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A numerical study is presented of the natural frequency of the volume oscillations of gas bubbles in
a liquid contained in a finite-length tube, when the bubble is not small with respect to the tube
diameter. Tubes rigidly terminated at one end, or open at both ends, are considered. The open ends
may be open to the atmosphere or in contact with a large mass of liquid. The numerical results are
compared with a simple approximation in which the bubble consists of a cylindrical mass of gas
filling up the cross section of the tube. It is found that this approximation is very good except when
the bubble radius is much smaller than that of the tube. An alternative approximate solution is
developed for this case. The viscous energy dissipation in the tube is also estimated and found
generally small compared with the thermal damping of the bubble. This work is motivated by the
possibility of using gas bubbles as actuators in fluid-handling microdevices. ©1998 Acoustical
Society of America.@S0001-4966~98!02606-X#

PACS numbers: 43.35.Pt@HEB#

INTRODUCTION

An extensive literature exists on the small-amplitude
volume oscillations of gas bubbles in unbounded liquids,
near rigid plane boundaries and free surfaces~see, e.g., Stras-
berg, 1953; Howkins, 1965; Blue, 1966; Plesset and Prosper-
etti, 1977; Apfel, 1981; Scott, 1981; Prosperettiet al., 1988;
Og̃uz and Prosperetti, 1990; Prosperetti, 1991!. The case of
bubbles confined in channels and tubes, however, does not
seem to have been considered before except in a brief un-
published report by Devin~1961!. Of course, when the ra-
dius of the tube is much larger than the bubble—as would be
the case, for example, for bubbles entrained in ordinary mac-
roscopic flows—the results for bubbles in unbounded liquids
can be used to a good approximation. In the situations of
concern here, however, the size of the bubble is not small
and the effect of the proximity of the boundary very signifi-
cant.

The situations considered in this paper are all axisym-
metric and are sketched in Fig. 1. The bubble is inside a
liquid-filled, finite-length, rigid-walled tube that may be open
at both ends@Fig. 1~a!, ~a8!, and~b!#, or rigidly terminated at
one end and open at the other@Fig. 1~c! and ~d!#. The open
end~s! of the tube may be in contact with the atmosphere
@Fig. 1~b! and ~d!#, or with a large mass of the same liquid
@Fig. 1~a!, ~a8!, and~c!#.

Our interest in these problems is motivated by the pos-
sibility to use gas bubbles as actuators in the small fluid-
handling systems that advances in silicon manufacturing
technology are rendering possible~see, e.g., Fujita and Gab-
riel, 1991; Lin et al., 1991; Gravesenet al., 1993!. These
include bioassay chips, integrated micro-dosing systems,
miniaturized chemical analysis systems, and others. The ad-
vantage of bubbles in this setting would be the possibility to
power them remotely by ultrasonic beams with no need for
direct contact between the actuator and the power supply. A
particularly intriguing possibility in this regard may be of-
fered by the ability of ultrasound to propagate through living
tissue.

While the scale that we envisage is of the order of one
millimeter or less and the flow velocities relatively small, so
that viscous effects would not be negligible, it seems natural
for a first analysis of this problem to start from a consider-
ation of the inviscid case, treating viscous effects in an ap-
proximate way~see Sec. IV!. The attending simplification
enables us to focus with greater clarity on the inertial aspects
of the bubble–fluid interaction, which are one of the domi-
nant aspects of the system. Second, it will be easier to estab-
lish a connection with the available results for the unbounded
case. Third, one can envisage situations in which viscosity is
indeed negligible, such as an oscillation frequency so large
that the viscous boundary layer is much thinner than the
tube.

Since, in order to maximize the effectiveness of the ac-
tuator, it is desirable to operate near resonance conditions,
the natural frequency of the bubble is the most significant
quantity to be determined. This is the objective of this paper.
In the future we shall consider forced oscillations, damping
mechanisms, and nonlinear effects.

I. FORMULATION

As shown by Strasberg~1953; see also Og˜uz and Pros-
peretti, 1990!, it is possible to obtain a relation for the natural
frequency directly by using the analogy with the capacitance
problem of electrostatics. To this end we start from the con-
dition expressing the balance of normal forces at the bubble
surface:

pi5pL1sC . ~1!

Here,pi is the pressure in the bubble, assumed spatially uni-
form, pL the pressure in the liquid at the bubble surface,s
the surface tension coefficient, andC the local curvature of
the interface. Upon using the~linearized! Bernoulli integral
to expresspL in terms of the velocity potentialf and the
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static pressurep` , the previous relation becomes

pi52r
]f

]t
1p`1sC , ~2!

wherer is the liquid density. The bubble internal pressurepi

can be assumed to remain spatially uniform at all times.
Sincep` is a constant, this equation implies then thatf will
remain essentially uniform over the bubble surface provided
it is uniform ~e.g., equal to zero! at the initial time, and
provided the surface curvature is either uniform or small.
The former possibility prevails in the case of small bubbles,
which tend to remain spherical, while the latter one is en-
countered for large bubbles for which the surface tension
contribution is negligible. Upon balancing variations in cur-
vature and variations in internal pressure, it is found that the
appropriate scale to judge whether a bubble is to be consid-
ered ‘‘small’’ or ‘‘large’’ is of the order ofs/p` which, for
the case of water at atmospheric pressure, is a few microme-
ters.

With the assumption of a uniform internal pressure, av-
eraging Eq.~2! over the bubble surface, we have

pi52r K ]f

]t L 1p`1s^C &, ~3!

where^...& denotes the surface average. In the linear approxi-
mation, to which we confine ourselves, the surface average
of any first-order quantity can consistently be calculated on
the unperturbed equilibrium surface, rather than on the mov-
ing one. As a consequence, time differentiation and surface
averaging commute and therefore, upon differentiating once
more with respect to time, we find

r
d2

dt2
^f&52

dpi

dt
1s

d

dt
^C &. ~4!

For linear oscillations at a single frequencyv, any variable is
proportional to any other so that we may write

dpi

dt
5

dpi

dV

dV

dt
, ~5!

whereV is the instantaneous bubble volume anddpi /dV a
possibly complex constant. Furthermore,

dV

dt
5E

S
u–n dS[SK ]f

]n L , ~6!

wheren is the outward directed unit normal to the bubble
surfaceS. With the neglect of gravity, the equilibrium con-
figuration of the bubble is necessarily spherical, although the
instantaneous shape during volume oscillations is not neces-
sarily so. However, again in the linear approximation, it is
easy to show that

d

dt
^C &5^C 0&K ]f

]n L , ~7!

where ^C 0&52/a is the curvature of a spherical bubble of
radius a. Upon substituting these results into Eq.~4!, and
further writing iv for d/dt, we find

v252
1

r S S
dpi

dV
1

2s

a2 D 1

^f& K ]f

]n L . ~8!

For a spherical bubble in an infinite liquidf5(a2/r )
3(da/dt) ~where r is the distance from the bubble center
andda/dt the radial velocity! and this expression reduces to

v0
252

1

ar S S
dpi

dV
1

2s

a2 D , ~9!

wherev0 denotes the bubble angular frequency in this case.
Upon taking the ratio with Eq.~8! and introducing the fre-
quenciesf 5v/2p, f 05v0/2p, we thus have

S f

f 0
D 2

5
a

^f& K ]f

]n L , ~10!

which expresses in a compact form the change in the natural
frequency of the bubble due to the presence of boundaries.
The validity of this result presupposes of course thatdpi /dV
in Eq. ~8! has the same value as for a bubble in an infinite
fluid. This assumption may be justified as follows. The rate
of change of the internal pressure with volume is determined
essentially by the thermal processes in the bubble. It is well
known that, to an excellent approximation, these can be
evaluated assuming the bubble surface temperature to remain
undisturbed~see, e.g., Kamathet al., 1993!, which effec-
tively decouples the thermal problem from the environment
surrounding the bubble.

If the length of the tube were infinite, volume changes of
the bubble would only be possible in a compressible fluid.
However, if the length of the tube is much smaller than the
wavelength of sound in the liquid, we may use the incom-
pressible approximation so that the velocity potential satis-
fies Laplace’s equation¹2f50. For simplicity we only con-
sider axisymmetric situations. The boundary condition on the
surrounding solid boundaries is of coursen–“f50. If the
liquid mass in the tube is bounded by a free surface in con-

FIG. 1. The various configurations of a bubble in a tube considered in this
paper:~a! open tube with infinite thickness immersed in an unbounded liq-
uid; ~a! open tube with negligible thickness immersed in an unbounded
liquid; ~b! partially filled tube with liquid surfaces exposed to the atmo-
sphere;~c! rigidly terminated tube in the bottom of a large container;~d!
partially filled tube closed at one end.
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tact with the atmosphere, as in Fig. 1~b! and~d!, f50 is the
appropriate boundary condition there. Furthermore, unless
the bubble is very close to this surface, there will be little
error in assuming it to be plane. If, on the other hand, the
tube is part of an extended~infinite! mass of liquid, as in Fig.
1~a!, ~a8!, and~c!, f is required to vanish at infinity.

As noted before, provided the bubble is either relatively
small or relatively large, one may assume thatf remains
uniform over the bubble surface. Since the problem forf is
linear and, aside from the boundary condition on the bubble
surface, it is homogeneous, it follows that^]f/]n& will also
be proportional to the average value off evaluated on the
bubble surface. It is therefore sufficient to calculate the sur-
face averages appearing in Eq.~10! by solving Laplace’s
equation subject to the boundary conditionf51 on the un-
disturbed spherical bubble.

The solution of the potential problem formulated before
can readily be obtained by using the boundary integral
method ~see, e.g., Pozrikidis, 1992!. Our version of this
method is already well documented in the literature, to which
the reader is referred~see, e.g., Og˜uz and Prosperetti, 1990!.

The derivation of the numerical results shown below, the
accuracy of which was verified by the standard convergence
and grid-independence tests, did not require a very high de-
gree of discretization. The line representing the bubble sur-
face in the meridian plane was approximated by cubic
splines with 10 nodal points. Up to 70 points were used on
the tube’s wall, depending on its length. In situations where
the solid boundary extends to infinity@Fig. 1~a! and~c!#, the
integration over its surface must be stopped at some large
distance from the axis of symmetry. Ten tube radii proved
sufficient for convergence.

II. APPROXIMATIONS

The numerical calculation of the natural frequency ac-
cording to the method described before is a matter of some
complexity and it is useful therefore to obtain approximate
expressions. We consider separately the case of large and
small bubbles.

A. Large bubbles

When the radiusa of the bubble is not small compared
with the radiusR of the tube, an obvious approximation to
the situation envisaged here is that of a one-dimensional
‘‘slice’’ of gas filling the entire cross section of the tube and
with a thicknessh adjusted to give the same volume as the
real bubble:

Ah5 4
3pa3, ~11!

whereA is the tube’s cross sectional area. Since the consid-
erations that follow are applicable to tubes of general cross
section, we do not specialize the formulae to circular tubes in
this subsection.

Let the bubble center be at a distanceL1 from one end
of the tube andL25L2L1 from the other. For greater accu-
racy, these geometrical parameters can be adjusted to reflect
more closely the physical situation. In the first place, in order
to preserve the total volume, an amount

l 5
1

2
h5

2

3
p

a3

A
~12!

must be subtracted from bothL1 andL2 . If the tube’s ends
are in contact with the atmosphere@Fig. 1~b! and~d!#, this is
the only adjustment to the lengths of the liquid columns. If
an end is immersed in an unbounded liquid@Fig. 1~a!, ~a8!,
and ~c!#, however, there is an added mass effect that can be
accounted for by augmenting the geometrical length by an
amountDL. For the situation of Fig. 1~a! one can simply
estimate this end correction by noting that, from the point of
view of the fluid outside the tube, the effect of the liquid
entering and exiting the tube opening is similar to the pulsa-
tions of a ‘‘half-bubble’’ with diameter equal to the hydrau-
lic diameterDh of the tube.~The hydraulic diameter is four
times the ratio of the cross-sectional areaA to the perimeter
P of the tube.! Since such a bubble in an unbounded liquid
would have an added, or virtual, mass 4p(Dh/2)3r, the
added mass for the half-bubble is 2p(Dh/2)3r, which can be
accounted for by extending the tube by an amountDL cho-
sen so thatADL contains an equal mass of liquid. The result
is

DL516p
A2

P3 , ~13!

and equals 2R for a circular tube. This result can also be
derived in an alternative, more rigorous way~Og̃uz and
Zeng, 1995, 1997!. The same procedure applied to the thin-
walled tube of Fig. 1~a8! is inaccurate, however, as shown by
Levine and Schwinger~1948!. In this case, for a circular
tube, one findsDL.1.22R.

On the basis of these arguments we define equivalent
lengths of the liquid columns on the two sides of the bubble
by

Li
e5Li2 l 1DL, i 51,2. ~14!

If the system is regarded as an oscillator, its equivalent mass
is @see Eq.~33! in Sec. IV#:

Meq5rAS 1

L1
e 1

1

L2
eD 21

, ~15!

while the ‘‘spring constant’’ is

K52A2
dpi

dV
. ~16!

The natural frequency of the system is therefore

va
25

K

Meq
52S 1

L1
e 1

1

L2
eD A

r

dpi

dV
. ~17!

With f a5va/2p, upon taking the ratio of this expression to
the natural frequency of a bubble of equal radius in an un-
bounded liquid~neglecting surface tension effects!, we find

S f a

f 0
D 2

5
A

4pa S 1

L1
e 1

1

L2
eD . ~18!

If one of the ends is rigidly terminated, we assume that
the liquid on that side does not partake of the motion in this
one-dimensional approximation. This limit is contained in
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the previous formulae by taking the corresponding effective
length to be infinite. It will be seen in the next section that
this is a good approximation.

B. Small bubbles

The model just described is evidently a poor approxima-
tion when the bubble is small compared with the tube radius.
We now turn to this case considering explicitly a tube open
at the two ends. The adjustment~14! to the length of the
liquid columns permits one to adapt the results to the other
cases depicted in Fig. 1.

It is particularly convenient to use the following special
representation of the velocity potential:

f5 (
n50

`

An

an11

rn11 Pn~cosu!1 (
n51

`

BnI 0S npr

L D sin
npz

L

1C0

z

L
1D0

L2z

L
1 (

n51

` FCn

sinh an~z/R!

sinh an~L/R!

1Dn

sinh an~L2z!/R

sinh an~L/R! GJ0S an

r

RD . ~19!

Here thePn’s are Legendre polynomials, andr and u are
polar coordinates centered at the bubble center;r andz are
cylindrical coordinates with the two free surfaces of the liq-
uid at z50 and z5L. The modified and ordinary Bessel
functions of order 0 are denoted byI 0 andJ0 , the an’s are
the zeros ofJ1 , and the coefficientsAn , Bn , Cn , Dn are
to be determined from the boundary conditions. This particu-
lar form for f is constructed in such a way that the first
summation describes the flow near the bubble, the second
one in the tube away from the bubble, the next two terms the
bulk translation of the liquid away from the bubble, and the
last summation the end effects. The proof that Eq.~19! gives
an accurate representation of the potential follows from the
fact that, as will be seen shortly, all the coefficients are
uniquely determined and all the boundary conditions are sat-
isfied.

On the tube wall the velocity must vanish, which re-
quires

]

]r (
n50

`

An

an11

rn11 Pn~cosu!

1 (
n51

`

Bn

np

L
I 1S npR

L D sin
npz

L
50. ~20!

At the lower and upper free surfaces of the tube,z50 and
z5L, the condition of vanishing pressure perturbation sim-
ply requiresf50, i.e.,

(
n50

`

An

an11

rn11 Pn~cosu!1 (
n51

`

DnJ0S an

r

RD1D050,

~21!

(
n50

`

An

an11

rn11 Pn~cosu! (
n51

`

CnJ0S an

r

RD1C050. ~22!

A consideration of these boundary conditions furnishes a ra-
tionale for the representation~19! of the potential. Indeed,

from these three homogeneous boundary conditions one can
conceptually think of expressingBn , Cn , andDn in terms of
the An , which are in turn determined by the pressure condi-
tion on the bubble surface.

If the bubble radius is small, the magnitude of the
higher-order terms of the Legendre polynomial expansion is
rapidly decreasing and therefore we truncate this infinite sum
to just the first term which, in the cylindrical coordinate sys-
tem used to express the other terms, is

A0

a

r
P05A0

a

@r 21~z2d!2#1/2, ~23!

where d is the position of the bubble center. Using well-
known orthogonality properties we then have from Eqs.~20!
to ~22!:

Bn

A0
5

2

np

1

I 1~npR/L !
E

0

L R

@R21~z2d!2#3/2 sinS npz

L Ddz,

~24!

D0

A0
52

2

R2 E
0

R r

Ar 21d2
dr, ~25!

Dn

A0
52

2

R2J0
2~an!

E
0

R r

Ar 21d2
J0S an

r

RDdr, ~26!

C0

A0
52

2

R2 E
0

R r

Ar 21~L2d!2
dr, ~27!

Cn

A0
52

2

R2J0
2~an!

E
0

R r

Ar 21~L2d!2
J0S an

r

RDdr. ~28!

In principle,A0 should now be determined by imposing
a condition on̂ f& at the bubble surface. As is evident from
the previous relations, however, all the coefficients are pro-
portional toA0 and it will be recalled from Eq.~10! that we
are only interested in the ratio (1/^f&)^]f/]n& that is obvi-
ously independent ofA0 . It is therefore unnecessary to im-
pose the last boundary condition explicitly andA0 can sim-
ply be taken as 1.

Of course, it is not necessary to truncate the spherical
harmonic expansion in Eq.~19! at the first term. In principle,
one can retain any number of terms in the sums. Upon taking
scalar products, one is then reduced to a linear system for the
coefficients. As discussed in the next section, we have found
that the truncation used here is sufficient for the present pur-
poses of approximation. Solution~19!, however, is in prin-
ciple exact and represents a valid alternative to the boundary
integral calculation, at least for situations of the type shown
in Fig. 1~b! and ~d!. It is interesting to note that this proce-
dure can be extended to deal with bubbles off-axis, and tubes
of noncircular cross section, more simply than the boundary
integral method.

Devin ~1961! calculated the natural frequency for the
situation of Fig. 1~a8! in terms of the potential and kinetic
energies of the system. The former is simply expressed in
terms of the relation between the pressure and volume of the
bubble, which he assumed to be adiabatic. To estimate the
kinetic energy, he used the solution for a point source in an

3304 3304J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998 H. N. Og̃uz and A. Prosperetti: Oscillation of gas bubbles in tubes



infinite tube up to a distance of 1.108R from the bubble
center~at which point the potential along the axis vanishes!
combined with that of solid-body motion of the liquid in the
remainder of the tube. His argument for chosing the particu-
lar value 1.108 is that, in this way, ‘‘the decrease in the tube
potential from the surface of the bubble... is exactly equal to
the decrease in the free field potential from the surface of an
identical bubble to a point at infinity.’’ His final result is

S f D

f 0
D 2

5F11
2a

R
S 1

2L1DL

R
21.108D G21

. ~29!

Here the bubble is assumed to be located at the midpoint of
the tube andDL.1.22R. It is evident from the manner of its
derivation that the result is only applicable provided the
bubble radius is much smaller than that of the tube, and that
the term in brackets is greater than 1.

III. RESULTS

Any one of the situations shown in Fig. 1 is character-
ized by four dimensional lengths: the bubble radiusa, the
tube radiusR, the tube lengthL, and the distance of the
bubble center from the lower end of the tube~as sketched in
Fig. 1!, z. @In the case of Fig. 1~a8!, the tube thickness would
also appear, but we take it as negligibly small in the follow-
ing.# One can thus form three dimensionless ratios that fully
characterize each case. The presentation of a sufficient num-
ber of results to cover the entire parameter space is imprac-
tical. Thus we limit ourselves to a few examples which also
serve to illustrate the excellent performance of the approxi-
mations described in the previous section. It may be noted
that, by symmetry, a bubble placed at the tube’s midpoint in
the situations of Fig. 1~a! and ~b! is equivalent to a ‘‘half-
bubble’’ resting on the rigid bottom of Fig. 1~c! and~d! for a
tube of half the length.

Figures 2 to 5 show a few representative results. In all
these figures the open symbols are the~numerically! exact
results obtained with the boundary integral method, the dot-

ted lines are the large-bubble approximation of Sec. II A, and
the solid lines the small-bubble approximations of Sec. II B.

Figures 2 and 3 give the ratiof / f 0 as a function of the
position of the bubble center along the tube for the five situ-
ations depicted in Fig. 1. Here the tube’s radius is twice that
of the bubble. Figures 4 and 5 are graphs off / f 0 as a func-
tion of a/R for L/R510, again for four of the situations of
Fig. 1. Here the bubble center is at the midpoint of the tube
axis. The small-bubble approximation of Sec. II B~solid
lines! has been evaluated retaining onlyB1 , C0 , C1 , D0 ,
andD1 .

The first obvious feature shown by these figures is that
the effect of the tube can be large. For example, from Fig. 3,
we see that a bubble in a tube closed at one end@Fig. 1~c!
and ~d!# has a 50% reduction in the natural frequency when
the tube radius is twice the bubble radius and the depth of

FIG. 2. The natural frequency of a bubble of radiusa in a tube of radiusR
and lengthL as a function of the axial distance of the bubble center from the
tube bottom forL/R510, a/R50.5. The dotted lines show the result given
by the approximate formula~18! and the symbols show the boundary inte-
gral results;s case of Fig. 1~a!; h case of Fig. 1~a8!; n case of Fig. 1~b!.

FIG. 3. The natural frequency of a bubble of radiusa in a tube of radiusR
and lengthL as a function of the axial distance of the bubble center from the
tube bottom forL/R510, a/R50.5. The dotted lines show the result given
by the approximate formula~18! and the symbols show the boundary inte-
gral results;s case of Fig. 1~c!; h case of Fig. 1~d!.

FIG. 4. The natural frequency of a bubble centered at the midpoint of the
axis of a tube of radiusR and lengthL as a function of the normalized
bubble radiusa/R for L/R510. The dotted lines show the result given by
the approximate formula~18!, the solid lines those given by the small-
bubble approximation, and the symbols show the boundary integral results;
s case of Fig. 1~a!; h case of Fig. 1~c!.
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submergence below the tube mouth is of the order of twice
the tube radius.

Another obvious remark suggested by the numerical re-
sults is the surprising degree to which the approximations of
the previous section are able to reproduce the exact results.
In particular, the adjustments to the liquid column length
described in Sec. II A are seen to work very well. The large-
bubble approximation breaks down arounda/R.0.2, while
the small bubble model works relatively well at least up to
a/R.0.5. It is therefore found that there is a domain in
which both approximations are reasonably accurate.

We have examined the effect of retaining more terms in
the summations of representation~19! of the velocity poten-
tial. The effect of adding two terms to each of the sums is

small, and any more terms give differences that are indistin-
guishable in a graph such as those of Figs. 4 to 7.

In addition to the theoretical development leading to Eq.
~29! quoted before, Devin’s report contains a few data taken
in an experimental setup similar to that of our Fig. 1~a8!. The
bubbles were generated by a needle placed at the midpoint of
the axis of vertical brass cylinders with a diameter of 30 mm,
a wall thickness of 3.2 mm, and a length of 120 or 240 mm.
In order to investigate the effect of static pressure, two
depths of submergence of the tube below the surface of a
large water tank were used, 5 and 15 ft. A hydrophone
placed at a distance of 0.1 m recorded the sound emitted by
the bubbles pinching off the needle and a few graphs of the
acoustic power spectral density are shown in the report. By
digitizing these figures, we have read off the position of the
maximum of these spectra which, in view of the small damp-
ing, give a good estimate of the natural frequency. Values of
the bubble radius are not given but, in his graphs, Devin
shows the natural frequency of the bubble generated by the
same method in an unbounded liquid from which the radius
can be deduced according to the results of Prosperetti~1991!.
Table I shows all of Devin’s data together with the result
given by the first four terms of the series solution of Sec. II B
and two estimates obtained from Devin’s report. The first
one is found from his approximate formula~29!, while the
second one is the theoretical value read from his graph.
These two numbers should agree but, for the first case, we
find a 2% discrepancy the origin of which is not clear. This
data point also exhibits a greater difference with the theory,
about 5%. For the second and third data points agreement
with theory is within about 3% and 1%, respectively, and
seems to be slightly better for the present theory than for
Devin’s although, on the basis of the information provided, it
is not possible to estimate accurately the error in his data.

FIG. 6. Natural frequencyf in Hz ~solid line! and total damping parameter
b in s21 @Eq. ~40!, dashed line# as a function of bubble radius in a tube of
radius 1 mm and length 10 mm for an air bubble in water. The bubble is
positioned at the bottom of the tube. The dotted line is the thermal contri-
bution to the damping. This figure refers to case~d! of Fig. 1 but, with the
adjustment to the tube length described in Sec. II A, the results can be
adapted to the case of Fig. 1~c! as well.

FIG. 7. Natural frequencyf in Hz ~solid line! and total damping parameter
b in s21 @Eq. ~40!, dashed line# as a function of bubble radius in a tube of
radius 0.1 mm and length 1 mm for an air bubble in water. The bubble is
positioned at the bottom of the tube. The dotted line is the thermal contri-
bution to the damping. This figure refers to case~d! of Fig. 1 but, with the
adjustment to the tube length described in Sec. II A, the results can be
adapted to the case of Fig. 1~c! as well.

FIG. 5. The natural frequency of a bubble centered at the midpoint of the
axis of a tube of radiusR and lengthL as a function of the normalized
bubble radiusa/R for L/R510. The dotted lines show the result given by
the approximate formula~18!, the solid lines those given by the small-
bubble approximation, and the symbols show the boundary integral results;
s case of Fig. 1~b!; h case of Fig. 1~d!.
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IV. DAMPING RATE

In reality, the oscillations executed by the bubbles
shown in Fig. 1 are, of course, damped. In the previous de-
velopments we have disregarded dissipative effects which, as
is well known, affect the natural frequency only to second
order. The decay rate is however a first-order effect, that we
now consider.

A bubble oscillating in an unbounded liquid loses en-
ergy by thermal conduction across the gas–liquid interface,
acoustic radiation, and the action of viscous stresses at the
interface. In water, acoustic losses only dominate for bubble
radii larger than several millimeters, while viscous losses are
significant only for bubbles smaller than about 10mm. The
dominant energy loss for intermediate values of the radius is
of thermal origin, and this can be assumed to happen also in
the cases of Fig. 1. Indeed, in the underlying process, the
significant aspects are the gas volume expansion and con-
traction and the fact that the bubble surface remains essen-
tially at the undisturbed liquid temperature during the oscil-
lations due to the large thermal capacity of the liquid. Both
circumstances occur also in the situations of present concern,
as already noted in connection with Eq.~10!. In the case of a
bubble in a tube, however, a new energy loss mechanism is
present, namely viscous dissipation due to liquid flow along
the surface of the tube surrounding the bubble. An estimate
of the rate of damping due to this effect can be found on the
basis of the simple one-dimensional model of Sec. II A as
follows.

Consider the bubble as occupying a ‘‘slice’’ of the tube
extending betweenz1(t) and z2(t). If m1 and m2 are the
~effective! masses of the two liquid columns, andb1 , b2 the
damping rates due to viscous dissipation, the equations of
motion of the two interfaces are

m1z̈112b1ż11K~z12z2!50, ~30!

m2z̈212b2ż22K~z12z2!50, ~31!

with the ‘‘spring constant’’K given by Eq.~16!. The equa-
tion for the ~complex! frequencies of oscillationV of this
system is readily written down and is

Um1V22K22ib1V K

K m2V22K22ib2V
U50. ~32!

Upon settingV5v1 ibt , up to terms of the first order in
b i , one readily finds

v25KS 1

m1
1

1

m2
D , ~33!

which is the same as Eq.~17!, and

bt5
1

m11m2
S b1

m2

m1
1b2

m1

m2
D . ~34!

In the spirit of Sec. II A, the masses appearing here are given
by mj5rL j

eA, j 51,2.
To estimate the damping parametersb i we proceed ap-

proximately as follows~disregarding the indexi for the mo-
ment!. The energy dissipated during one cycle by each oscil-
lator is

Ed52bE
0

2p/v

ż2 dt, ~35!

which furnishes an estimate ofb if the other two quantities
can be evaluated. Since, to leading order,z oscillates sinu-
soidally with a frequencyv and velocity amplitudeV, the
integral has the value (p/v)V2. The energy loss can be es-
timated by integrating the dissipation function over the vol-
ume occupied by the fluid. With the approximation of peri-
odic, parallel flow, we have

Ed5mLE
0

2p/v

dtE
A
dAS ]u

]r D 2

, ~36!

wherem is the liquid viscosity, the integral is over the cross
section of the tube, andu is the axial velocity. Since, in fully
developed parallel flow, the problem foru is linear, we have
u}V and therefore

b5
v

2p
mLE

0

2p/v

dtE
A
dAF ]

]r S u

VD G2

. ~37!

The velocity field required here is readily calculated from the
Navier–Stokes equations~see, e.g., Leal, 1992!, but the an-
swer is in terms of Bessel functions with complex argument
and it does not appear possible to obtain closed-form expres-
sions for this integral at arbitrary frequency. Approximations
for Am/vr@R andAm/vr!R are, however, readily found.
In the first case we have

b54m
m

rR2 , ~38!

which can also be obtained from the Poiseuille flow solution,
while, in the latter one,

b5mA mv

2rR2 ~39!

which, in the spirit of a boundary layer approximation, can
also be obtained from the known form of the velocity field
over an infinite oscillating flat plate. This latter result is
therefore valid for tubes of arbitrary cross section.

TABLE I. Comparison between Devin’s data, the present series solution of Sec. II B, and Devin’s theory. The
tube was brass with a radius of 15 mm.

a ~mm! L ~cm! Exp. Present theory Devin, Eq.~29! Devin, graph

1.51 24 0.67 0.636 0.638 0.653
1.52 12 0.74 0.762 0.777 0.779
1.50 12 0.76 0.764 0.780 0.777
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The preceding arguments provide an approximation to
the viscous damping in the tubebt . As already mentioned,
the gas–liquid heat exchange gives rise to another dissipa-
tion mechanism. If the corresponding damping rate is much
less thanv, the two damping mechanisms are additive and
the total damping of the oscillations is therefore

b5bt1bb , ~40!

wherebb is the bubble damping constant that has been ex-
haustively studied in the literature~see, e.g., Prosperetti
et al., 1988; Prosperetti, 1991!.

To illustrate the magnitude of the effect, we consider
two particular cases in Figs. 6 and 7. These figures refer to
the situation of Fig. 1~d! for an air bubble in water at 1 atm
but, with the adjustment to the tube length described in Sec.
II A, the results are also representative of case 1~c!. In Fig. 6
the tube has a length of 10 mm and a radius of 1 mm, while
in Fig. 7 the corresponding values are 1 and 0.1 mm, respec-
tively. The bubble is positioned at the bottom of the tube~in
the sense of the approximate conceptual model of Sec. II A;
strictly speaking, therefore, the radius shown is an equivalent
spherical radius!. The horizontal axis shows the bubble ra-
dius, the solid line the natural frequency, the dotted line the
thermal damping, and the dashed line the total damping. The
viscous contribution is just the difference between the two
lines, and is therefore seen to be small in both cases. Just as
in the case of a bubble in an unbounded fluid, we thus see
that thermal damping is the dominant mechanism of energy
dissipation.
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