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A simple model of a small bubble floating at the surface of a liquid before bursting is 
considered. The oscillations of this system are studied by means of a Lagrangian method. It is 
found that two fundamentally different modes exist. The surface mode has low frequency and 
does not change appreciably the volume of the immersed part of the bubble: As a consequence, 
its efficiency as a source of sound in the water is very limited. The volume mode has a much 
higher frequency and is a more efficient radiator in the water, although it may be hard to 
excite. Both modes behave as monopole sources in the air. It is therefore predicted that an 
oscillating floating bubble is a much more intense source of sound in the air than in the liquid. 
This conclusion seems to be supported by experimental observations. 

I. INTRODUCTION 

When a small gas bubble rises to the surface of a liquid it 
does not burst immediately, but rather only after some time 
which, depending on the degree of contamination of the liq
uid surfaces and other factors,l--4 can range widely from a 
fraction of a second to hours. This time is necessary for the 
liquid film covering the top of the bubble to evaporate and 
drain under the effect of gravity and surface tension, thin
ning enough that molecular forces can cause its instability 
and rupture.5

,6 During this period the bubble can be consid
ered in a sort of equilibrium state and is capable of executing 
volume and shape oscillations. For example, Pumphrey 7 has 
observed noise produced in the air when two such floating 
bubbles coalesce and the resulting excess surface energy 
causes them to oscillate. This coalescence process is not 
purely the fruit of random encounters since neighboring 
floating bubbles attract each other.8 Indeed, the liquid sur
face is lifted by the buoyancy force acting on the bubble (Fig. 
1) and a neighboring bubble is induced by its own buoyancy 
to slide along this raised surface toward the first bubble. It 
can therefore be expected that the observed coalescence and 
oscillation of surface bubbles is a frequent process whenever 
gas rises to the surface of a liquid in the form of small bub
bles: It can contribute to the sound produced in the air in 
these conditions, although little sound appears to be radiated 
in the water by this process,7 a conclusion supported by the 
results of this study. Furthermore, these oscillations must 
have an effect on the draining of the film and its stability: 
They will therefore have an influence on the minute droplets 
to which the rupture of the film gives rise, which have a well
known geophysical significance,9,l0 and possibly on other 
processes such as the stability of foams. 

In this paper we try to elucidate the basic physical fea
tures of the oscillations of a small floating bubble by means of 
a simple model. The simplifications introduced are rather 
crude, but the essence of the phenomenon seems to be cap
tured nonetheless. 

II. DIMENSIONAL CONSIDERATIONS 

Before attempting to give a fuller quantitative descrip
tion, it is useful to consider the problem in general terms. 

The parameters characterizing the liquid are its density p 
and surface tension u. The bubble may be characterized by 
some linear dimension R, to be defined more precisely be
low, and by its stiffness, which is essentially its internal pres
sure PG' In addition, the gravity g will playa role. With these 
elements one can construct three quantities having the di
mensions of a frequency, namely, 

w 2 = u/pR 3, (1) 

W~ = PG/pR 2, 

and 

w; =g/R. 

(2) 

(3) 

Equation (1) has the order of magnitude of the frequency of 
a bubble executing volume-preserving shape oscilla
tions 11,12; Eq. (2) is of the order of the pulsation frequency of 
a spherical bubble in volume oscillations, 12 and Eq. (3) is the 
frequency of gravity waves of wavelength R. If the wj , 

j = 1,2,00', denote the frequencies of the normal modes of 
oscillation of the floating bubble, dimensional analysis leads 
to relationships of the form 

Wj = w\fIj(w/wv,w/wg ). (4) 

Ordinarily, dimensional analysis would not enable one to go 
beyond this statement. However, if we restrict our consider
ations to small bubbles, gravity cannot play an important 
role and the second argument in (4) can be dropped. Fur
thermore, the first argument in (4) is normally very small. 
For example, for R = 1 mm, PG = 1 atm, and u = 70 erg/ 

FIG. 1. Schematic shape of a floating bubble. 
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cm2
, we find 6)/6) V =0.026. Exploiting this fact, we can ex

tract further information from (4). If the limit 6)/6) v"'" ° is 
approached by taking the bubble stiffness PG larger and larg
er, (4) can give a meaningful result only if one of the func
tions \IIj, \III' say, is such that \III (X) ..... const as X ..... 0. We 
therefore expect to have a mode such that 

6)1-6). (5) 

If now the same limit 6)/6) v"'" ° is approached by taking a 
smaller and smaller surface tension, 6)1 ..... 0 and Eq. (4) can 
only give a nontrival result if another \IIj exists, say \112' such 
that \112 (X) -l/X asX ..... 0. In this case we find a mode with a 
frequency 

(6) 

Equations (5) and (6) are expected to give the two 
dominant oscillation frequencies for small bubbles. The fact 
that the bubble stiffness does not affect the first mode [Eq. 
(5)] implies that the volume of a bubble oscillating accord
ing to this mode remains essentially constant. For the second 
mode [Eq. (6)] we cannot make an analogous statement 
concerning the surface area because, in the presence of an 
appreciable volume change, the energy p dVassociated to it 
is so large as to dominate any reasonable variation of the 
area. 

We can now proceed to render these statements more 
precisely on the basis of a simple model. 

III. MODEL 

The actual shape of a floating bubble is determined by 
the complex interplay of gas pressure, surface tension, and 
gravity. 13 A simplified model of this configuration as used in 
the pastS is shown in Fig. 1. We will simplify this model even 
further, as shown in Fig. 2, which also introduces some no
menclature used in the following. It will be seen that this 
procedure requires the introduction of additional, fictitious 
forces to push the bubble down. Our results will be applica
ble to the real (or, at any rate, more realistic) configuration 
of Fig. 1 only insofar as these forces are small. One expects 
this to happen for small bubbles, which are but slightly af
fected by buoyancy; this conclusion is indeed borne out by 
the results. 

We take the gas volume to be bounded by two spherical 
segments of radius Rand aR. The center of the immersed 
spherical segment is at a distance h from the plane free sur
face, reckoned negative below and positive above the sur-
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FIG. 2. The bubble model used in the present study. 
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face. The center of the other spherical segment is at a dis
tance H from the surface given by 

H= [(a2 _l)R2+h2]1/2, (7) 

as follows from elementary geometrical considerations. We 
shall use a Lagrangian approach in which R, h, and a are the 
generalized coordinates specifying the system's configura
tion. In terms of these quantities we write a Lagrangian .Y in 
the form 

.Y = Y(R,h,R,h) - uu (R,h,a). (8) 

The coordinate a enters into the potential energy UU but, as 
will be seen, not in the kinetic energy Y. We shall calculate 
these quantities to second order in the perturbation of equi
librium, so that our theory is in fact a linear theory of the 
process under consideration. 

In order to keep the problem as simple as possible we 
wish to disregard the surface ripples produced by the oscil
lating bubble as well as all the other damping mechanisms, 
which include thermal, viscous, and acoustic effects. The 
exact boundary condition on the velocity potential ¢ at the 
linearized position of the free surface z = 0 is l4 

a2¢ = _g a¢ +~~(a2¢ + a2¢). (9) 
at 2 az p az ax2 ay 

In the standard treatment of waves generated by floating 
bodies (see, e.g., Refs. 15-17), the surface-tension term is 
absent and two distinct limit cases arise according to 
whether the frequency of oscillation is smaller or greater 
than (g/R) 112, where R is the size of the body. In the first 
case Eq. (9) simplifies toa¢/az = 0, while in the second case 
it becomes ¢ = 0. In the present situation the gravity term is 
always negligible and the oscillation frequency must be com
pared with (u/pR 3) 112; when this quantity is small we again 
find ¢=O. We have already estimated the oscillation fre
quencies of a floating bubble in Sec. II. It is readily seen that 
this approximation is valid for the second mode [Eq. (16)], 
but not for the first mode [Eq. (5)]. An accurate treatment 
of this mode requires the inclusion of both inertial and sur
face-tension terms. This is unfortunate because the analysis 
then becomes considerably more involved and the greater 
effort required is out of proportion with the many simplify
ing assumptions introduced in the model. As already stated, 
our only purpose in this paper is to clarify the basic physics 
underlying the oscillations of a floating bubble. We therefore 
propose to make use only of the solution for ¢ obtained by 
imposing ¢ = ° on the undisturbed free surface z = 0. Our 
results will then be quantitatively correct for the volume 
mode which, as far as sound radiation in the water is con
cerned, is the important one. For the other (surface) mode, 
we can only expect to gain a qualitative understanding of its 
shape and an estimate of the order of magnitude of its fre
quency. 

With this simplification the evaluation of the kinetic en
ergy is reduced to the calculation of the following integral 
over the immersed surface of the bubble: 

Y = rrpR 2 f'7 ¢ a¢ sin 8d8, (10) 
Jo an 

where n is the unit normal into the bubble and the angle 7] is 
defined in Fig. 2. Evidently, 
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cos 77 = h /R==/3. (11 ) 

For a spherical segment with variable radius and vertical 
position we have 

at/J ., 
-= -R +hcose. an 

(12) 

From the linearity of the problem for t/J, we may then set 

t/J = R(iVPI + h¢i2)' (13) 

with which (10) takes the form 

.'T = trpR 3 [R 2FI (/3) + 2RhF2({3) + h 2F3(/3) ], (14) 

where 

FI = - i'l ¢il sin e de , 

F2 = ~ ('I (¢il cos () - ¢i2)sin e de, 
2 Jo 

F3 = i'l ¢i2 cos e sin () de . 

(15a) 

(15b) 

(15c) 

For the case of small oscillations, which is the only one we 
consider here, the value of FjuJ), j = 1,2,3, can be calculated 
for the equilibrium position and kept constant: It does not 
seem possible to obtain a usable, closed form expression for 
these quantities except for the hemisphere case 77 = tr /2 (see 
Appendix A); therefore, we have calculated them numeri
cally using a boundary integral method. To give an idea of 
the accuracy of this numerical solution we may mention that 
for 77 = tr12, the exact solution of Appendix A gives 
FI = 0.4154, F2 = - 0.2500, and F3 = 0.1667, whereas the 
corresponding numerical results are FI = 0.4166, 
F2 = - 0.2505, andF3 = 0.1671. The accuracy deteriorates 
somewhat when the bubble is nearly totally immersed, how
ever. The functions Fj are plotted in Fig. 3 and tabulated in 
Table I. 

For the potential energy ~ appearing in (8) we write 

(16) 

where S, and Su are the surface areas of the lower and upper 
spherical segments given by 

S, = 2trR(R - h), (17) 

Su = 2traR{aR - [(a2 - l)R Z + h 2] lIZ}. (18) 

The upper spherical segment gives a contribution equal to 
twice its surface energy oSu because it consists of two sur
faces. The third term otra2 in Eq. (16) is the surface energy 

-1 -0.5 

F, 
1.5 

0.5 

FIG. 3. Graphs of the functions F
" 

F2 , and F, as defined in Eqs. (15). 
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TABLE I. The kinetic energy coefficients defined by ( 15 ) as a function of p, 
the normalized depth of immersion of the bubble defined by (11). 

P 

- 0.995 00 
-0.90000 
-0.80000 
-0.70000 
-0.60000 
-0.50000 
-0.40000 
- 0.30000 
- 0.20000 
-0.10000 

0.00000 

F1 

1.081 84 
1.00825 
0.93505 
0.86407 
0.79493 
0.72752 
0.66180 
0.59778 
0.53552 
0.47507 
0.41655 

F2 

- 0.215 64 
- 0.239 35 
- 0.259 72 
- 0.27492 
- 0.285 07 
- 0.290 33 
- 0.290 89 
- 0.28695 
- 0.278 74 
- 0.26649 
- 0.250 50 

0.23566 
0.21837 
0.20516 
0.19586 
0.18950 
0.185 18 
0.18207 
0.17939 
0.17642 
0.172 51 
0.16707 

of the hole of radius a created by the presence of the bubble 
on the undisturbed surface. Clearly, 

a=(R2_hz)1/2. (19) 

The next to the last term in Eq. (16) is the potential of the 
buoyancy force given by the product of the immersed vol
ume V" 

V, = (tr/3)(R - h)2(2R + h), 

and the depth of its center of mass z, 
z = (tr/12V,) (R - h)3(3R + h). 

(20) 

(21) 

The last term ~ G in (16) is the P dVenergy stored in the 
bubble and is given by 

~ G = (PG - Po)dV, (22) 
J~) 

where Po is the constant pressure outside the bubble, Vo is the 
bubble equilibrium volume, and PG is the internal pressure. 
The bubble volume V is the sum of the volumes of the lower 
and upper spherical segments, 

(23) 

and 

Vu = (tr/3){2a3R3- [(a2 _l)R2+hz]1/2 

X [ (2a 2 + 1) R 2 _ h 2]}. ( 24 ) 

For simplicity we take an isothermal behavior 

PG=PGoVo!v, (25) 

since heat exchange across the thin upper surface is expected 
to be very efficient in preventing significant temperature dif
ferences. With this we find 

(26) 

The viscous stresses, which counteract buoyancy and 
are ultimately responsible for the short-term stability of the 
surface bubble, do not appear explicitly in the formulation 
since, in the present model, they are an internal force acting 
in the upper spherical segment. 

IV. EQUILIBRIUM STATE 

By setting the partial derivatives of ~ with respect to a, 
R, and h equal to 0, we determine the equilibrium state of the 
system. In this way we find 
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aou --= 1TR [40" - (PG - po)aR ] aa 

( 
(2a2 _ 1)R 2 + h 2 ) 

X 2aR- , 
[(a2 _ 1)R 2 + h 2] 1/2 

from which, equating to 0, either R = ± h or 

PG - Po = 40"1aR. 

(27) 

(28) 

The first condition with the plus sign, R = h, implies a geom
etry in which the immersed part of the bubble reduces to a 
point and is therefore unphysical; the minus sign corre
sponds to a bubble totally immersed and touching the sur
face. This configuration is a physical one in the absence of 
gravity effects (i.e., for very small bubbles); it will be shown 
to be actually included in (28) as a special case. Hence we 
retain only (28). 

aou 
aR 

Proceeding similarly we find 

- (PG - Po)1TR (2(a3 + I)R - 2h 

a2h 2) 
- (2a

2 + I)H +-n 
+ 21T~(4a2 + I)R - h _ 4aH + 2a;; 2) 
+ 1TpgR(R - h)2, (29) 

from which, by use of (28), 

4(1-/3) -2(a2-1 +(32)1/2 

= a(1 - (3) [1 + !r(1 - (3)]. (30) 

Here the gravity parameter r is defined as 

r = pgR 2/0" (31) 

and is seen to equal the square of the ratio OJgIOJ ofthe two 
frequencies defined in (1) and (3). Upon taking the deriva
tive of ( 16) with respect to h we have 

aou = 1T(R 2 _ h 2) (PG - Po)(l +~) - 21T0" 
ah H 

X (R - h + 2a;:h) - fPg(R - h)2(2R + h), 

(32) 

from which, again using (28), 

2(1_{32) -2{3(a2-1 +(32)1/2 

=a(1-{3) [1 +ir(1-{3)(2+{3)]. (33) 

For the following developments it is useful to rewrite 
(30) and (33) in a different way. Elimination of 
(a2 - 1 + (32) 1/2 leads to 

a = 2/ [ I + jr( 1 - (3) ], (34) 

while elimination of r gives 

(1 + a12) (1 - (3) = 2(a2 - 1 + (32) 112. 

This equation can be solved explicitly to express a as a func
tion of {3, 

2(1 - (3)2 + 4 [(1 - {3) (19 + 13{3 + {32 - {33) ] 1/2 
a=........:.-....:--'----'----"--'-----'--'-'-----'--=--...c.....:.----''--'--''---

(5 - (3)(3 + {3) 
(35) 
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FIG. 4. The ratio of the cap radius to the radius of the immersed portion a, 
the ratio of the depth of the center of the lower spherical segment to its 
radius fl, the gravity parameter y, and the dimensionless radius of the lower 
spherical segment R / D, where D is the capillary length defined in (37), are 
shown as a function of the dimensionless radius of the equivalent sphere L / 
D. 

and Eq. (34) can then be used to give r = r({3). In this way 
both a and r can be expressed as functions of the parameter 
{3. An approximation valid for small bubbles, for which (3 is 
close to - 1, is 

r=i(1 +(3), a= 1-{3. 

If gravity is absent, so that r = 0, a = 2 and {3 = - 1. In 
this case the bubble is totally immersed, tangent to the undis
turbed surface, and the radius of curvature of the point of 
tangency is twice the radius of the immersed portion. The 
approximation a "'" 2 has been used by others in the past even 
for bubbles that were not totally immersed. 8 For r = 0.4077 
the lower surface is a hemisphere (i.e., (3 = 0) and 
a = 1.296. The corresponding value of R for pure water in 
normal laboratory conditions would be 3.48 mm. We will 
argue later that the model is probably not reliable for such 
large bubbles. 

At this point, given the amount of gas contained in the 
bubble, the geometry of the equilibrium state is completely 
determined in principle, although in practice the calculation 
is somewhat involved. To simplify the application of our 
results, we introduce a length L, which is the radius of a 
spherical bubble that would contain the same amount of gas 
as the floating bubble at the same internal pressure PG: 

L=(3VI41T)1/3. (36) 

The length L can be related to the parameter R by the use of 
(20), (24), and the equilibrium relations (34) and (35). It 
is easy to see that the equilibrium configuration of the bubble 
in the present model can be described in terms of the single 
dimensionless parameter LID, where D is a length charac
teristic of the fluid, the so-called capillary length, and is de
fined by 

D = (O"lpg) 1/2. (37) 

The value of D for pure water in normal laboratory condi
tions is approximately 2.72 mm. In Fig. 4 we show graphs of 
R, a, {3, and r as functions of the dimensionless group LID. 

v. FORCE BALANCES 

The preceding results are only formal and it is instruc
tive to inquire to what extent they can be reproduced by 
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Ell 

Ell 

FIG. 5. Definition of the shape parameters used in Sec. V. 

force-balance arguments. In this way some insight will also 
be gained on the domain of validity of the model. 

The total force acting on the upper cap of the bubble in 
the vertical direction consists of the pressure forces 1Ta2PG 
and - 1Ta2po and the surface-tension force 2 X 21Taa sin O2 

(see Fig. 5 for the definition of the symbols). Since 
sin O2 = alaR, balancing these forces leads to 

(38) 

which is easily seen to coincide with (28). The same result 
can be obtained by adding the Laplace pressures of the two 
interfaces which make up the bubble's cap. 

Before applying a similax argument to the lower spheri
cal segment, it must be realized that the natural equilibrium 
condition of a floating bubble is closer to that sketched in 
Fig. 1 than to the one of Fig. 2 which we have imposed on the 
Lagrangian. As already noted, in order to have the configu
ration of Fig. 2, we must therefore presuppose the existence 
of an extra force fv' the magnitude of which can actually be 
determined by writing the analog of the force balance (38) 
for the lower spherical segment: 

- 1Ta2 (PG - Po) + pgV/ + 21Taa sin 01 + fv = 0, 

where the angle 01 is defined in Fig. 5. Elimination of 
PG - Po by use of (28) and a by use of (34) leads to 

fv = (1T13)pgh(R - h)2. (39) 

This force is negative, i.e., it acts downward if the bubble is 
more than half immersed (h < 0, see Fig. 2), which, as will be 
shown, is necessary for our model to be valid. From a com
parison of Figs. 1 and 2 the sign off v is therefore as expected. 

In a similar fashion, the horizontal force balance at the 
points of the ring where the three surfaces come together 
gives 

21Taa( I - 2 cos O2 - cos ( 1) + fH = 0, 

wherefH is the additional horizontal force necessary to give 
the configuration of Fig. 2. Proceeding as before we find 

fH = 41Taa[ (2 - a)/(2 + a) ] cos °2, 

Since a - 2 when the bubble is small and therefore nearly 
totally immersed, we see that this force is small for small 
bubbles: It is also clearly positive, which agrees with what is 
needed to transform the configuration of Fig. 1 into that of 
Fig.2. 

Our results can be expected to apply to a real floating 
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FIG. 6. The ratios of the spurious horizontal (line H) and vertical (line V) 
forces, necessary to tum the configuration of Fig. 1 into that of Fig. 2. to the 
magnitude 417"aO" cos 82 of the horizontal force acting on the contact line. 

bubble only if the artificial forcesfv andfH are small. In Fig. 
6 we show graphs of the ratio of these forces to 41Taa cos °2 , 

The reason for using the magnitude of a horizontal force also 
to judge the relative importance of the vertical fictitious 
force is that for a very small bubble, which is nearly totally 
immersed, all the vertical forces are very small, so that the 
presence or absence offv is immaterial. 18 As LID increases 
from 0 the biggest error is seen to be associated with the 
vertical force balance. The line marked V in Fig. 6 crosses 
the level of5% for LID = 0.281,,8 = - 0.899. This seems 
to be a reasonable upper limit for the reliability of the present 
model. The corresponding value of L for water is 0.763 mm. 

The question of the limits of validity of our model can be 
examined from an alternative point of view. It is a matter of 
common experience that large floating bubbles tend to be 
only slightly immersed and to have a hemispherical cap. 13 

The equilibrium configuration of such a bubble can readily 
be estimated if the immersed part is taken to be essentially 
flat. If d is the depth of immersion of the base, the excess 
internal pressure due to surface tension must balance the 
hydrostatic head, so that 4alRe =-pgd, where Re is the cap 
radius. From this we have diRe =- (2D IRe )2. This model 
presupposes thatd~Re and thereforethatD~Re' The tran
sition between the configuration of Figs. lor 2 and that with 
a flat base can therefore be expected to take place for Re - D. 
One can infer that the validity of our model is restricted to 
the opposite limit case of R ~D or, equivalently, L ~D: this is 
consistent with the estimate previously given in Sec. II. 

VI. NORMAL MODES 

Since the kinetic energy is independent of the radius of 
the bubble cap, the Lagrange equation of motion for the vari
able a reduces to 

aCilL = 0, 
aa 

which implies that the relation expressed by Eq. (28) is satis
fied throughout the motion. By use of this relation a can be 
expressed in terms of Rand h and the number of dynamical 
variables reduced by one. If we set 

R = Ro( 1 + X), h = hoe 1 + y), (40) 

Lagrange's equations, to lowest order, take the form 
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A :t: /~/ + w
2
B /~/ = 0, (41) 

where the frequency w has been defined in ( 1) and, here and 
in the following, the index 0 indicates equilibrium values. In 
( 41 ) A and B are matrices given by 

A = IFI PoP21 (42) 
F2 PoP3 ' 

B = /a ll POa12/. (43) 
a12 POa22 

The functions Fj defined in ( 15) are to be evaluated at Po, as 
already noted. The matrix elements of B are complicated 
expressions involving a, p, y, and the dimensionless param-
eter 

K=PGo R/2u, (44) 

which is clearly related to the ratio wv/w between the fre
quencies defined in (1) and (2). The expressions for these 
matrix elements of B are given in full in Appendix B. Here we 
show only the asymptotic forms valid for y---O: 

a l1 = 12K -; - (8K - Vy, (45) 

a12 = ! - (4K + Vy, 
a22 =! - iy· 

(46) 

(47) 

The approximations (45 )-( 47) are formally correct for 
small y provided thatK = 0(1) or, more precisely, pro
vided that K y ~ y. This circumstance severely limits their 
accuracy since in practice K is typically very large. The exact 
expressions have been used in the numerical results to be 
shown in Sees. VII and VIII. 

The general solution of ( 41) may be written as 

/~/ = /~I/UI±e±i"'.1.11 + 1~2Iu2±e±i"'.1.", (48) 

where U I± and u2± are complex constants depending on the 
initial conditions and AI' A2, which may be regarded as di
mensionless oscillation frequencies, are given by the relation 

det(B-AJA) =0, j= 1,2, 

or, more explicitly, 

A 2 _ al1F3 + a22FI - 2a12F2 
1.2 - 2(FIF3 _ F~ ) 

[ ( 
4(FIF3-F~)(alla22-ai2»)1/2] 

X 1+ 1- 2 • 
- (a l1F3 + a22FI - 2a12F2) 

(49) 

The vectors VJ = IXj 11 T, j = 1,2, in (41) are (arbitrarily 
normalized) eigenvectors of the problem (B - A 2A) Jj = O. 

In Figs. 7 and 8 we show a plot of AI and A2 as a function 
of L / D for several values of the parameter n defined by 

(50) 

The curves are smooth except for very small values of L / D, 
which is a consequence of the already mentioned poor accu
racy of the boundary element calculation of the kinetic ener
gy coefficients (15) when the bubble is nearly totally im
mersed. 

A striking feature that emerges from the comparison 
between Figs. 7 and 8 is the large difference in the orders of 
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FIG. 7. The eigenvalue A, (the dimensionless frequency of the surface 
mode) as a function of the dimensionless bubble size L / D. Three nearly 
indistinguishable curves corresponding to the values 200, 1871, and 20 000 
of the stiffness parameter n defined in (50) are shown. 

magnitude of the two frequencies. For reasons that will be 
clear below, we call the mode of Fig. 7, for which AI is of 
order unity, the surface mode and that of Fig. 8, for whichA2 

is large, the volume mode. Other features of the normal 
modes are shown in Figs. 9-11. Figure 9 is a graph of the 
normalized radial changes XI and X 2 as a function of L / D. 
These results, which essentially give the shape of the normal 
modes, are seen to be relatively insensitive to the variation of 
the parameter n over two orders of magnitude. Figures 10 
and 11 show the amplitudes of the changes of the lower and 
upper volumes VI and Vu for the cases of air and water at 
normal pressure, for which n = 1871. These amplitudes are 
relative and with respect to a unit change in the normalized 
depth h. In other words, the quantity plotted is 

h (dVs ) h [(JVs) (dR) (JVs)] 
6.s = v: dh j = v: JR h dh j + Th R ' 

j = 1,2, s = l,u, (51) 

where (dR / dh) j is computed for the jth normal mode. With 
the aid of Figs. 9-11 we can now elucidate the physics of the 
process. 

VII. THE SURFACE MODE 

All the quantities pertaining to the smaller value of A 
carry the index 1. In the range of validity of the present 

150 

100 

50 

o,+--+--I---+---+-+---+---I--+---+----l-+---< LID 
0.5 1 

FIG. 8. The eigenvalue A2 (the dimensionless frequency of the volume 
mode) as a function of the dimensionless bubble size L / D for the values 200 
(dotted line), 1871 (solid line), and 20000 (dashed line) of the stiffness 
parameter 17' defined in (50). 
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FIG. 9. The eigenvectors corresponding to the two modes of oscillations for 
n = 200, 1871, and 20 000. The lines may be interpreted as giving the rela
tive change of the radius of the lower spherical segment for a unit relative 
change of the depth of its center. Recall that this quantity is negative in the 
range of validity of the model. 

model the bubble is more than half-immersed and therefore 
ho < O. In Fig. 12 we show a drawing of the equilibrium con
figuration of a bubble with LID = 0.282 (dashed line) and 
its shape in mode-l oscillation (solid line). Using the fact 
that in the eigenvalue equation (49) the second term in the 
square root is typically much smaller than 1 we have, ap
proximately, 

Ai = (al\a22 - ai2 )/(aI\F3 + a22F 1 - 2a 12F 2 ) (52) 

or, since both a l2 and a22 are typically smaller than all' 

Ai =a22IF3 • (53) 

From Fig. 7 and Eq. (47) the result (53) is seen to be a 
positive number of order 1, so that the dimensional frequen
cy of this mode is of the order of UJ, in agreement with the 
estimate (5) previously given. 

From the analysis of Figs. 9-11 the mechanics of the 
surface mode can be described as follows. Suppose that h 
increases, so that the bubble is less immersed (recall that 
ho < 0). This causes but a slight increase in the radius of 
curvature R of the lower hemisphere (Fig. 9), a modest con
traction of the volume of the lower spherical segment (Fig. 
to), and a large increase of the upper volume (Fig. 11). 
However, since in this size range most of the bubble volume 
is immersed, the increase of the total volume is negligible. As 
a consequence, the frequency is essentially independent of 
the compressibility of the bubble, measured by the param
eter n defined in (SO), in agreement with Fig. 7, in which the 

O+---~-=~~==~==~====~==~~~L/D 
0.5 1 

-1.5 

-3 

FIG. 10. The relative change ofthe volume of the submerged portion of the 
bubble for a unit relative change of the depth of submergence of its center, 
see Eq. (51). Here n = 1871. 

258 Phys. Fluids A, Vol. 1, No.2, February 1989 

~u 

so 

25 

Ot----r--~----~~::~~=---~--~L/D 
1 

-25 

-so 

FIG. II. The relative change of the volume of the bubble cap for a unit 
relative change of the depth of submergence of the center of the immersed 
spherical segment, see Eq. (51). Here n = 1871. 

three lines corresponding to n = 200, 1871, and 20000 are 
practically superposed. 

As a result of the small change of the immersed volume, 
as a sound source in the liquid, the surface mode would be
have as a dipole, although the pressure-release boundary 
condition turns it into a quadrupole. The radiated noise is 
therefore negligible. However, the cap volume increases sub
stantially and therefore, in air, the oscillating bubble behaves 
very nearly as a monopole. 

As already remarked, the approximation tP=O on the 
free surface is not really justified for the surface mode. We 
can therefore claim little more than to have elucidated its 
main qualitative features. To the extent that these features 
correspond to what can be inferred from dimensional analy
sis, this claim appears to be justified. 

VIII. THE VOLUME MODE 

In Fig. 12 the dashed-and-dotted line indicates the 
shape of the bubble in mode-2 oscillation. Note that the radi
us of curvature of the upper surface is so large as to appear 
nearly fiat. The nature of this mode is strikingly different 
from that of the surface mode in that the volume of the bub
ble undergoes substantial changes. From Fig. 9 it is seen that 
the amplitude of oscillation of the radius and depth of im
mersion are comparable, at least for small bubbles, and from 
Figs. to and 11 that both the lower and upper volumes 

-0.1 

-0.1 

.... ~\ 0.1 
. \ 
\ \ 

i 

) 
~~ equilibrium -:7 --- mode 1 

~:_-J.J.L-,:___ _._.- mode 2 

FIG. 12. Shape of the normal modes for n = 1871. The dashed line indio 
cates the equilibrium configuration of a bubble with L / D = 0.2820, 
R / D = 0.2823, f3 = - 0.8980, a = 1.904, and r = 0.079 72. The corre· 
sponding value of L in water is 0.7683 mm. The solid line indicates the shape 
of the mode-I (surface) oscillation. The dashed-and-dotted line shows the 
shape of the mode-2 (volume) oscillation. Note that for the volume mode 
the upper radius of curvature has grown so large that the cap is nearly flat. 
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change appreciably. For the eigenvalue Az the approximate 
expression analogous to (52) is 

A ~ = (F1azz + F3all - 2Fza12 )12(F1F3 - F~) (54) 

and the analog of (53) is 

(55) 

By use of ( 1 ), (44), and (45) we find a corresponding di
mensional frequency given by 

{6[ F3/(F~ - F1F3)] (PGoIR ~p)p/2, (56) 

in agreement with the previous estimate (6). It can be appre
ciated from Fig. 7 that this frequency is orders of magnitude 
larger than that of the surface mode. A consequence is that 
the wavelength of the ripples produced on the free surface is 
small compared with R and therefore the criterion for the 
validity of the approximate boundary condition tP~O is am
ply met. We therefore expect our theory to be quantitatively 
accurate for the volume oscillations of sufficiently small 
bubbles. 

In view of the relatively large volume increase of the 
submerged portion, a bubble oscillating in the volume mode 
behaves as an acoustic monopole source in the water, with 
the net effect of a dipole due to the pressure-release boundary 
condition. The cap volume also undergoes substantial 
changes, so that the volume mode is a monopole source in 
air, just as is the surface mode. 

IX. CONCLUSIONS 

On the basis of a simplified model for the dynamics of a 
floating bubble we have found that two very different modes 
of oscillations exist. The restoring force of the volume mode 
is provided mainly by the expansion and compression of the 
gas contained in the bubble and has a frequency with the 
same order of magnitude as that of a spherical bubble in an 
unbounded liquid. On the other hand, in the case of the sur
face mode the restoring force is essentially surface tension. 
The surface mode has a much smaller frequency than the 
volume mode comparable to the frequency of fixed-volume 
shape oscillations of a spherical bubble in an infinite liquid. 
These conclusions are borne out by dimensional consider
ations. In view of the approximations introduced, our analy
sis is correct for the volume mode, but can only predict the 
existence and broad characteristics of the surface mode. 

As far as sound radiation in the water is concerned, the 
surface mode has a quadrupole nature, while the volume 
mode has a dipole character. The volume mode is therefore a 
much more efficient source of sound; however, its large fre
quency indicates a strong restoring force, making it hard to 
excite. For radiation in air both modes behave as monopoles 
and the softer surface mode will be easy to excite. When two 

I 
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surface bubbles coalesce, the excess surface energy gives rise 
to oscillations. Our results lead one to expect a much strong
er noise in the air than in the water, a conclusion that is borne 
out by qualitative experiments conducted by Pumphrey.7 
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APPENDIX A: KINETIC ENERGY COEFFICIENTS FOR A 
HALF-IMMERSED SPHERE 

The solutions of Laplace's equation defined in (13) and 
vanishing on the free surface are, for h = 0 (Le., 1] = 11'/2), 

tP = ~ (- l)k + 1 (2k - 1)n 4k + 3 
1 k.?;:O 2k+zk! (k+1)3 

(
R)Z<k+ I) 

X --; PZk+ tCcos 0) 

and 

tPZ = (R zI2"z)cos O. 

With these results it is easy to show that 

F (0) = ~ 4k + 3 (2k - 1 )!!)2 =0.41543, 
1 k.?;:O 22k + 3(k + 1)3 k! 

while Fz(O) = -AandF3 (0) =!. 

APPENDIX B: ELEMENTS OF THE MATRIX 

We give here the explicit form of the coefficients aij 

which appear in expression (43) of the "mass" matrix B: 

all = ~ RR - ~~R/~ aa' 

a lz = ~Rh - ~aR~ah/~aa' 

where we have used the notation 

~ =~ av av __ 2_ azv 
xy 11'R V ax ay a11'R ax ay 

azs r az( VIZ) 
+--+ , ax ay 211'R Z ax ay 

(Bl) 

(B2) 

(B3) 

in which x, y stand for anyone of the dynamical variables R, 
h, and a. Furthermore, 

and SI' Su, VI' and Z are defined in (17), (18), (20), and 
(21). The explicit forms of the derivatives appearing in 
(BI)-(B3) are 
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All these expressions must be evaluated for the equilibrium 
conditions. 
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