form three dimensionless ratios that fully =
characterize each case. The presentation of a sufficient num- 0.4¢ 0ol g
ber of results to cover the entire parameter space is imprac- “Beg g "
tical. Thus we limit ourselves to a few examples which also 0.2} e
serve to illustrate the excellent performance of the approxi-
mations described in the previous section. It may_be r_10t_ed 0. 00.0 0:2 0:4 0‘.6 018 7.0
that, by symmetry, a bubble placed at the tube’s midpoint in a/R

the situations of Fig. & and (b) is equivalent to a “half-
bubble” resting on the rigid bottom of Fig(d) and(d) fora  FIG. 4. The natural frequency of a bubble centered at the midpoint of the
tube of half the length. axis of a tube of radiuR and lengthL as a function of the normalized

Figures 2 to 5 show a few representative results. In al[)ubble radiusa/R for L/R=10. The dotted lines show the result given by
’ he approximate formuld18), the solid lines those given by the small-

these figure; the open symbols are themerically exact  pypple approximation, and the symbols show the boundary integral results;
results obtained with the boundary integral method, the doto case of Fig. (a); O case of Fig. ().
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a/R a, [mm]

FIG. 5. The natural frequency of a bubble centered at the midpoint of the

axis of a tube of radiuR and lengthL as a function of the normalized |G, 7. Natural frequency in Hz (solid line) and total damping parameter

bubble radiusa/R for L/R=10. The dotted lines show the result given by  jn 571 [Eq. (40), dashed lingas a function of bubble radius in a tube of

the approximate formulgl8), the solid lines those given by the small- 5dius 0.1 mm and length 1 mm for an air bubble in water. The bubble is

bubble approximation, and the symbols show the boundary integral resultg;ositioned at the bottom of the tube. The dotted line is the thermal contri-

O case of Fig. (b); O case of Fig. d). bution to the damping. This figure refers to cddpof Fig. 1 but, with the
adjustment to the tube length described in Sec. Il A, the results can be
adapted to the case of Fig(cl as well.

submergence below the tube mouth is of the order of twice

the tube radius. , , oo
Another obvious remark suggested by the numerical resmall, and any more terms give differences that are indistin-

sults is the surprising degree to which the approximations ofuishable in a graph such as those of Figs. 4 to 7.
the previous section are able to reproduce the exact results. In addition to the theoretical development leading to Eq.
In particular, the adjustments to the liquid column length(29) quoted before, Devin's report contains a few data taken
described in Sec. Il A are seen to work very well. The large-n an experimental setup similar to that of our Figa'l. The
bubble approximation breaks down arouatR=0.2, while  bubbles were generated by a needle placed at the midpoint of
the small bubble model works relatively well at least up tothe axis of vertical brass cylinders with a diameter of 30 mm,
a/R=0.5. It is therefore found that there is a domain in g wall thickness of 3.2 mm, and a length of 120 or 240 mm.
which both approximations are reasonably accurate. In order to investigate the effect of static pressure, two
We have examined the effect of retaining more terms ingepths of submergence of the tube below the surface of a
t_he summations of representatiom) of the velocity poten- large water tank were used, 5 and 15 ft. A hydrophone
tial. The effect of adding two terms to each of the SUMS i, 5ceq at a distance of 0.1 m recorded the sound emitted by
the bubbles pinching off the needle and a few graphs of the
acoustic power spectral density are shown in the report. By
10" _— digitizing these figures, we have read off the position of the
maximum of these spectra which, in view of the small damp-
ing, give a good estimate of the natural frequency. Values of
the bubble radius are not given but, in his graphs, Devin
shows the natural frequency of the bubble generated by the
3 same method in an unbounded liquid from which the radius
) 10 S : g : ] can be deduced according to the results of Prospéi&@il).
- S : Table | shows all of Devin’s data together with the result
B given by the first four terms of the series solution of Sec. || B
""" and two estimates obtained from Devin’s report. The first
one is found from his approximate formu(a9), while the

107 second one is the theoretical value read from his graph.
0.5 0.6 0.7 08 0.9 1.0 These two numbers should agree but, for the first case, we
a, [mm] find a 2% discrepancy the origin of which is not clear. This

. - _ data point also exhibits a greater difference with the theory,
FIG. 6. Natural frequency in Hz (solid line) and total damping parameter o . .
b in s7 [Eq. (40), dashed lingas a function of bubble radius in a tube of at_)OUt 5%. F_0r the. second and third data pomts. agreement
radius 1 mm and length 10 mm for an air bubble in water. The bubble iswith theory is within about 3% and 1%, respectively, and
pos_ltloned at the b_ottom qf the tube. The dotted Ilne‘ is the thermal contrigeams to be slightly better for the present theory than for
bution to the damping. This figure refers to cadeof Fig. 1 but, with the ., . . . . .
Devin’s although, on the basis of the information provided, it

adjustment to the tube length described in Sec. Il A, the results can be . ) ] g
adapted to the case of Fig(cl as well. is not possible to estimate accurately the error in his data.
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TABLE |. Comparison between Devin's data, the present series solution of Sec. Il B, and Devin's theory. The
tube was brass with a radius of 15 mm.

a (mm) L (cm) Exp. Present theory Devin, ER9) Devin, graph
151 24 0.67 0.636 0.638 0.653
1.52 12 0.74 0.762 0.777 0.779
1.50 12 0.76 0.764 0.780 0.777

IV. DAMPING RATE

= M g, 34
T tm, ,Blm_l Bzm_z- (34

In reality, the oscillations executed by the bubbles

shown in Fig. 1 are, of course, damped. In the previous dep, the spirit of Sec. Il A, the masses appearing here are given
velopments we have disregarded dissipative effects which, m =pL8A, j=1,2.

is well known, affect the natural frequency only to second -|J—o estjimate the damping parametgswe proceed ap-
order. The decay rate is however a first-order effect, that W8roximately as followgdisregarding the indek for the mo-

now consider. o mend. The energy dissipated during one cycle by each oscil-
A bubble oscillating in an unbounded liquid loses en- |40y is

ergy by thermal conduction across the gas—liquid interface,
acoustic radiation, and the action of viscous stresses at the
interface. In water, acoustic losses only dominate for bubble
radii larger than several millimeters, while viscous losses are
significant only for bubbles smaller than about g#th. The ~ Which furnishes an estimate @fif the other two quantities
dominant energy loss for intermediate values of the radius i§an be evaluated. Since, to leading ordenscillates sinu-
of thermal origin, and this can be assumed to happen also igoidally with a frequency» and velocity amplitudev, the
the cases of Fig. 1. Indeed, in the underlying process, théitegral has the valuer/ w)V?. The energy loss can be es-
significant aspects are the gas volume expansion and cofimated by integrating the dissipation function over the vol-
traction and the fact that the bubble surface remains essedme occupied by the fluid. With the approximation of peri-
tially at the undisturbed liquid temperature during the oscil-odic, parallel flow, we have

lations due to the large thermal capacity of the liquid. Both —_ Ju\ 2

circumstances occur also in the situations of present concern, g’dz,uLJ dtJ dA( _) , (36)

as already noted in connection with E0). In the case of a 0 A or

bubble in a tube, however, a new energy loss mechanism \flhere,u is the liquid viscosity, the integral is over the cross

present, namely viscous dissipat?on due to liquid flow 6?longsection of the tube, and is the axial velocity. Since, in fully
the surface of the tube surrounding the bubble. An eSt'mat‘aeveloped parallel flow, the problem foris linear, we have
of the rate of damping due to this effect can be found on th%ocv and therefore ’ '

basis of the simple one-dimensional model of Sec. Il A as
follows. ® 27w J

Consider the bubble as occupying a “slice” of the tube A= 5 M'—JO dtJAdA ar (V
extending betweemnz;(t) and z,(t). If m; and m, are the
(effective masses of the two liquid columns, agd, B8, the  The velocity field required here is readily calculated from the
damping rates due to viscous dissipation, the equations dfavier—Stokes equatior(see, e.g., Leal, 1992but the an-
motion of the two interfaces are swer is in terms of Bessel functions with complex argument
. . and it does not appear possible to obtain closed-form expres-
Mzy+26121+K(z,-2,) =0, (30 sjons for this integral at arbitrary frequency. Approximations
My2,+ 2 By7,— K (24— 2,) =0, (31) for \/M/Qp> R andJu/wp<R are, however, readily found.

In the first case we have

27l w
F;’d:2,8f0 22 dt, (35

2

(37

with the “spring constant”K given by Eq.(16). The equa-

tion for the (compleX frequencies of oscillatio) of this B=4m % (39)
system is readily written down and is pR*’
m; Q% —K—2i 3,0 K Wh?Ch can also be obtained from the Poiseuille flow solution,
K my02— K —2i 8,0 =0. (32  while, in the latter one,
Upon settingQl=w+ib,, up to terms of the first order in —ma /22 39
Bi, one readily finds B 2pR7 (39

1 1 which, in the spirit of a boundary layer approximation, can
w?=K ey P (33)  also be obtained from the known form of the velocity field
! 2 over an infinite oscillating flat plate. This latter result is
which is the same as E(l7), and therefore valid for tubes of arbitrary cross section.

3307 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998 H. N. Oguz and A. Prosperetti: Oscillation of gas bubbles in tubes 3307



The preceding arguments provide an approximation topfel, R. E. (1981). Acoustic Cavitation in Methods of Experimental
the viscous damping in the tullg. As already mentioned, Physics—Vol. 19 Ultrasonicgdited by P. D. Edmond&cademic, New
the gas-liquid heat exchange gives rise to another dissipa-"ork), Pp. 355-411.

. . . . . lue, J. E.(1966. “Resonance of a bubble on an infinite rigid boundary,”
tion mechanism. If the corresponding damping rate is mucﬁ‘l Acoust, So6. AMAL 369372,

less thanw, thef two damp'”g mgcha_nlsms are additive andDevin, C.(1961). “Resonant frequencies of pulsating air bubbles generated
the total damping of the oscillations is therefore in short, open-ended pipes,” Technical Report 1522, David Taylor Model
_ Basin, Hydromechanics Laboratory.
b=by+Dy, (40 Fujita, H., and Gabriel, K. J1991). “New opportunities for micro actua-
whereb,, is the bubble damping constant that has been ex- tors,” in Transducers '9XIEEE, New York, pp. 14-20.
haustively studied in the literaturésee, e.g., Prosperetti Gravesen, P., Branebjerg, J., and Jensen, Q1E3. “Microfluidics—A
et al. 1988: Prosperetti 1991 review,” J. Micromech. Microeng3, 168—182.
_'I'_ il 't te th ! itud fth ffect id Howkins, S. D.(1965. “Measurements of the resonant frequency of a
0 I_ ustrate the _mag_m ude o e enect, _We consider bubble near a rigid boundary,” J. Acoust. Soc. AT, 504—508.

two Pam(?mar cases In Figs. 6 _and 7. Th_ese figures refer tRamath, v., Prosperetti, A., and Egolfopoulos, (E993. “A theoretical
the situation of Fig. (d) for an air bubble in water at 1 atm  study of sonoluminescence,” J. Acoust. Soc. A8, 248—260.
but, with the adjustment to the tube length described in Sed.in, L., Pisano, A. P., and Lee, A. P1991). “Microbubble powered actua-
Il A, the results are also representative of cags.1n Fig. 6 tor,” in Transducers '91IEEE, New York, pp. 1041-1044.
the tube has a Iength of 10 mm and a radius of 1 mm, Wh”é_eal, L Gary(lggz. Laminar Flow qnd Convective Transport'Processes,
. . . Scaling Principles and Asymptotic Analysi{8utterworth-Heinemann,
in Fig. 7 the corresponding values are 1 and 0.1 mm, réspec-yosion
tively' The bubble is pos_itioned at the bottom of the tl(IiDE Levine, H and Schwinger, §1948. “On the radiation of sound from an
thg sense of _the approximate conc_eptual mo<_jel of Se(_:. Il A; unflanged circular pipe,” Phys. ReV3, 383—405.
strictly speaking, therefore, the radius shown is an equivalentiguz, H. N., and Zeng, J1995. “Boundary integral simulations of bubble
spherical radius The horizontal axis shows the bubble ra- growth and detachment in a tube,” Boundary Elements XVI(Compu-
dius, the solid line the natural frequency, the dotted line the fational Mechanics Publications, Madison, Mftp. 645-652.
thermal damping, and the dashed line the total damping. Th8%z H- N., and Zeng, X1997. “Axisymmetric and three-dimensional

. tributi is iust the diff bet the t boundary integral simulations of bubble growth from an underwater ori-
YISCOUS Co_n ribution 1s jus e al eren(,:e etween the two fice,” Engineering Analysis with Boundary Elemeri$, 313-330.
!lnes, and is therefore seen to be small in bOt_h cases. Just @guz, H. N., and Prosperetti, A1990. “Bubble entrainment by the impact
in the case of a bubble in an unbounded fluid, we thus seeof drops on liquid surfaces,” J. Fluid MecB19, 143—179.

at thermal damping is the dominant mechanism of energylesset, M. S., and Prosperetti, . “Bubble dynamics and cavita-
that th | damping is the d t h f gplesset, M. S., and Prosperetti, 4.977. “Bubble dy d cavit

dissipation. tion,” Annu. Rev. Fluid Mech9, 145-185.
Pozrikidis, C.(1992. Boundary Integral and Singularity Methods for Lin-
ACKNOWLEDGMENTS earized Viscous FlowCambridge U.P., Cambridge

Prosperetti, A., Crum, L. A., and Commander, K. Y#988. “Nonlinear
The authors are grateful to Dr. Murray Strasberg for bubble dynamics,” J. Acoust. Soc. A3, 502—-514.
caIIing their attention to Devin's work on this problem. Prosperetti, A(199J). “The thermal behaviour of oscillating gas bubbles,”
Thanks are also due to X. M. Chen for her help with the_>: FUid Mech:222 587-616. . . .
. . Scott, J. F(1983). “Singular perturbation theory applied to the collective
cglculatlons of_ Sec. IV. '_I'hls_ _study has been supported by the ;¢ jation of gas bubbles in a liquid,” J. Fluid Mech13 487-511.
Air Force Office of Scientific Research under Grant NO. strasberg, M(1953. “The pulsation frequency of nonspherical gas bubbles

F49620-96-1-0386. in liquids,” J. Acoust. Soc. Am25, 536—537.

3308 J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998 H. N. Oguz and A. Prosperetti: Oscillation of gas bubbles in tubes 3308



