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NUMERICAL SIMULATION OF THE MOTION OF RIGID SPHERES
IN POTENTIAL FLOW*

HYUN S. KIMt: AND ANDREA PROSPERETTIt

Abstract. A numerical method for the simulation of the motion of a number of rigid spheres
in a potential flow is described. The equations derived are applicable to the case of spheres in an
unbounded fluid or in a circular tube of variable cross section. The method itself is, however, more
general and can be applied to a variety of situations. The maximum number of spheres is only
limited by the available computational resources. Some numerical examples are described both as a
test of the method and for their intrinsic interest. The ultimate aim of the study is to develop a tool
capable of shedding light on the nature of the inertial coupling in two-phase disperse flows.
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1. Introduction. Except in the simplest cases, the study of flows involving more
than one phase must be based on averaged equations (see, e.g., Drew [13], Drew and
Wood [14], Hinch [17], Ishii [20], Nigmatulin [26]). As in the case of turbulence, this
approach leads to a closure problem in the sense that, as a consequence of averaging,
quantities are introduced that are not exactly expressible in terms of the primary
averaged variables (see, e.g., Bour [8]). It is therefore necessary to introduce further
equations to balance the number of unknowns. While this objective can be achieved
exactly in particular cases (for small volume fractions of the dispersed phase, see
Batchelor and Green [4], Biesheuvel and van Wijngaarden [7], Caflisch et al. [10],
Hinch [17], Rubinstein [28]; for small-amplitude surface deformation of stratified flows,
see Banerjee [2]; for small disturbances, see Caflisch et al. [10], Sangani [29]; and
others), typically the domain of validity of these exact results is quite limited and
falls far short of many, if not most, situations of practical interest.

Aside from concerns of physical realism, the closure issue is critical also for another
reason, namely, the fact that most of the averaged equations exhibit a tendency toward
instability, which renders their numerical solution problematic (see, e.g., Jones and
Prosperetti [21], Prosperetti and Jones [27]).

It is against this backdrop that the current efforts at the direct numerical simula-
tion of two-phase flows can be properly appreciated. Here particle motions are tracked
individually by computer to generate a large body of data from which, it is hoped,
information useful for the closure problem can be extracted. This approach is simi-
lar in its philosophy to physical experimentation, but, for certain purposes, it enjoys
several advantages over the latter. Indeed, the amount of data generated numerically
is orders of magnitude greater than what would be possible in the laboratory, a very
detailed control of the "experiment" is possible, and the physical effects that operate
concurrently in nature can be separated to ascertain their importance and facilitate
their modelling.
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1534 HYUN S. KIM AND ANDREA PROSPERETTI

The approach originated in plasma physics in the late 1960s (Hockney and East-
wood [18]) and has recently become quite widespread in the theory of liquids (Abra-
ham [1], Hoover [19]), in the theory of granular flows (Campbell [12], Walton and
Braun [35]), in low-Reynolds number (Brady and Bossis [9], Durlofsky, Brady, and
Bossis [15], Sangani and Acrivos [31], Sangani and Didwania [32]), and in high-
Reynolds number disperse two-phase flow (Sangani, Zhang, and Prosperetti [34]).
In this paper, it is applied to the inertial coupling of particles dispersed in inviscid,
incompressible flow. It is not our purpose here to suggest closure relations of the aver-
aged equations applicable to large Reynolds number flows. This remains a long-term
objective, which, it should be clearly stated, is the main justification of the present
work. Rather, we present some analytical and numerical methods suitable for the
simulation of the motion of rigid spheres in potential flow. Cases of unbounded fluids
as well as of flow in the presence of boundaries, such as through a nozzle, are consid-
ered. The results of the systematic applications of these techniques will be reported
in future studies. Here we only give some illustrative examples.

The motion of noninteracting spheres in potential flow is, of course, one of the
early applications of fluid mechanics. The motion of pairs of spheres sufficiently far
apart to interact only weakly also received attention over a century ago (Bassett [3],
Milne-Thomson [25]). The study of strongly interacting sphere pairs is, however, a
relatively recent development (van Wijngaarden [36], Biesheuvel and van Wijngaar-
den [6], Kok [24]) undertaken with the purpose of obtaining a closure of the averaged
equations of disperse two-phase flows valid to second order in the spheres’ volume frac-
tion 3. van Wijngaarden [36] derived an order-3 correction to the single-sphere added
mass coefficient, which was more recently reconsidered and refined (Biesheuvel and
Spoelstra [5] and Kok [24]). Biesheuvel and van Wijngaarden [7] used this approach
to obtain an order-2 expression for the averaged convective flux of momentum.

Extension of these results to larger volume fractions cannot be accomplished by
the techniques used by these authors. A numerical approach is necessary. Sangani and
Yao [33] have developed a method based on a multipole expansion of the potential and
have applied it to the problem of heat conduction in a composite. That study has led
to work on small-amplitude oscillatory flows described by Sangani [30] and Sangani,
Zhang, and Prosperetti [34]. The approach developed here is somewhat different, as
it deals with the values of the potential on the different surfaces bounding the flow.
A complete elucidation of the advantages and disadvantages of the two approaches
cannot be obtained on the basis of the presently available limited experience and must
await further research.

Another important point that is left open here is the development of efficient nu-
merical techniques, exact or approximate. For example, Durlofsky, Brady, and Bossis
[15] have proposed an approach that effectively combines long-range approximations
(incorporating multiple-body interactions) with exact pairwise interactions at small
separations. Karrila and Kim [23] have developed methods designed to exploit most
efficiently the available massively parallel computers, and Greengard and Rokhlin [16]
have formulated efficient techniques for the calculation of potential fields. Before sim-
ilar developments are attempted on the present approach, we feel that it is important
to possess a simple, reliable, and robust numerical technique that can be used as a
benchmark against which to compare them. It is such a technique that is outlined in
the present paper.

To illustrate the method, we consider several examples of massless spheres ("bub-
bles") carried by a flow through a converging-diverging nozzle in a pipe, and of spheres
moving under the action of buoyancy.
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1535
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FIG. 1. The potential flow of rigid spheres in a tube considered in this paper.

2. Mathematical formulation. The situation we model is that of a pipe of
uniform cross section upstream S and downstream Sd of a nozzle or other constriction
(Fig. 1). For simplicity, we take the pipe’s cross section to be circular, although the
method can be extended to more general situations. The mixture flowing in the pipe
consists of spheres suspended in an inviscid incompressible fluid. Since our emphasis
here is on the study of the inertial coupling between the disperse and continuous
phases, we take the fluid flow to be potential and the spheres to be rigid, massless,
and with the same radius a. The number of spheres the center xa of which is contained
in the region between xu and Xd is denoted by Ns, which may depend on time. Greek
indices ranging between 1 and Ns are used to label the spheres.

Let SU be the (possibly time-dependent) volumetric flow rate of the liquid-
spheres mixture in the upstream section of the tube. Then we begin by writing the
total liquid velocity potential CT as

(1) CT(X) U x + (x),

where x is a coordinate measured along the axis of the tube and (x) represents the
potential of the disturbance due to the relative motion of the particles with respect
to the liquid and the variations of the tube’s cross section. The time dependence
enters parametrically in the problem for the velocity potential and is understood for
simplicity of writing. We assume that the particles move with the fluid upstream of
the constriction, and therefore - 0 at upstream infinity, x -oe.

Downstream of the flow constriction, x oe, we impose

(2) C + AU x,

with C a constant to be determined and AU given from the condition of conservation
of the total volumetric flow rate through the tube,

(3) AU= dd--1 U.

If the downstream cross section is equal to the upstream one, then both liquid and
spheres must move at the same velocity U downstream, and condition (2) is exact. If,
however, S, 7/: Sd, (2) is only correct until the first sphere arrives in the neighborhood
of the point where it is imposed.

Consider now a section of the tube delimited by two cross sections (again denoted
by S and Sd) orthogonal to its axis, respectively, upstream and downstream of the
flow constriction, and write Green’s identity for (x)

(4) 2zrT(x -(x’) 0’ Ix- x’l 0’ Ix- x’l
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1536 HYUN S. KIM AND ANDREA PROSPERETTI

FIC. 2. Definition of the angle 1 first appearing in (6) and of the geometry used in 3.1.

Here S denotes the boundary of the domain occupied by the fluid and consists of
the upstream and downstream cross sections S and Sd, the tube’s wall Sw, and the
surfaces of the spheres S, a 1, 2,..., Ns, so that

Ns

In (4) the parameter 3’ is defined in such a way that 2r3’ represents the solid angle
under which the domain occupied by the fluid is seen from the field point x. Hence,

if x belongs to the circles where3’ 2 if x is a point interior to the fluid domain, 3’
S or Sd intersect Sw, and, provided that the pipe cross section varies smoothly, 3’ 1
for x any other point of S. Our approach is to regard (4) as an integral equation for
the disturbance potential. When this quantity has been determined, as is shown in
4, it is possible to calculate the motion of the spheres.

We now write (4) in a more explicit form. On the surface Sw of the pipe, the
normal component of the fluid velocity vanishes, which leads to

0 Ox
(6) 0-- -Unn U sin/,

where r/denotes the angle that the tangent to the pipe’s trace with a meridian plane
through the axis makes with the axis (Fig. 2). On the surface of the sphere a,

o v v(7) On’
where V is the translational velocity of the sphere a.

It proves convenient for the following developments to use several different co-
ordinate systems. The first one is Cartesian, with the x-axis in the direction of the
flow along the pipe’s axis, the y-axis in the meridian plane (the plane of Fig. 2), and
the z-axis orthogonal to the meridian plane. Second, we use a cylindrical coordinate
system (r, x, ) centered on the x-axis with the angular coordinate measured from
the (x,y) meridian plane. Third, we use spherical coordinate systems (r,O
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1537

centered at the center x of each sphere with the polar axis parallel to the x-axis
and Ca measured from the plane containing the polar and the pipe’s axes. In terms
of these "local" polar coordinates, the previous kinematic boundary condition on the
surface of the sphere a, (7), becomes

0 (U V) cos 0a Vy sin 0 cos Vza sin 0a sin,(8)

where V, Vya, and V are the components of V in the Cartesian coordinate system.
Finally, we take the surface S far enough upstream of the flow constriction that

we can take 0, 0/0n 0 there. Similarly, on Sa, we assume that C+ AUxa
and (the average value of) 0/0n AU, where xn is the abscissa of Sa. Although,
strictly speaking, these are over-specifications for the elliptic problem at hand, the
procedure is legitimate provided that S and Sa are taken sufficiently far away from
the region of the constriction.

With the previous assumptions and specifications, (4) then becomes

0 1
dS(x’)2rT(x (x’) On’ Ixw+Sa

sin dS(x’)

1
dS(x’)+hv Ix--

Nsfs [.V_’a_.n’ 0 1 ]dS(x’)+ [Ix x’l
(x’) Ix x’l

in which V’ denotes (V U, V, V).
3. Solution procedure. Equation (9) can be recast in a form more suitable

for an efficient numerical solution as follows. First, we expand the value of the
disturbance potential on the surface of the sphere c in a series of spherical harmonics,

(10)
OD n

Ca E E [Bm(t)Ynm(Oa’ Ca) + Bnm(t)nm(Oa,
n= m=0

where

(11)
Y(O" ) (n m)! p(cos0 cos

(n + m)!

(n + m)! Pm(csOa)sin rn
and the Pm’s are associated Legendre functions.

Similarly, on the surface of the pipe, we assume that can be expanded in Fourier
series,

(12) ((X, t) (I}0 (X t) -- E n(X, t) COS Tt -I- in (X, t)sin n].
n--1

By taking suitable scalar products of (9), we now obtain a system of equations
for the coefficients Bnm, Bnm, On, On of the above expansions.
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1538 HYUN S. KIM AND ANDREA PROSPERETTI

3.1. Field point on the pipe’s wall. When the field point x in (9) is taken
on the pipe’s wall, we multiply this equation by cos/ or sin 1 and integrate over
from 0 to 2r to find, respectively, that

(13)

(14)

cos 71

TM

l(x, x’, t)r’ dr’

Ns
U)Fso 2

a=l
-2Vz $1

Ns o
4nTr

n

k-nk Snk -[- -nk Snk
k=O

In these equations, r’ and x’ are the cylindrical coordinates of the source point x’, a
is the radius of the spheres, v is their volume, and

(15) eo 2, el 1 for # O.

The complete elliptic integral of the first kind is denoted by K(m) with m and A
defined by

(16) m
4r’r

A (x x’)2 + (r + r’)2

The other quantities appearing in (13) and (14) are as follows. The functions
and @i are defined by

(17) @ ’ @n cosn’ + (nsinn’
n--0

On, Ix x’[
cos1 de de’,

(18) n cos n’ + (n sin n’
n--0

(01)Ix x’[
sin1 de de’.

The integrations appearing here can be carried out in closed form and the results
expressed in terms of complete elliptic integrals as shown in the Appendix. The
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1539

functions al alFSnk areFcnk, defined by

(19)

and similarly for ~at ~atFcnk, Fs=k with the Y’s replaced by ’s. Although these integrals
could be calculated numerically, this procedure would be quite inefficient particularly
for large values of and k. The difficulty in their analytical evaluation lies in the fact
that, as mentioned before, the angle is measured from the meridian plane through
the pipe’s axis, while the angles Ca are the polar angles in the polar coordinate system
of sphere a. By using (A.24) of the Appendix, we can express the spherical harmonics
Yk(Oa, Ca)/Ix-xal+1 in terms of the angle , after which the integrations indicated
in these equations can be performed. The result is

(20)

where et is as defined above in (15) and

(21) n’ (Tt- k)! dn’
auk (n + k)! bn+n’+l

(22) t’ ,k r,’ tOpk+k’ (COSO)Sk+k,,t,FA n’k n’ n+n

(23)

in which nk nkAn,k, and Bn,k, are defined in the Appendix. In writing these expressions,
we have used the polar coordinates of the points P and A in the spherical coordinate
system centered at the point Q, the center of the sphere a (Fig. 2). The definitions are
Q-A (d, r/2, ) and P-Q (R, 0a, Ca). In addition, we have set P-A (b, O, ).
The point A is chosen such that Q A is perpendicular to the symmetry axis of the
pipe, which ensures that d/b < 1. For brevity, we have not appended all the indices
appearing in the right-hand sides of their definitions to FA and FB. This abbreviated
notation is occasionally adopted in the following as well. Any misunderstanding can
be avoided by explicitly noting that the convention of summation over repeated indices
is never followed in this paper.
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1540 HYUN S. KIM AND ANDREA PROSPERETTI

3.2. Field point on the surface of the sphere a. When the field point x
is taken on the surface of the sphere a, we multiply (9) by PkZ(cos0) cos 1 or

Pkz(COS0) sin 1 and integrate over the sphere’s surface. The resulting equations
are, respectively,

8r2el(k + 1)a2

(2k + )

(24)

fxd r dx

Al (x’) r’dr’

a (k+)!/
(k + )+ 4ra2AU

2k+ (k 1)l F r’ dr’

4rv [(V: V)6k,16,,o V26k,16,,3
Ns

V {[(V U)OlO_ ’ylzklcll 2V011]}
Z=,Z

and

8rr2(k + 1)a --(2k + 1)2 Bkz Az(x’)

(25)

r’ dx’
cos r/

]iTM/z (x’) r’dr’

ak (k + 1)!+ 4rca2U
2k + (k 1)!

tanr//

4rv

Ns ,, t-S11 .1.1J
=l,a

Ns c
47r an+l E [,i _kl )GSnm+ E E2n+l *’*nmvSnmnt-nm~kl

rn--0

The functions Akl(X’ and Akt(X’ are defined by

(26) fo’ fs (0 1)Az(x’ (x’) P(cos O")cos/ dS(x) dO’,
On’ Ix- x’l

(27) Ak,(x’ (x’) On’ Ix-x’[ P(csO)sinldS(x)d"
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1541

in which

dS‘ (x) a2 sin d de.
After integration over S, Ak(X’ and hkl(X’ become

4rak+2 (k +l),(H +A(x’) + ( )
H,

(8) =0

+(x’) +(+ )= 2k+l (k-l)’n:0

nwhere the functions Hm Hsm are given by

0 0

with he F’s defined above and -n -Hem Hsm given by similar expressions with the
F’s replaced by ’s. Wih the definition (’-)/b, in whi& denotes the
-coordinate of the cener of the sphere , he normM derivative of the spherical
harmonics becomes

On bn+

where

(3o)

[P:(,)] ( + m- 1)P1 (#)
V[ bn+l j

=-i
bn+2

V/1 #2[#(dPnm(#)/d#) + (n + 1)P(#)]
J bn+2

On the pipe, the normal vector becomes n -isin 1 + j cos/, while at the outlet
n=i.

The functions GkIcnm, klcnm, GkIsnm, and nm are defined by

(31)

where we use the definitions x + y x (R, O, ), with x and x the position
vectors of the centers of spheres a and fl, while y is the position vector from the
center of the sphere a to the generic point on the surface of the same sphere. By
using the relations (A.25) in the Appendix, the G,m O,m mGSum, andm can
be calculated explicitly to find

(32)

D
ow

nl
oa

de
d 

06
/2

7/
19

 to
 1

29
.7

.1
58

.2
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1542 HYUN S. KIM AND ANDREA PROSPERETTI

in which x xa (dan, Oaf,). The constants are

(33) kl 27rak+2 (--1)n 1
Dnm (2k + 1)(n + m)!(k -l)! (df)k+n+l

(34) J/m --(-1)min(/’m),

(35) CA (n + k + m / 1)!,

When m < l, the proper definition of Y+k-m-l is

-r-* (n + k -Im- 1])! plm-l (cos OZ)sin(m -/)aZ.Y+ (n + k + I’- 11!"
3.3. Field point on the upstream and downstream sections. On the pipe’s

cross sections S and Sd, the value of the disturbance potential is taken to be uniform,
zero in the first case, and given by (2) in the latter. In these cases, therefore, (4) must
give the same result regardless of how the point x is chosen. This condition, of course,
is only approximately true, and the extent to which it is verified may give a test of
the accuracy of the calculation. In any case, the most convenient choice for the point
x is now along the circle where the cross sections join the pipe’s surface so that use
can be made of (13) and (14) with - .

Since on the upstream section S, for which x x, 0, from (12) we find
that (j j 0 for j 0, 1, 2,... (9) gives

(36)

TM

q(Xu, x’, t)r’ dr’

Ns cx
4nr

c--1 n--1

n

gn+l BnmFnm + BnmFcnm
m--O

and

(37)

nNs c
4nTr an+l { a ~ ~l }+ 2n + 1

BnmF}nm -+- BnmF}nm
c=l n= m=O

Similarly, for x on the circle at which Sd joins the pipe’s surface, x Xd, and
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1543

(3s)

Ns x
4nr

c--1 n--1

n

BnmFSnm+BnmFcnm
m--O

d r o’d7r2(l(Xd) (l(Xd, X’, t) dx--- l(Xd, X’, t)r’ dr’
COS

Ns

}]
nN 4nan+l{ a -a -I }g+Fn+ 2n+1

a=l n=l m=0

According to (2), at x Xd, Oo C + AU Xd while all other Ot and O vanish.
Hence, of all the equations given in this subsection, the only one that is needed for the
solution of the problem is (38), written for 0, from which C can be determined. All
the other relations must hold utomatically, at let approximately, if the assumptions
made are consistent and the numerical algorithm correct.

4. Equations of motion. Since the spheres are taken to be msless, the total
force on each one of them must vanish, so that

(o) o dS - + [(V +x dS,
where the unit normM vector n is, in the local sphericM coordinate system,

n cosa + j sina cos a + k sina sin Ca,

and the gravity force h been taken to act in the direction parMlel to the is of the
pipe. Since, on the surface of the sphere , CT is given by

(al) Cr u()x +,
the quantity in brackets in (40) becomes

(a2) DD dU -U+ V:U + (V iU). V + [(V) + x.
Here we have de.oted by D/D the derivative o[ (10) with respect to the variable
t explicitly appearing there as argument of Bn Bn. rthermore, for (42) to be
strictly correct, we must interpret V

10 1 0(a) v (v )
a 0 a sin a 0a
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1544 HYUN S. KIM AND ANDREA PROSPERETTI

The first term, however, contributes nothing to the integral in (40), so that the ab-
breviated notation adopted in (42) is justified in spite of the slightly inconsistency.

Substitution of (42) into (40) and integration by means of the known properties
of the associated Legendre functions gives equations of motion for each direction. For
the x-direction, (40) leads to

(44)
3 1

n

n=l m=l

(n m + 1)! (Bn.B+,m + Bn.Bn+I,.)(n + m)!
+ag O,

while, for the y-direction,

(45)

dt
6 1 3 1

(VB22 + V/2+31 (V U)B + a-VyB2 - -a
3

oo

+ -a E Cn(S’+l,os’l B’+,Isn)
n:l

n:l m:l

3
o n

n:l m:l

(n m + 1)! (Bn+l,mBn,m+ + r+l,mBn,m+l)(n+m+ 1)!

(n + m)! (BrmBr+l’m+l nt- BnmBn+l’m+l) O,

and, for the z-direction,

(46)

dt

n=l m=l

3
x) n

2a2EEC,
n--1 m--1

(n m + 1)
B,+,mB,,m+l(n -t- m + 1)! (Bn+l’mBn’m+l ~

(n + m)! (BnmBn+l’m+l BnrnB+l’m+l) O,

where

.(n +C (2n + 1)(2n + 3)"

Finally, the position of the center of the sphere is related to its velocity by

(47)
dx

V
dt
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1545

5. Axisymmetric case. When the spheres are constrained to remain on the
axis of the pipe, due to the axial symmetry of the configuration, a considerable sim-
plification of the above formulae occurs. The potential on the surface of the sphere
a, (10), can be written as

(48) " B",oP(cos
n--1

while the potential on the surface of the pipe (12) becomes

(x, t) 0(x, t).

Equation (13) then becomes

(49)

2 f B(x, x’, r, r’) r’ dx’
"(o x J -A o(x’)

COS r/

_ef (z x) E() ,dA3/o’x’’ 1 m
+

0
2Uf K(m) r’+
J

tan A/2
dx

2AU rd K(m) r’
7r A1/2

2 a 2

3 ()aE(g: V)gl(cos0a)

Ns o
2n a n+l

+EE2n+I ()
a=l n=l

B,oP(cos 0).

In (32) the only nonzero term is

k,0-CnO(J-k’O 2(n + k)lDn,oPk+n(cosO

in which 0 0 if x > x, while 0 if x < xa. Equation (24) then becomes

(5o)

Bka,O
2k + 1 ak fd 0 Pk (cos 0 r’ dx’
2(k + 1) Jx

(I)0(x’) On’ Rk+l cos
r Pk+l (cs 0) r’2k + 1 ak OO(Xd) Rk+2

dr’+ 2

Pk(cosO) r,+ 2(k2k ++ 1)1 ak U tan
Rk+l

dx’

2k + 1 Pk (cos 0) r’+ 2(k + 1)
AUak

Rk+l
dr

1( U),I
2k + 1 s

( )+2 3
Sa(Vf- U)

=1,

k+l 21 2 "S ,o,
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1546 HYUN S. KIM AND ANDREA PROSPERETTI

where

S--(-1)n ifxf>x‘, S--(--1)k ifxf<xa.

The equation of motion (44) becomes

(5)
dBo
dt

dU 6 1
+ (V: V)Bo

dt 5 a

3 n(n+l)(n+2)+ (2n + 1)(2n + 3)B’B+x’ + ag O.
n--1

In the simple case of a single sphere moving through an unbounded liquid, it can
be shown from (50) that

(52) Blo -1/2a(V-U),
while all the other coefficients vanish. In this case, with the neglect of gravity, the
equation of motion (51) reduces to the familiar result

(53)
dV dU
dt

3 d-
6. Spheres in an unbounded liquid. Another limit case of interest contained

in the formulation of 2 and 3 is that in which the spheres are immersed in an
unbounded liquid at rest at infinity. In this case, the term Ux in expression (1) of the
velocity potential vanishes and only the disturbance potential remains. By neglecting
the contribution of the pipe’s surface and the upstream and downstream surfaces
Su, Sd in (24) and (25), we find that

(54)

and

(55)

in which

a

df’

and the new coefficients kSQcnm are defined by

kS (2k + 1)2nan-1 GkQcnm
27r(k + 1)(2n -[- 1) Grim,

D
ow

nl
oa

de
d 

06
/2

7/
19

 to
 1

29
.7

.1
58

.2
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1547

with similar relations for ks kS Qsnm.~kSQSnm, Qcnm and The equations of motion (44)-(46)
still hold, except that U 0, AU 0 in this case.

It may be noted that these equations can be derived alternatively by using a
Lagrangian. The kinetic energy of an unbounded liquid at rest at infinity in which
Ns spheres are in motion is given by

(57) T= Pfs "" s"- ---nd

Carrying out the integration over the surface of the spheres yields

(58)

where, as before, v denotes the volume of the spheres. The equations of motion are
derived from

(59) d Oqi fi’

where the generalized coordinates are

qi x zy, v- 1,...,Ns,

and fi denotes the force acting on the sphere in the direction of the coordinate qi.

It might seem that this Lagrangian approach might be easier to implement than the
method described in the previous section because only the B0 BI and BI in (58)
would be required. However, these quantities depend on the velocity and positions of
the spheres through (54) and (55), and a derivation of the explicit expression of this
dependence is far from trivial.

An approximate solution of these equations can, however, be found if the spheres
are well separated from each other so that A << 1. In this case, we find approximately
that

(60)

Ns

2B0--aV + E
+

f 10 3aVz(11] ,3-aVQlO + 3aVu Qc11

(61)

3 / 11 3aVz(111] 3-aVQlo + 3aVi Qcll +

(62)

Ns [ 3
Qso -t- Qsll -t- $11|BI aVz + E [ _aVx 11 3aV 11 3aVz(ll ] /3

+
Let us consider the special case of two spheres. It is convenient to take the x-axis

in the direction joining the centers so that Ixf -xl d. If the two spheres are
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1548 HYUN S. KIM AND ANDREA PROSPERETTI

moving along the x-axis (i.e., along the line joining their centers), these relations give

Bo_ aV
(63) 2

Bfo 2

+Y + O(),

3aV3+ +
while the other B’s vanish. If the two spheres are moving in a direction perpendicular
to the x-axis, we find that

(64)
BI aV + -aV,X3 + O(6),

3Bll =aVy + aVy + O(A6),
with all the other B’s vanishing as before. These results coincide with the expressions
given by Milne-Thomson [25].

Another case in which the dependence of the B’s on velocity and positions of
the spheres can be found explicitlymand, in this case, exactly--is the case in which
only two spheres are present. This was essentially done by van Wijngaarden [36] by
a procedure different from the one used here (see also Kok [24]). For more than two
spheres, or in the presence of boundaries, it does not seem likely that (24) and (25)
can be solved explicitly.

7. Numerical implementation. The first step in rendering numerically tracta-
ble the formulation derived in the previous sections consists in truncating the infinite
series. Thus we use a finite number NF of terms in the Fourier series of the potential
on the pipe’s wall and truncate the multipole expansion (10) of the potential on the
surface of the ath sphere to Ms terms. For efficiency, this quantity can be adjusted
in the course of the computation by monitoring the magnitude of the coefficients B.

A discretization of the integrals along the axis of the pipe occurring in many of
the preceding formulae must also be carried out. For this purpose, we subdivide the
region x < x < Xd into Nw intervals so that

xXd N_ xXj+l
j=0

with xo x, XNw+l Xd. We take the Fourier coefficients of the potential on the
pipe’s surface (I)(x, t) and ((x, t) to be linear functions of x between the two nodal
values O(xj, t) and (I)(xj+, t). More refined numerical treatments of this part of the
problem can readily be introduced. Equations (13) and (14) are then written at the
points xj, j 1, 2,..., Nw. At x0 x, we use (36) and (37), and at Xg+l Xd we
use (38) and (39). For all the segments over which the integrands are regular, the in-
tegration is carried out by means of a standard ten-point Gaussian formula. However,
due to the presence of the elliptic integrals, some integrands become logarithmically
singular when x x. These singular integrations are carried out by use of a ten-point
Gaussian formula with a logarithmic weight.

The complete solution of the problem also requires the time integration of (40)
and (47) and the determination of B, Ba. These steps are carried out by a predictor-
corrector method as follows:

(a) Suppose that at the generic time tk the values of all variables are known;
(b) At time t_k+ tk + At, determine low-accuracy approximations of Bo(tk+),

B(tk+), and Bl(tk+l by an explicit first-order nuler step from (44)-(46). For
example, Bo(tk+i is estimated according to

(65) Bo(tk+) Bo(tk) + AtF (tk),
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1549

where F(tk) stands for all the nonlinear and gravity terms in (44);
(c) By using these estimates of B0(tk/1), BI (tk/l), and B5 (tk/l), calculate

corresponding estimates for V(tk+l), n(tk+), (n(tk+i), and the rest of the coeffi-
cients of Bnm(tk+i) and Bn,(tk+i) from (13), (14), (24), and (25);

(d) Determine new values for the positions x(tk+) of the spheres’ centers from
the new velocities V(tk+l), according to

(66)
At

Vxa(tk+l) xa(tk)+- --[Va(tk+l)+- (tk)];

(e) Update the coefficients of all the equations by using the new values for the
locations xa (tk+i) of the centers;

(f) Obtain improved estimates of Bo(tk+i), Bi (tk+l), and BTi (tk+l) by using
the same method used in step (d);

(g) Go back to step (c) and repeat the cycle until suitable convergence criteria
are met.

Note that in (50) the interaction between two spheres c and/ is O((a/d)3),
where dfl is the distance between their centers. Therefore, for spheres well separated
from each other and also from the pipe’s wall, the above iteration converges very
quickly.

8. Some numerical examples. In the examples described in this section, use
is made of dimensionless variables defined in terms of the common radius a of the
spheres and a characteristic velocity Uc as

x* x/a, t* Uc t/a,
(67)

U* U/U, * "/aUc.

For motion under the action of the external field g, the characteristic velocity U is
taken as U xfla-, while, in the absence of the external field, we take U equal to
the volume velocity at the upstream section S. In the remainder of this section, only
dimensionless variables are used, but the asterisks are omitted for convenience.

In all the examples to be considered, the upstream volumetric flow rate r SU is
taken to be independent of time. Furthermore, the initial velocity of the spheres is
always taken to be parallel and equal to that of the liquid.

In setting up the complex calculation described above, a major concern is, of
course, the validation of the method and of its numerical implementation. This point is
not trivial because no exact analytic solutions exist with which to compare the results.
The few available analytic results are only applicable to weakly interacting spheres
and therefore do not constitute a stringent test of the approach. We have therefore
used comparisons with other numerical calculations and fundamental conservation
and invariance principles that are known to hold exactly.

Our first test was for the case of the flow of a pure liquid without any sphere. For
this case, we took an axisymmetric nozzle with a profile given by

r ru, -18 < x < -6,

(6s)   )cos
r--rm, --2<x<0

with r rd 4, rm 2. The nozzle is symmetric with respect to x 0. It
w discretized by placing nodes at intervals A x r(x)/8, where r(x) is the radius
of the local cross section. This resulted in a total of 73 nodes. We have compared our
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1550 HYUN S. KIM AND ANDREA PROSPERETTI

FIG. 3. Comparison between two numerical results for the value of the potential on the surface
of a pipe with variable cross section given by (68). Solid line: present calculation; dashed line: Dr.
Ouz’s code.

results with those given by an independent potential flow code kindly made available
to us by Dr. Hasan N. Ouz. Figure 3 shows a comparison of the two results for the
wall values of the potential ,along the pipe. The solid line is our calculation and the
dashed line Dr. Ouz’s. We have found that agreement between the two results could
be improved further by refining the discretizations used in the two codes, and we are
therefore satisfied that the two calculations agree with each other.

Another way to test the accuracy of the calculation is to monitor conservation of
the total energy . With no gravity the energy is purely kinetic and, with S Sd,
its dimensionless value ]C is given by

(69)

Here and in the following, the energy is nondimensionalized by dividing by pa3U2,
where p is the liquid density. The first term in this equation is of the order of the
total kinetic energy of the liquid in the absence of the spheres and is therefore usually
much larger than the second one. A consideration of the total kinetic energy would
thus be a rather insensitive test of the accuracy of the calculation. Hence, we subtract
out the (constant) dominant term and examine the conservation of

(70) K:’ r 2r[ 1B,Z 1~-r C(t)U + - (U + Bo)V - 11 ’y -BIVza

In terms of this quantity, a useful measure of the error is

(71) error
,’c,(o)

For our first test, we take an axisymmetric problem with a single sphere placed
on the axis of a nozzle with the same shape (68) used for the previous example, but
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1551

15

10

5 10

15.0

7.5

0.0 x

-15010 15

FIG. 4. Velocity (solid line, left vertical scale) and position (dotted line, right vertical scale) of
a single sphere convected along the axis of the nozzle (68) with a minimum radius rm 1.2.

0.20

0.15

0.10

0.05

-0.00

-o.o5o. 150

FIG. 5. Energy error (71) versus time for the sphere in a nozzle of the previous figure.

with a much narrower throat, rm 1.2. Initially, the sphere is at x -14, and it has
the same velocity as the liquid, U 1. For this calculation as well as all the other
ones described below, the pipe wall was discretized with 37 points. This number was
arrived at using the rule /Xx 1/4r(x) for this case with r, 1.2, but the number
of points was not changed for other values of rm The ratio BNo/Bo of the last
coefficient retained to the first one was constrained to remain between 10-5 and 10-3

by adding or deleting terms in the Legendre expansion (48). The minimum value of
N was prescribed to be 5, and the maximum value reached during the calculation was
18. Figure 4 shows, as a function of time, the velocity of the sphere (solid line, left
vertical scale) and its position (dotted line, right vertical scale). Figure 5 is a graph
of the error, defined by (71), as a function of time. It can be seen that the maximum
is of the order of 0.2 percent.

Another energy conservation test was conducted for the case of a liquid quiescent
except for the motion induced by a gravity field acting along the pipe’s axis. In this
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1552 HYUN S. KIM AND ANDREA PROSPERETTI

12

7.5

0.0 X

-7.5

0
0 7

-150

FIG. 6. Velocity (solid line, left vertical scale) and position (dotted line, right vertical scale) of
a buoyant sphere rising along the axis of the nozzle (68) with a minimum radius rm 1.2 sphere
radii. The liquid is at rest except for the motion of the sphere.

case, the total energy is given by

Ns
# + x-.

c--i

We simulated the same single-sphere problem mentioned before for this case. For
this calculation, and the other axisymmetric ones described below, the number of
coefficients retained in expansion (48) was kept fixed at 12. The velocity and position
versus time are shown in Fig. 6 and the energy error in Fig. 7. In this case, the latter
is defined by

(73) error
z(o)

and reaches a maximum of the order of 2 percent. This value is one order of magnitude
greater than before, which is only partially a consequence of the fewer terms retained
in expansion (48). A circumstance of greater importance is the fact that C(t) in (69)
or (70) is typically greater than the terms in the summation, so that definition (73)
used in this case is more sensitive to numerical error than the previous one (71).

Figure 8 shows velocities and positions as a function of time for two spheres
convected along the axis of the same nozzle (68) with a minimum radius rm 1.5.
Initially, the spheres’ centers are separated by 2.2 units, so that the distance between
the closest points on their surfaces is 20 percent of the radius. The maximum error in
this case was 0.1 percent. Figure 9 is for the same nozzle and initial configuration of
two spheres, but this time the motion is driven by a gravitational field directed along
the pipe’s axis.

We now consider a few simple nonaxisymmetric examples. For the first one, we
initially place a single sphere, having the same velocity as the liquid, with its center at
one unit from the pipe’s axis in the plane 0 at x -14. The nozzle shape is the
same as before, (68) with rm 2V. In this and in the following nonaxisymmetric
examples, we use the two terms (I)0 and (I)1 in the Fourier expansion (12) of the surface
pipe potential, and the sphere’s potential (10) is truncated at n m 5. We show
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1553

FIG. 7. Energy error (73) versus time for the buoyant sphere in a nozzle of the previous figure.

12 16

-8

O0 16’2 -16

FIG. 8. Velocities (solid and dotted lines, left vertical scale) and positions (broken lines, right
vertical scale), of two spheres convected along the axis of the nozzle (68).with a minimum radius
rm 2v/ sphere radii. The initial separation between the centers is 2.2 radii.

in Fig. 10(a) the x- and y-components of the velocity of the sphere as a function
of time, and in Fig. 10(b) the sphere’s trajectory in the (x, y) plane. In the latter
figure, the dots on the line are placed at integral values of the dimensionless time
starting with t 0. The calculation has been terminated when the sphere reached
the downstream boundary of the computational domain Xd 14. It is seen that,
after going through the nozzle’s throat, the sphere retains a small negative velocity
in the direction transverse to the axis so that it eventually hits the pipe’s surface. In
this case, it was also possible to test with what accuracy the Fourier coefficient of the
expansion of the potential on the pipe’s wall vanishes at the point Xd (cf. comments in
3.3). We show in Fig. 11 a graph of @l(Xd) as a function of time as calculated from
(38). The value is very small initially and tends to increase somewhat as the sphere
advances toward the point Xd, as expected. However, the maximum remains of the
order of 10-3, much smaller than the magnitude of Oo(xd), which is of the order of
102. This case lends itself to another test. Since the pipe we consider is axisymmetric,

D
ow

nl
oa

de
d 

06
/2

7/
19

 to
 1

29
.7

.1
58

.2
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1554 HYUN S. KIM AND ANDREA PROSPERETTI

16

-8

12

6

3

O0 2 3 4 5

t
FIG. 9. Positions (a) and velocities (b) of two buoyant spheres rising along the axis of the

nozzle (68) with rm 1.5 sphere radii. The initial separation between the centers is 2.2 radii.

the motion of the sphere must be the same if the initial condition is rotated by any
angle around the axis. To check this property, we have run the same case, but this
time initially placing the sphere on the plane r. The position at the end of the
simulation time was the same as before within 2.310-2 percent.

In Fig. 12, the dotted lines show the trajectories of two spheres in the nozzle (68)
with r 6 and rm 3, which is indicated here by the solid lines. Initially, the
spheres are.placed on a line perpendicular to the axis at three units on either side of it.
As a consequence of the flow constriction, they acquire a relative velocity that causes
them to collide. The calculation was stopped at that point. The precise symmetry of
the figure about the axis gives further confidence in the correctness of the calculation.
As before, the dots mark the position at integral values of the dimensionless time..

Finally, we consider the gravity-induced motion of three spheres in an unbounded
liquid. The initial geometry is shown in Fig. 13. The spheres’ centers are in a plane
parallel to the acceleration of gravity, and the initial distance from the center of the
central sphere is d 4. Figure 14 shows the trajectories for 1 (0) 40, 2(0) 130,
while Fig. 15 is for 1 (0) 70, 2(0) 130. It, can be seen that, in the first case,
spheres 2 and 3 collide, while, in the second case, collision occurs between spheres 1
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’5-10 10 2’0

1.00

0.75

)- 0.50

0.25

0"0014 -i0 --’6 -2 2 6 10 14

FIG. 10. Velocity components (a) and trajectory (b) of a sphere convected through the nozzle
(68) with rm 2x/ radii. Initially, the sphere is located off axis at x -14, y 1. The dots in

(b) indicate positions at integral values of the dimensionless time.

0.003

O.OO2

x

,. 0.001

-0.000

0 10 15 20

FIG. 11. Values of the coeJficient 1 at the downstream section given by (38) versus time for
the case of the previous figure. The exact value is zero.
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>-
0

>-

FIG. 12. Trajectories (broken lines) of two spheres convected through the nozzle (68) with
rm 3V sphere radii (solid lines). Initially, the spheres’ centers are on the (x, y) plane three units

from the axis. The dots indicate positions at integral values of the dimensionless time.

Y

FIG. 13. The initial configuration of the three-sphere problem studied in Figs. 14 and 15.

and 2. The points indicate positions at integral values of the dimensionless time.
A final comment is in order on the calculation times required for the examples

described above. Typically, they were of the orders of several to many hours on a Sun
Sparcstation. However, no attempt was made at this stage to optimize the clculation
procedure, e.g., by systematically using a variable number of terms in the expansions.
It may be expected that an effort in this direction would pay off with a considerable
reduction in computation time, as would, of course, recourse to a supercomputer.

9. Discussion and conclusion. We have developed a technique to calculate the
motions of arbitrarily configured spheres in potential flow through an axisymmetric
pipe or in an unbounded liquid. The method can be used to study the inertial coupling
among the spheres and ultimately gain insight into the proper formulation of averaged
equations. This line of research will be pursued in future publications. In this paper,
we have only considered very simple examples for illustration purposes.

In conclusion, we present comments on future work that is needed to improve
the mathematical model. In the first place, for application to bubbles, the spheres
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-4

10 20 50 4’0

FIG. 14. Trajectories of the three buoyant spheres shown in Fig. 13 for the case where 1 (0)
40,2(0) 130 Initially, the two outer spheres are at 4 radii from the central one. The dots
indicate positions at integral values of the dimensionless time. Note that spheres 2 and 3 are predicted
to collide.

-2

Fio. 15. Trajectories of the three buoyant spheres shown in Fig. 13 for the case where (0)
70, 82(0) 130. Initially, the two outer spheres are at 4 units from the central one. The dots
indicate positions at integral values of the dimensionless time. Note that spheres 1 and 2 are predicted
to collide.

should be allowed to change their volume and to deform. The first objective can
be obtained relatively easily by adding one degree of freedom per sphere, while the
second objective requires a considerable increase in the number of degrees of freedom
per particle and may not be worth pursuing until further progress on the spherical
case has been made.

Second, a method must be found to handle collisions between spheres or with the
pipe’s wall. These events happen necessarily in the present model due to the basic
Bernoulli effect of pressure decreases associated to velocity increases. The velocity
on the side of a sphere close to another sphere or the tube’s wall is higher than on
the other side, so that an attractive force develops. The presence of this attractive
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1558 HYUN S. KIM AND ANDREA PROSPERETTI

force for the case of two spheres moving perpendicularly to their line of centers is well
known (see, e.g., Milne-Whomson [25]). In this work, we have encountered several
such occurrences, and we had to stop the calculation just before the collision took
place. We plan to implement the .method recently developed by Sangani and Yao [33]
to solve this problem.

Third, it would be desirable to model the drag forces acting on the spheres. We
can do this in an approximate way for slip-free spheres at large Reynolds numbers
on the basis of work of Kang and Leal [22] and Sangani, Zhang, and Prosperetti [34].
The basic idea is to exploit the relative weakness of the viscous boundary layer that
develops around the spheres in these conditions and to calculate the viscous correction
to the flow ignoring the interaction among neighboring spheres.

Clearly, the model we have described is a far cry from anything that could be
called "realistic." However, computers are expected to become increasingly more
powerful, and it is important to start developing now tools to point the way for more
physical simulations when they will become feasible.

Appendix. We now provide analytical details on some of the results quoted in
the text.

Functions and . The functions and are defined in (17) and (18). To
calculate the integral (17), we begin by noting that, referring the points x and x to
the cylindrical coordinate system defined after (7), we have

x= x’ (x’, r’, ’).

The distance between x and x is given by

(A.1) Ix x’l R [(x’- + + cos( ’)]
The normal derivative appearing in the integrand of (17) is then

(A.2)
0 1 1

R3 { (x’ x) sin r/- Jr’- r cos (’ )] cos

with /as defined in Fig. 2. With the change of variable- 2u, the integration
over yields

(A.3) t 2reA3/2 o cos 21u(- sin r/(x’i:_--ro2x)+ cos)r/(r’ r cos 2u))
du,

while the other term multiplied by t vanishes. With the definitions,

A (x’- x)2 + (r’ + r)2, m 4r’r/A.

Equation (A.3) can be rewritten as

(A.4) t -2re
1 cos lrB

A3/2 (x, x’, r, r’) (x’),

where

(A.5)

(A.6)

B (x, x’, r, r’) [-(x’ x) sin /+ (r’ + r) cos /]It(m),

2r Jt(m) cos
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MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1559

with

(A.7) It(m)
cos21udu

Jo (1 m sin2 u)3/2’

(A.8)
cos2 u cos 21u du

Jl (m)
Jo (1 n )-"

These integrations can be carried out in closed form and the results expressed in
terms of the complete elliptic integrals of the first and second kind, K(m) and E(m).
To this end, we define

(A.9) Qn
cos2n u du

0 (1 m sin2 u)3/2

and note the recurrence relation, valid for n >_ 2,

(A.10) +2n-1 [(2n-3)(--3m 2)- 2(n-1)(2
2n-3 (1 3

+ Q,_.+2n- 1 m

+ Qn-1
m

This relation is obtained by differentiation from the known recurrence

n-1 2m-1 2n-31-m
(A.11) Mn 2Mn-1 -2n- 1 m 2n- 1 m

Mn-2,

where

(A.12)
r/2 COS2n U du

Mn
0 (1 m sin2 u)l/2"

Together with the explicit values

E(m) Q K(m)- E(m)(A.13) Qo
1 m’ m

(A.14)
1

Q2 [(2 m)E(m) 2(1 m)K(m)],

which readily follow from

(A.15) M0 K(m), M1
1

[E(m) (1 m)K(m)],
m

(A.10) enables us to calculate Q for any n. With this result and by use of the
expansion

(A.16) cos 21u an cos2n u,
n----0
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1560 HYUN S. KIM AND ANDREA PROSPERETTI

where the an’s are the coefficients of the Chebyshev polynomial of degree 21 and are
given by

(A.17) az--22z-1 an--(-1)-n
21 2n-1 (l+n-1)!
l-n (2n)! (1-n-i)!’

0_<n_<l-1,

we readily obtain the following expression for h(m):

(A.18) I(m) an Qn(m).
n--O

With the above results, it is also obvious that

(A.19) J(m) an Qn+.
n--0

In particular, the values corresponding to 0 and 1 are

(A.20)

E
Io(m) --,

ml

Ii(m) --2 (K-E)
m

E

K-E
Jo(m) ,

m
1

J(m) - [(3 4- ml)E (1 4- 3ml)g],

where m 1 m.
Note that, when Ix’-x --O(e), I and J become singular as

J, O(log e).

However, the coefficient of h in (A.5) becomes O(e2), so that product of h and
its coefficient becomes O(1). Therefore, when Ix’-x O(e), B(x,x’,r’) behaves
asymptotically as O(log e), which is integrable.

On the downstream section Sd, the function B(x, x, r, r) simplifies to

(A.21) B z)h.

A calculation similar to the preceding one shows that

(A.22)
cosz -4r
A3/2

x,
Translation of the spherical harmonics. Consider the three points O, P, and Q,

two polar coordinate systems centered at O and Q, and let

(A.23) P-Q= (r’,O’,’), P-O= (r,O,), Q-O= (p,a, fl).

When r > p, the spherical harmonics referred to tke origin Q can be expressed in
terms of the spherical harmonics referred to the origin O as follows:

D
ow

nl
oa

de
d 

06
/2

7/
19

 to
 1

29
.7

.1
58

.2
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MOTION OF RIGID SPHERES IN POTENTIAL FLOW 1561

(A.24)

PNM(COS 0’) COSM
rtN+l E rN+n+l

n--0

+n+N
m=0

+
m=l

while, when r < p,

(A.25)

oo rnPNM(CoS 6’) COSM’rtN+l (--1)N E DN+n+In--O

{ NM (COSO0 cos[(M + m)3- m]Anm pm(COS 0) IDm+M
n+N

m=0

+ E NMBn, P (cosO) (cos cO cos[(M +n+N
m=l

where the constants are given by

(A.26) NMAnn (n + N- m- M)!
(n + m)!(N M)!

(A.27) NM 1)min(M,m) (n + N -IMBnm (- (n + m)!(N- M)!

Similar expressions hold for the expansion of PNM(cos 6’) sin M’/r’N+l, except that
the cosine functions of and/ in the right-hand sides of (A.24) and (A.25) must be
replaced by sine functions.
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