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The action of pressure-radiation forces on pulsating vapor bubbles

Y. Hao, H. N. Oguz, and A. Prosperetti®
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The action of pressure-radiatidar Bjerknes forces on gas bubbles is well understood. This paper
studies the analogous phenomenon for vapor bubbles, about which much less is known. A possible
practical application is the removal of boiling bubbles from the neighborhood of a heated surface in
the case of a downward facing surface or in the absence of gravity. For this reason, the case of a
bubble near a plane rigid surface is considered in detail. It is shown that, when the acoustic wave
fronts are parallel to the surface, the bubble remains trapped due to secondary Bjerknes force caused
by an “image bubble.” When the wave fronts are perpendicular to the surface, on the other hand,
the bubble can be made to slide laterally. 2001 American Institute of Physics.
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I. INTRODUCTION The action of acoustic radiation forces on gas—rather

At normal gravity, the effectiveness of boiling as a heatthan vapor—bubbles is well knowsee, e.g., Refs. 11-p2

transfer mechanism relies in no small measure on the rapiﬁor-exgmple, radiation forces arg a major factgr in acogstic
removal of vapor bubbles from the heated surface. This pro(_:aV|tat|on where they promote violent translational motion
cess has a twofold benefit, as it both aids in removing later@d spatial reorganization of the gas that evolves from the
heat, and in promoting microconvective motion near the surliquid in an intense sound field. These and other aspects of
face. On the basis of this remark, one would expect thapressure radiation forces have been extensively studied both
boiling at reduced gravity would be very inefficient. Some-experimentally and theoreticallgee, e.g., Refs. 23-28&as
what surprisingly, at small to moderate heat fluxes, severabubbles are attracted or repelled by the pressure antinodes
experiments have shown this not to be the c&®, e.g., according to whether they are driven below or above their
Refs. 1-4. Since bubbles do not leave the vicinity of the resonance frequency. Furthermore, in the linear regime,
heqtecé surface, they coalesce and give rise to a large VapQgighhoring bubbles repel each other when one is driven
C"’?""y- The. coaIescenge of the newly ]‘ormeq pUbble.S WIthabove and one below the natural frequency while they attract
this cavity is accompanied by surface instabilftiesd vig- otherwise.

orous convection, which are able to maintain a relatively While this inf i . insiaht into what t
large degree of heat transfer. ile this information gives some insight into what to

While, for this reason, the hovering of large bubbles neaXpect in the case of vapor bubbles, with the latter the situ-
the nucleation sites is beneficial at low to moderate hea@tion is so different that a specific study is required. Indeed,
fluxes, it is also at the root of an observed large reduction iyapor bubble dynamics is so strongly dependent on heat
critical heat flux with respect to normal gravity conditions, astransfer with the liquid that the very concept of equilibrium
the cavity becomes so large as to envelop the heatingadius becomes essentially inapplicable, even as an approxi-
surface®” In order to increase the critical heat flux at low mation. Furthermore, when the bubble starts translating un-
gravity it is therefore desirable to remove bubbles from theder the action of the pressure force, the vapor—liquid heat
heated surface by providing a substitute for buoyancy. Ayansfer is drastically altered.

similar problem is encountered at normal gravity with |, this paper we consider a spherical vapor bubble in the
downward-facing heating surfaces. The techniques ava'labl\‘?lcinity of a plane rigid surface. The assumption of spheric-

for this purpose include flow, electric, and acoustic fields.., . . . S
S . ity is of course questionable near a solid surface which is
The usefulness of flow is limited as, due to the no-slip con-

dition at the solid surface, relatively large flow velocities are\Ne'_I known o promqte deformation and Je“'”g in the bubble
required to effectively remove bubbles, which renders thiguring the contraction phase of the pulsatidisee, e.g.,
option impractical. The usefulness of electric fields is cur-Refs. 29-31 Nevertheless, since pressure-radiation forces
rently under consideration by several grogse, e.g., Refs. couple to volume changes and are, therefore, little sensitive
8-10. Here we focus on the action of acoustic pressurgo the bubble shape, for moderate sound fields, one would
forces(also known as Bjerknes fordesn vapor bubbles as a not expect it to introduce qualitative differences in the
means to achieve this end. bubble response and it is therefore a useful starting point to
sort out the basic features of this complex phenomenon.
AAlso at Department of Applied Physics, Twente Institute of Mechanics, ~ 1he vicinity of the bubble is subjected to a standing

and Burgerscentrum, University of Twente, AE 7500 Enschede, The Nethacoustic wave which causes it to pulsate as well as to trans-
erlands.
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late. Since the flow is assumed potential, the effect of thevith P;' associated Legendre functions, are spherical har-
wall can be replaced by that of an “image” bubble which, monics. The system of spherical coordinate®(¢) is cen-
being always in phase with the real one, exerts an attractiveered at the instantaneous position of the bubble center, with
force. The motion of the bubble therefore takes place undethe polar axis normal to the solid wall. The instantaneous
the direct action of the imposed sound fiditie so-called bubble radius is denoted by=R(t).

primary Bjerknes forceand of the attractive force of the At the bubble surface we impose the kinematic boundary
image bubblethe secondary Bjerknes fonceThis circum-  condition

stance makes for a variety of possible behaviors as will be )

seen in the following. n-Veo=R(t)+n-w(t), (2.9

wheren is the unit outward normal ang the bubble trans-
lational velocity; here and in the following dots denote time
Il. MATHEMATICAL FORMULATION derivatives. As a consequence, one readily finds that

We consider a pulsating and translating spherical bubblrr3 - _RR 2.6
in the neighborhood of a plane rigid wall. Even a simplified ~ % '
mathematical model of this situation is a matter of some ~ ~
complexity as it requires a description of the bubble dynam2P10~ C10= ~W1,  2D11= Cyy=Wa, 2Dy~ C1y=Wws,
ics, the evaluation of the energy transfer, and the calculation 2.7
of the velocity and pressure fields. We address these aspeatsile, for 2<n, 0<m,
in turn and give some additional details in the appendices.

NCym— (N+1)Dpy=0, NCpm—(n+1)D,n=0. (2.9
A. Flow fields
i i . The remaining coefficients must be determined by imposing

Itis shown in Appendix A that, when the Mach number e kinematic condition on the rigid wall. Within the frame-

of the flow induced by the bubble is small, if viscous effects,, o1 o potential flow the easiest way to accomplish this

are neglected, the problem can be reduced to the standaggy is to introduce an image bubble in the neighborhood of

incompressible form which the potential is described by an expression similar to
V2¢=0, (2.2 (2.3). The requirement that these two expansions describe
the same function in the region where they are both valid
¢ N Eu2+ PL_Po+Pa (2.  determines aseries of relations among the coefficients which
a2 oL pL ' are given in explicit form in Ref. 49. With this step, the
otential is entirely determined in terms of the bubble radius
nd radial and translational velocities. The equations that de-
ermine these quantities are given later in Sec. Il D.

whereP., is the static pressure, and the driving acoustic field
P, is evaluated in the neighborhood of the instantaneou
position of the bubble centei(t); the liquid density is de-
noted byp, , ¢ is the harmonic velocity potential, ari®] is
the liquid pressure.

In order to describe the fluid-dynamic interaction of two The bubble internal pressure is strongly dependent on
(or more spherical bubbles in a potential flow we use thethe surface temperature that must be determined by solving
method of Sangani and co-workéfs>> which, following  the liquid energy equation
Ref. 34, is here extended to the case of bubbles with a vari-
able radius. More details are given in Ref. 49 of this paper an +(V¢)-VT =D, V2T, 2.9

B. Energy equation

available as AIP Document No. E-PHFLE6-13-009105, ot
which may be retrieved via the EPAPS homepage

http://www.aip.org/pubservs/epaps.html 49 whereT, is the liquid temperature arid, the liquid thermal
In a neighborhood of the bubble, may be expressed as diffusivity. This equation should be solved subject to the
a superposition of multipoles: ’ condition that, at = R(t), the liquid temperature is equal the

local bubble surface temperaturg. In principle it would be
necessary to allow for surface temperature nonuniformities,
but it is well known that such effects are very small due to
the rapidity with which local processes of evaporation and
~ ] condensation are able to erase temperature differences inside

n R2n+1
E Cnmrn+Dnm rn+1

0 m=0

¢:

n

Yo

©

+| Comf "+ Dpym——1 the bubble. Hence we assume tfaf is uniform over the

bubble surface.

© N In the present model the liquid is isothermal except for

=> > [famNDYM+Fom(n)YM, (2.3 the effect of the bubble. Thus, the region adjacent to the

n=0m=0 bubble where the liquid temperature is strongly nonuniform

where only extends over a thickness of the order of a few thermal
- penetration lengthg D /w which, for water at 1 kHz, is of

Yi'=Pri(cosf)cosme, Y'=P(cosd)sinme, (2.4  the order of tens of micrometers. For this reason, in the situ-
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ations considered here, it is possible to neglect the thermance of an acoustic field, however, time scales can be shorter
interaction of the bubble with the wall and other bubklles  and, therefore, the time derivative significargee, e.g.,
they real or images Ref. 44, Eq.(6)].

The approximation of a spatially uniform pressure in the
bubble is well justified when, as here, the vapor velocity isC. Radial motion

small with respect to the speed of soufidvhen, as here, An equation for the radial motion of the bubble can be

thedMach _numbﬁ_rbqf the va(pj)gt)r flow is st:nall, whetf&e: ther'obtained by imposing the dynamic boundary condition that
mql ng]mlct:) et?tl)JI“ r|ufm COS ||onds canf € assume q (t)hprefhe liquid pressur®,_ equal the bubble internal pressure with
vail at In€ bubble surface depends on frequency and the agzy o rtace tension contribution. Given the sphericity ap-

Co;andalltI%r.'ﬁ. ccl)tetffluent a Thlsl Iallttter. . quar:.tltyl 'Sf proximation that we introduced, this condition cannot be sat-
hotoriously ditficult to measure or calculate, in particutar, 1or; ﬁﬂed at each point of the interface, but only on average:
water, the literature gives values as low as 0.006 and as hig

as 1°5%7 If « is near the low end of the reported range, — 20

equilibrium conditions can be expected to hold for frequen- Psar= Pt R’ (213
cies up to about 10 kH%-*°while, with « close to 1, equi-
librium can be safely assumed all the way up to the MHz
range. Several studies, including a recent molecular dyna

where the overline denotes the average over the bubble sur-
n{ace ando is the surface tension coefficient. Upon calculat-

ics simulatiorf! support the larger estimates af and, in ing P, from the Bernoulli integral with the potential given

view of the existing uncertainty and with an eye toward sim- by (2. 3) we find

plicity, we assume here thermodynamic equilibrium, espe- . -~
cially since, in most of the examples that follow, we c0n5|der477R (RR_ Coo) —87R[f10D 107+ f11D 11+ F11D 1]
frequencies in the kHz range. Thus, we take the vapor to be

in saturated conditions at the instantaneous bubble surface  4,R2
temperaturel g so thatpy=psa(Ts), pv=psal Ts) (See also =

20
Psar— P.— PA(XB ,t) - ?

Ref. 42. In a sound field, the growth rate of a bubble by L

rectified diffusion of heat is much faster than that by rectified w

diffusion of the permanent gas dissolved in the liquid. There- _ sz2(3R2+w-w 2772 n(n+1) 2
fore, even if the liquid is not thoroughly degassed, the bubble 3 2n+1

is predominantly filled with vapor and we neglect permanent

gas effects. In some cases, noncondensibles can accumulate " (n+m)! n(n+1)

near the vapor—liquid interface and affect the rate of vapor 2 (fﬁm+fﬁm) '

¢ X ) m=1 (Nn—mM)!2(2n+1)

condensation during the compression phase of the bubble

pulsations thus leading to an even faster growth by vapowhere all thefnm,'fnm are evaluated aR.

rectification. These phenomena depend on the detailed con- It is shown in Ref. 49 that this equation reduces to the

ditions under which the process takes place and, since we afamiliar Rayleigh—Plesset equation when the bubble is far

here concerned with its salient features, they are neglectedaway from the rigid boundary.

A second condition to impose on the solution of the

energy equation is conservation of energy at the bubble sub>. Translational motion

face. In a previous studt?,where we allowed for a nonuni-

form temperature distribution in the liquid, it was shown that

the vapor temperature can be considered approximately un

form throughout the bubble over a broad range of acoustlc

frequencies and pressure amplitudes. As a consequence, the

vapor-side contribution to the interfacial energy balance is

negligible and, upon averaging over the bubble surfate Since the bubble radius is assumed to be much smaller than

dicated by an overline the conservation of energy at the N acoustic wavelengtt, is a slowly varying function

interface becomé’ over the bubble surface and its contribution to the integral
can be evaluated with sufficient accuracy by carrying out a
Taylor series expansion centered at the bubble cegjer

4 dTs With this step, Eq(2.13 becomes

L 2 Ry |+ 2R
“Lgilz3™pey| T g PstW,
(2.10

(2.12

With the neglect of the mass of the bubble contents, the
total force on the bubble must vanish so that, at every instant,

f dsnpP,_=0. (2.13
S

aT
47TR2kL&—

r=R(t) den(PL—PAH-VVPA:O, (2.149
s

whereV P, is evaluated at the position of the bubble center

where cs=c,,—L/Ts (with ¢,y the vapor specific heat at and

constant pressuyés the thermal heat capacity along the satu- 453
o ; V=37R (2.15

ration line, andp,, the saturated vapor density. The last term

in (2.10 is often omitted in the boiling literature when time is the instantaneous bubble volume. The first terni2iri4)

scales are slow enough to make it unimportant. In the pressnly contains the incompressible part of the pressure and can
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be calculated by standard methods of incompressible potettypically taken to be 10. The variable maps the domain
tial flow as shown in Ref. 49. In this way the equationsR(t)<r <« exterior to the bubble to the fixed domain 1
governing the translational motion of the bubble can be={>0. The use of only the even Chebyshev polynomials
found; they are given explicitly in Ref. 49. The position of ensures tha#Sy),/dr —0 asr—oo.

the bubble center is updated by integrating For eachSyy the expansion(3.6) is substituted into
dx (3.2 and the resulting expressions evaluated atlthd col-
B _ location points
T W. (2.19 _
aa
gj:cos%, i=12,...J-1. (3.9
I1l. NUMERICAL METHOD

At r=R(t) (i.e.,{=1,j=0) we impose the interface bound-
ary conditions(3.3) and (3.4) and, forr—« (i.e.,{ = 0, ]
=J), the conditiong3.5). In this way a system of ordinary
differential equations sufficient for the determination of the
© N coefficientsayyk(t) is generated.
Ti=2 > [Sum(rDYN+Sum(r,HYNT, (3.1 Several steps have been taken to validate the computer
N=0M=0 program. In the first place, when the bubble is far from the

substitute into(2.9), and take scalar products with the ge- figid boundary, it behaves as a free bubble and its dynamics

neric spherical harmonic to find equations of the form can be studied with the tools developed in our earlier
studies™*® We have checked that the new computer code
ISuM DL[ a( , ISum

In order to solve the energy equati¢®.9 we expand
the liquid temperaturd in a series of spherical harmonics
similar to (2.3):

_ 7 _ gave results identical to those of the previous codes, which
at +Fe(fpg:S) 2| or ' ar N(N+1)SNM}’ had been thoroughly validated according to the procedures
(3.2 described in the earlier papers. In particular, it was checked

whereF¢ consists of products of spatial derivatives of thethat the results for a bubble translating in tkey, andz
f's and theS's; its explicit form is given in Appendix B. In directions were identical. Second, for a bubble near the solid
practice, we truncate the expansiéd.l) to a maximum boundary, we have verified that the results were independent

valueN,,. The terms of ordeN>N,, that arise due to the Of the direction of translation in a plane parallel to the solid
coupling between different harmonics are simply set to zeroPoundary. Once the accuracy of the program was ascertained
From the continuity of temperature at the bubble surfacén this manner, we conducted the usual convergence studies

we deduce by varying the number of terms retained in the potential and
temperature expansions, and in the Chebyshev expansions.
Soo(R(1),t)=Tg(t), Sym(R(1),t)=0, M,N#0. Furthermore, we have also varied the number of collocation
3.3 points. It was found that, for the cases depicted in Figs. 1-5,
The interface energy balan¢2.10 gives takingny,=2 in the potential expansiof2.3) andN,=8 in
dia o the ter;:perature expanslilo(rs.l) gave converged resEIts;
2, 9900 -~ 3 3 s since these cases are all axisymmetnc: M =0. For the
ARk r:R(t)_Lﬁ 3Ry [T 3 TR pVCs T calculation of Fig. 6 we took,,=2, m=2, N,=4, M=4. In

(3.4) all cases we used 16 terms in the Chebyshev expaii3ién

) . and 16 collocation points.
For the reasons given in Sec. I B, far from the bubble we

require thafT—T.,, and therefore

Soo— T, Sym—0, M,N#0, (3.5 IV. RESULTS: SOUND WAVE FRONTS PARALLEL TO
THE SOLID SURFACE
asr— o,
Equation(3.2), written forN=0,1, ... Ny, and the cor- We consider first the case in which the sound field con-

respondingM’s, constitute a system of coupled partial dif- sjsts of standing one-dimensional waves with the wave fronts
ferential equations that is solved by a collocation method thagarallel to the solid surface:

extends the one used in our previous wdtk& We expand

eachSyy in a series of even Chebyshev polynomigls : Pa=Pasinwt coskz (4.9
J Here P, is acoustic pressure amplitude, the angular fre-
Sym= 2 anmk(H) Tox (), (3.6) quency.k=w/c., (with c,, the speed of sound in the liquid
K=0 the wave number, angis the distance from the plane solid

surface which is taken to be rigid enough to be a pressure
antinode. In this case the problem is axisymmetric and all the
m coefficients with indexm#0 vanish; the summations over
(= ——F=. (3.7 this index are therefore unnecessary and can be omitted. It
m+r —R(t) . o . . .
can be explicitly verified that the equations given in Sec. Il
Herem= 7D /w is taken to be a multipley of the thermal reduce then to the simpler axisymmetric form given in an
penetration depth in the liqui§D,_/w; the parameter; is  earlier papef?®

where we have introduced the new spatial variable
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FIG. 2. Effect of the pressure amplitude on a bubble initially placed at 50
FIG. 1. Bubble radiugupper panéland distance between the bubble center mm from the wall. At a pressure amplitude of 0.5 atm the bubble is even-
and the wall(lower panel as functions of the number of sound cycles. tually repelled by the wall while at 0.3 atm it is attracted; other conditions
Initially the bubble is located at a distance of 60 mm from the plane wall.are as in Fig. 1.
The bubble radius is normalized by the linear resonance \Rluevhich is
2.71 mm in this case; the initial radius is 38n. The sound frequency is 1
kHz, the acoustic pressure amplitude 0.3 atm, and the liquid water in satu-

rated conditions at 1 atm and 100 °C. The acoustic wave fronts are parall%ubme reaches its maximum radius. In particular, bubbles
to the wall. driven below resonance tend to move in the direction of
pressure antinodes, while above resonance the force is di-
rected toward pressure nodes.
Figures 1-3 show in the upper panel the bubble radius For an initial distance of 50 mm from the wdkig. 2),
and in the lower panel the distance between the bubble cemt the lower acoustic pressure amplitude of 0.3 atm, the
ter and the wall, both as functions of nondimensional timejubble continues to move toward the wall even after growing
the radius is normalized by the linear resonance v@liye  past the resonance radius. This is a consequence of the com-
(see, e.g., Ref. 43which, in this case, equals 2.71 mm. Here bined effects of inertia and of the secondary Bjerknes force
the sound frequency i®/2m=1 kHz, the bubble is started exerted by the image bubble. If the acoustic pressure is in-
with a radius of 35um in 100 °C water at 1 atrfl01.3 kPa  creased to 0.5 atm, however, bubble growth is faster and,
ambient pressure. These figures show results for an acoustichen the bubble grows beyond the resonant radius, it is suf-
pressure amplitude d?,=0.3 atm(30.39 kP& Fig. 2 also ficiently far from the wall that it can be pulled away by the
shows results foP,=0.5 atm(50.65 kP& In all cases the primary Bjerknes force. In the third example of Fig. 3, the
bubble moves initially toward the wall. For the case of Fig.bubble is released much closer to the wall, 10 mm away, and
1, in which the bubble is initially sufficiently far from the it essentially touches it before growing past the resonant ra-
wall, this motion is arrested by the reversal of the Bjerknedius. In both Figs. 2 and 3 the calculation is stopped when
force and the bubble is ultimately repelled by the wall. Thisthe bubble touches the wall.
behavior conforms with the known nature of pressure-  This behavior is typical and is illustrated in Figs. 4 and 5
radiation (or Bjerkne$ forces which drive bubbles in the for a higher sound frequencw/27=20 kHz; the resonant
direction of the pressure minimum at the instant at which theadius is now 75um and the initial radius 3m as before;
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o L » FIG. 4. Bubble radiusupper pangland distance between the bubble center
FIG. 3. The same as in Fig. 1 for an initial bubble position 10 mm from the 5,4 the wall(lower panel as functions of the number of sound cycles.
wall. Initially the bubble is located at a distance of 2 mm from the plane wall. The
bubble radius is normalized by the linear resonance vBlgewhich is 75
pm in this case; the initial radius is 3om. The sound frequency is 20 kHz,
the acoustic pressure amplitude 0.3 atm, and the liquid water in saturated
conditions at 1 atm and 100 °C. The acoustic wave fronts are parallel to the

Fig. 4 is for an initial separation of 2 mm from the wall and wall

Fig. 5 for 1 mm.
If the liquid superheat is greater, the bubble will go
through resonance earlférand therefore it might escape
from the wall even when it is released somewhat closer to itparameters, but we have invariably found that the primary
and conversely in a subcooled liquid. In both cases, howeveBjerknes force is too weak to overcome the attractive sec-
the general behavior would remain qualitatively unchangedondary force and the bubble is never able to leave the neigh-
In the present model the bubble is forced to remainborhood of the wall.
spherical and the computation must stop when it touches the In the previous examples the wall was modeled as rigid
wall. It appears likely that in practice one would observe awhich, sinceVP=0 at the wall, has the effect of reducing
flattening of the bubble against the wall under the action othe magnitude of the primary Bjerknes force in the very re-
the secondary Bjerknes force. The question remains ofion where it is most needed. One may investigate the quali-
whether, once the bubble has grown past the resonance rative effect of a slightly compliant surface by using, in place
dius, the primary Bjerknes force is strong enough to overof (4.1), the modified pressure field
come the secondary Bjerknes force. In order to explore this _ :
point, within the framework of the present model, itpis nec- Pa=Pasinotcogkzt ¢), 4.2
essary to prevent the bubble from touching the wall as itwhere the phaseé is introduced to account for the acoustic
grows beyond the resonance radius. We achieve this objeanpedance of the wall. I is positive, thevirtual) pressure
tive simply by keeping the bubble center fixed when itantinode is located at a distance/g)¢ below the wall
reaches a distance from the wall close to the resonance rahile, for negativeg, the antinode is real and located at an
dius. We have conducted a number of numerical experimentsqual distance above the wall. ¢f>0, the liquid accelera-
in this way varying the acoustic pressure amplitude and othetion as deduced froni4.2) is positive for P,> 0, which
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FIG. 5. The same as in Fig. 4 for an initial bubble position 1 mm from the FIG. 6. Distance of the bubble from the pressure antinode for the case of
wall. sound wave fronts normal to a plane wall as a function of the number of
sound cycles. The bubble is placed initially % away from the pressure
antinode at 4.4 mm from the wall; the water is saturated at 100 °C and 1
tm, the initial radius is 3% m, the pressure amplitude is 0.4 atm, and the

implies that the wall moves in phase with the pressure. Thig &4 frequency 1 kHz

would be the case for a “hard” wall driven below its natural
frequency. Conversely, fop<<0, one deals with a “soft”
wall. Our numerical results show that, in the former case, fo
¢ in the range 0 to 04, the behavior is qualitatively the IiT/H'EESSgLI]TDS'SSSE'A\IgEWAVE FRONTS NORMAL TO
same as shown in Fig. 1. As is gradually increased, due to
the corresponding increase in the local pressure gradient, the If bubbles cannot be removed from the wall it may be
distance from the wall at which bubbles start to be repellechossible to move theralong the wallto a region where, for
becomes smaller and smaller, but the practical implication oéxample, they can be entrained in a suitable low-velocity
this fact is probably not very interesting as materials thaimposed flow. Possible arrangements to achieve this objec-
have at the same time good heat conductivity and a suffitive will be briefly considered in Sec. VI. With this possibil-
ciently low impedance to result in a relatively largeprob- ity in mind, we now focus on the description of the bubble
ably do not exist. For negative, the presence of a pressure motion in the direction parallel to the wall under the action
antinode above the wall has the effect of reversing the bubblef a sound field with wave fronts perpendicular to the wall.
behavior: the force is away from the wall below resonancewe take the pressure field to be given by
and toward the wall above. Soft walls would therefore be
completely unsuitable.

These numerical experiments suggest that it would bevhere the coordinat& is measured from the pressure anti-
very difficult if not impossible to drive boiling bubbles away node and runs parallel to the solid surface.
from a heated wall by using a sound field with wave fronts  As noted before, the attractive effect of the image bubble
parallel to the wall. Another option, that we explore in Sec.is powerful and would force the bubble against the solid
V, is to arrange the sound field in such a way that the wavesurface. The tangential component of the primary Bjerknes
fronts are normal to the wall. force would, however, remain unbalanced and would pro-

P,= P, sinwt coskx, (5.0
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mote a sliding of the bubble along the wall. As a matter of

fact, experimental evidence of this behavior has recently

been obtaine&® Since we cannot allow our bubbles to de-
form, here again we resort to the same artifice used in Secyqy, veiocity Fiow

IV and disregard the bubble momentum equation in the di-

rection normal to the wall, maintaining the bubble center at a

fixed distance from the wall. In Fig. 6 we show one example. \ ‘ ‘ ‘ Heated Wall ‘ ‘ ‘
Here the bubble is placed initially 7am away from the /
pressure antinode at 4.4 mm from the wall; the water is satu-
rated at 100 °C and 1 atm, the initial radius is/3®, and the
pressure amplitude is 0.4 atm. The bubble initially moves
toward the pressure antinode, but turns away as it grows pas
the resonance radius.

=

r Bubble

Low Velocity Flow

A A A AVA VA Vo

FIG. 7. lllustration of how the mechanism studied in Sec. V can be used for
bubble removal by a low velocity liquid stream: The wave fronts are per-
pendicular to the heated wall, with the pressure antinode near the center.
When the bubble grows past its resonant radius, the pressure-radiation force

VI. CONCLUSIONS pushes it away from the high-pressure region toward the pressure node,
where it can be removed by a suitable low-velocity flow.

In this work we have studied the behavior of a vapor
bubble near a heated wall under the action of an external

impO-Sed sound field. The motivation of the work is the Ne-method that we have presented can be adapted to these and
cessity to replace buoyancy by some other means for bubblgher issues, the amount of required computing would be
removal under microgravity conditions in order to prevent anquite significant and it is possible that an experimental ap-

early transition to the film boiling regime. proach might be more effective.
When the acoustic wave fronts are parallel to the wall,

the primary pressure-radiatidor Bjerknes force exerted by
the sound tends to drive sufficiently large bubbles away fromrACKNOWLEDGMENTS

it. However to the presen f th ndary, there i .
owever, due to the presence of the boundary, there is a The authors are grateful to Dr. E. TrifNASA) and K.

secondary pressure-radiation fofeénich may be interpreted ) . : : .
o5 de 10 the acton of an “image” bubbiennicn s OTSSKAUTVESty o souter Catloniy srarg i
strongly attractive and prevents the bubble from leaving thx%t-heir gratitude to NASA for supporting this study under

neighborhood of the wall. . :
As an alternative strategy, we have explored the actior?.\r/"zr:ir':l%e'f\lgig"lgm' The analysis of Ref. 49 was first

of sound fields with wave fronts normal to the wall and we ?'
have shown that bubbles can be induced to translate along
the wall by such means. We have been led to study thisppenpix A
alternative by recent experimental evidence that demon-
strates its actual occurrence in practié®y this means, the In order to justify the mathematical model of Sec. Il we
bubbles can either be removed from the heated region, dise a singular perturbation argument similar to that of two
they can be pushed to a position where even a slow flow igarlier paper§!**
capable of entraining them and carry them away. A simple In the absence of body forces, the continuity and mo-
arrangement for this purpose is shown in Fig. 7, and manynentum equations for an inviscid compressible liquid are
other similar ones can be easily devised. It may be expected
that the microconvection caused near the \_Nalllby the radial §—p+V°(pU)=O, (A1)
pulsations of the bubbles, as well as their sliding, would  dt
contribute to the heat transfer rate. Furthermore, the sound
field itself contri_butes to the bubble _growt_h rate through_the a—u+u-Vu) ——Vp, (A2)
process of rectified heat transfer, which will have a beneficial at
effect on the heat tra}n.sfer rate from the wall. Although We\ith an equation of state=p(p). Let us nondimensionalize
have_ presented explicit example_s for. only two frquenue%ese equations according to
and in saturated water, a qualitatively identical behavior may
be expected in different conditions and with different liquids.

If more than one bubble is present, the mutual Bjerknes
forces would promote a coalescence of neighboring bubbles 22
and therefore a more rapid formation of bubbles large P~ @ RopLPx. p=pLpy,
enough to be pushed away from the pressure antinode. If thgherep, = p(P..), to find
vapor generation rate is very large, there might be a practical
difficulty in propagating the sound to the region of interest ‘9& . —

. . +V, - (peu,)=0, (A4)

through the bubbly mixture. Although the computational Ity

p

1
X=RpX, , t= Zt* , U=Rpwu, ,

(A3)
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* _ When these expansions are substituted into the outer mo-
P EH’* VU | == Vs (AS) mentum equatior(A8), the balance of terms requires that
) , Uo=0. Physically this result depends on the fact that, far
whereV, denotes the gradient operator with respect to thg,om the bubble, liquid motion is primarily induced by the
dimensionless coordinatg, ; it is understood that the origin  ¢5,ng field, rather than by the bubble activity, and occurs
of the coordinate system is the neighborhood of the bubbley,erefore with a small velocity. As a consequence, the con-
The scaling(A3) is appropriate at distances from the tinuity equation(A7) shows that, in the outer fielgh, =1

bubble much smaller than the acoustic wavelength, and in. O(€)2, which is also a known result. With these estimates,
this region the bubble radius dictates the length scale. A{A?) and (A8) give

distances from the bubble comparable with the acoustic

wavelength, of the order af,. /w with c.. the speed of sound IR, -
corresponding td?.., another scaling fox is more appro- at +V-U;=0, (A14)
priate: *
c M _gp (A15)
X= f& (A6) at, o

_ i.e., the acoustic equations. Singg is O(e) in the far field
In terms ofx the previous equation@\1), (A2) become while p, is O(1), for x, —, the solution of(A11) and
(A12) must match to

ap ~
m: +eV-(p,u,)=0, (A7) Up—0, Ppo— Po, (A16)
where Py is the inner limit of the imposed sound field. In
P, (%+ eu, -Vu* ) =V D, . (A8) practice, we can evaluate the sound field in the neighborhood
Ity of the origin.
To solve the problem we introduce a harmonic velocity
whereV is the gradient operator with respecttand potential,uy=V, ¢, , and integrate the momentum equation
(A12) to find the Bernoulli integral in dimensionless form:
“Ro (A9) b, 1
€= Jd
Cor — 4+ Zud+po=Py. (A7)
at, 2

may be considered of the order of the Mach number of th
bubble wall radial motion.
To solve(A4) and(A5) we expand the fields in the form

Epron reverting to dimensional variables with the definitions

¢:wRS¢* s U:(.UROU0, PL:wZR(Z)prO'
— DR = tee (A18)
Uy =Upteup -, p,=1+ep+--, (AL0) P..+Pa=w’Rgp. Py,

Pr=Potepyt---. this equation become@.2).

Upon substitution and separation of orders, the lowest-order
problem becomes

APPENDIX B
Vi Uo=0, (AL) The convection term in the energy equati@?) is ex-
U pressed in terms of the auxiliary quantfy defined by
_O + Uo’VUOZ - V* po, (A12)
at, 1 ™ 2m
_ _ _ _ _ Fe=—5 f sinddg | doYy(6,¢)(u-VT), (Bl
i.e., the usual incompressible formulation. These equations Nim’o 0

should be solved subject to the kinematic and dynamic
boundary conditions at the bubble surface and to suitabl@here
matching conditions at infinity. ,

To derive these matching conditions we proceed as in o 7 m M 2
(A10) for the outer equation6A7) and (A8) and expand the Niw= fo singdg 0 delYN(6.¢)]
flow fields in the outer domain in the form

2(1+4 Syo)m (N+M)!
U, =Ug+eU;+-+, p,=1+eR;++e’Ry -, © 2N+1 (N=M)!T
(A13)
p,=Pot+ePi+---. The explicit expression df ¢ is

(B2)
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