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This paper presents the results obtained from a detailed study of the sound field within and 
around a cylindrical column of bubbles generated at the center of an experimental water tank. 
The bubbles were produced by forcing air through a circular array of hypodermic needles. As 
they separated from the needles the "birthing wails" produced were found to excite the column 
into normal modes of oscillation whose spatial pressure-amplitude distribution could be tracked 
in the vertical and horizontal directions. The frequencies of vibration were predicted from 
theoretical calculations based on a collective oscillation model and showed close agreement with 
the experimentally measured values. On the basis of a model of the column excitation, absolute 
sound levels were analytically calculated with results again in agreement with the measured 
values. These findings provide considerable new evidence to support the notion that bubble 
plumes can be a major source of underwater sound around frequencies of a few hundred hertz. 

PACS numbers: 43.30.Ft, 43.30.Nb, 43.30.Jx 

INTRODUCTION 

Wave breaking is the most significant air-entrainment 
process occurring at the surface of the ocean and gives rise 
to a large number of bubble clouds (Thorpe, 1982, 1986; 
Thorpe and Hall, 1983; Monahan and Mac Niocaill, 1986; 
Monahan and Lu, 1990). It is known that the number and 

intensity of breaking waves are strongly dependent on the 
wind speed above the ocean surface (see, e.g., Toba and 
Koga, 1986; Phillips, 1988; Wu, 1988), and it has also been 
shown that a correlation exists between wind speed and the 
intensity of low-frequency (below 1 kHz) ambient sound 
in the ocean (Wenz, 1962; Piggott, 1964; Perrone, 1969; 
Kerman, 1984; Kuperman and Ferla, 1985; Wille and 
Geyer, 1985; Carey and Wagstaft, 1986; Kennedy and 
Goodnow, 1990; Kewley et al., 1990; Kennedy, 1992). 
These circumstances have led to the consideration of pro- 
cesses by which breaking waves may produce such low- 
frequency noise (Wilson, 1980; Kerman, 1984). Carey and 
co-workers (Carey and Bradley, 1985; Carey and Brown- 
ing, 1988) and, independently, Prosperetti ( 1985, 1988a, 
1988b) have suggested that collective oscillations of the 
bubble clouds produced by breaking waves could be re- 
sponsible for the low-frequency emissions. The argument 
was essentially that, since the bubbles in the cloud consti- 
tute a collection of coupled oscillators, one would expect 
the existence of normal modes of oscillation of the cloud 

itself at frequencies far lower than the frequency of oscil- 
lation of the individual bubbles. This idea has been ex- 

plored in, and supported by, a number of subsequent pub- 

lications (Lu et al. , 1990; Yoon et al. , 1991; Carey et al. , 
1993; Prosperetti et al., 1993; Koller and Shankar, 1993; 
Oguz, 1994). 

In view of the difficulty in gathering oceanic field data 
on the role of bubble clouds in low-frequency sound gen- 
eration, the conclusions mentioned above rest mainly on 
theoretical analyses only partially verified in laboratory ex- 
periments. It is therefore important to validate further the 
theoretical models used so as to gain confidence in their 
predictions. Initial experiments (Yoon et al., 1991 ) have 
shown that bubble clouds are capable of collective oscilla- 
tions at frequencies far below those of the individual con- 
stituent bubbles in excellent agreement with theory. In this 
paper that work is extended in two significant ways. In the 
first place, the use of a much more extensive data set ren- 
ders the measurement of the higher mode frequencies pos- 
sible with a very good match with theory. Second, the 
model is extended to the prediction of the absolute acoustic 
leoels, again in good agreement with data. This is a very 
nontrivial point as it presupposes a quantitative under- 
standing of the mechanism by which the bubble cloud is 
excited. Our conclusion is that the energy imparted to the 
individual bubbles upon their formation coupled with the 
spectral width of single-bubble free oscillations accounts 
for the level of acoustic radiation observed in the experi- 
ment. In a separate study (Oguz, 1994), it is shown that, 
on the same basis, good predictions of low-frequency oce- 
anic ambient noise can be found. These successful esti- 

mates of levels are a stringent test of the theory as it is well 
known that, in general, it is much easier to match frequen- 
cies than levels. 

a)Present address: Naval Research Laboratory, Code 7140, 4555 Over- 
look Ave. S.W., Washington, DC 20375-5350. 

b)Present address: Applied Physics Laboratory, University of Washing- 
ton, Seattle, WA 98105. 

I. EXPERIMENTAL PROCEDURE 

The experimental arrangement used in this work is 
very similar to the one described in Yoon et al. ( 1991 ) and 
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FIG. 1. Schematic diagram of the experimental apparatus used to mea- 
sure the sound emissions from the higher-order modes of a bubble 
column. 

FIG. 2. Photograph of the bubbles in a column with a 1.05% volume 
fraction. The averaged bubble radius measured over 150 bubbles was 
1.9 m 0.1 mm for this void fraction. 

consisted of three concentric rings of 22-gauge needles at 
the bottom of a 1 X 1 X 1 m 3 Plexiglas-and-wood tank filled 
with tap water. A schematic diagram of the apparatus is 
shown in Fig. 1. 

The gas volume fraction in the column /3 (i.e., the 
fraction of the total volume occupied by the gas) was cal- 
culated from 

l•= t •'/Sh, ( 1 ) 

where P is the precisely metered volume of air entering the 
column per unit time, t is the rise time of the bubbles, $ is 
the cross-sectional area of the column, and h is the water 
depth. Because of the slow recirculating flow set up within 
the column, the bubbles at the periphery have a rise time 
somewhat longer than those in the center. The difference 
was measured to be of the order of 14% and an average 
value was used. Another effect of the recirculating flow is a 
slight upward broadening of the bubble column the aver- 
age diameter of which (uniform within 10%) was mea- 
sured to be 70 mm. The experimental accuracy on the 
average value of/3 is judged to be m 10 -4. 

Figure 2 shows a photograph of the bubbles within the 
column for a void fraction of 1.05%. The shape is some- 
what flattened and spheroidal, but the volume can be esti- 
mated by measuring the semimajor and semiminor axes. 
From 300 such measurements (150 bubbles each for 
/3=0.70% and 1.05%), we find the equivalent radius dis- 
tribution shown in Fig. 3. The mean equivalent radius is 
1.8m0.2 mm so that the assumption of a monodisperse 
mixture used in the theory described in the next section is 
justified. 

The plywood and Plexiglas walls are essentially "soft" 
(i.e., pressure-release) at the frequencies considered. Since 
the tank was elevated off the floor by means of two wooden 
beams along two opposite edges of its base, the same may 
be assumed for this boundary as well. In order to also 
obtain data with a different bottom boundary condition, a 
5-cm-thick concrete slab was constructed to cover the en- 

tire bottom of the tank. An array of holes exactly 

matching the location of the ports of the bubble maker was 
made in the center of this slab so that the needle tips would 

' be flush with the surface of the concrete boundary. 
The position of the receiver in the tank could be accu- 

rately set by using a rack-and-pinion arrangement driven 
by a computer-controlled precision stepping motor. At 
each hydrophone location the average power spectrum of 
the column noise was measured and the average over 500 
FFT spectra calculated. (Some of the earlier measure- 
ments were averaged over 1000 FFT spectra, }•ut the slight 
improvement over 500 averages was not thought to be 
worth the extra investment in time). A 625-point FFT was 
used with a Nyquist frequency of 2.5 kHz. The sampling 
time interval was 0.1 s and the frequency resolution was 
therefore 10 Hz. In order to establish a value for the ex- 

perimental uncertainty we took either five or ten sets of 
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FIG. 3. Bubble size distribution obtained from 300 bubbles, 150 from a 
column with/3= 1.05% and 150 from a column with/3=0.70%. 
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measurements at each hydrophone location. The standard 
deviation was found to be of the order of 1 dB and is too 

small to be shown in the figures to be discussed below. 
In examining the power spectra of the measured sound 

field within the tank, it was noted that the measured values 
rarely fell below roughly 70 dB re: 1/zPa/Hz •/2. This must 
therefore be considered the effective "noise floor" for the 

measurements. 

II. MATHEMATICAL FORMULATION 

To model the experimental arrangement described in 
Sec. I, we consider a circular column of bubbly liquid of 
radius Rc concentric with a circular tank of radius Rt> R c . 
While this model reduces the number of spatial variables to 
be considered and substantially simplifies the analysis, it 
clearly fails to match the actual geometry of the experi- 
ment. The error introduced thereby is important in certain 
parameter ranges and will be analyzed later. 

As for the excitation of the modes of the system, there 
are only a few possibilities: One is the buoyant ascensional 
motion of the bubbles, possible vortex shedding, and wake 
interactions. Characteristic frequencies associated with 
these processes are at most a few hertz, and it appears 
unlikely that they can have an effect at frequencies of the 
order of 0.5-1 kHz. Arrangements like the one described 
are known to be subject to a three-dimensional instability 
when the rise time of the bubbles is comparable to the 
period of standing surface waves in the tank. The associ- 
ated frequencies are even lower, at most of the order of 
fractions of hertz. The only remaining energetic process is 
the formation and pinching off of the bubbles from the 
needles and indeed it is observed in the experiment that, 
immediately after shutting off the gas flow, the noise level 
falls to the background level even though all other condi- 
tions in the column are virtually unchanged. The frequency 
mismatch between single-bubble oscillations and the modes 
of the column is of one order of magnitude, and the pos- 
sibility of energy transfer is, as will be shown, much more 
likely. In the model we assume therefore that a time- 
harmonic, spatially uniform forcing acts at the base of the 
column of bubbly liquid. 

In presenting the theoretical framework for the simu- 
lation of the present experiment, we separate the descrip- 
tion of the system from that of the forcing. 

A. The physical system 

Since the problem is linear, we assume that the system 
is forced by an imposed pressure field of unit amplitude 
and time dependence exp(i0)t) at the base of the column of 
bubbly liquid. Upon separation of the time variable, the 
disturbance pressure field in the pure liquid, P, satisfies 
Helmholtz's equation with the wave number 

k=0)/c, (2) 

where c is the speed of sound in the liquid. As shown in 
several earlier publications (see, e.g., Commander and 
Prosperetti, 1989), the disturbance pressure field in the 
bubbly mixture, p(m), satisfies Helmholtz's equation with 
the wave number 

0) 2 na 

na = •' + 4•r0)2 cog-- 0) 2 -[- 2ib0)' ( 3 ) 
Here n is the number of bubbles per unit volume, a their 
(equilibrium) radius, and COo and b the (frequency- 
dependent, effective) natural frequency and damping pa- 
rameter of the individual bubbles. In writing this equation 
it has been assumed that all bubbles have the same radius. 

As explained above, this is fairly well justified in the 
present experiment. 

As in earlier papers (Lu et al., 1990; Yoon et al., 1991; 
Lu and Prosperetti, 1993; Prosperetti et al., 1993; Sarkar 
and Prosperetti, 1993) the transition from the bubbly mix- 
ture to the pure liquid in the tank is assumed to occur at a 
geometrical surface r=R½ across which pressure and ve- 
locity (or, at the present small gas volume fractions, pres- 
sure and pressure gradient) are continuous. The cylindri- 
cal radial coordinate r is measured from the common axis 

of the cylindrical surfaces that define the boundaries of the 
system. After separation of the time dependence, the pres- 
sure disturbance at the base of the column has the value 

p(rn)(r,g=--h)= 1, O<r<Rc, (4) 

where h is the height of the column. The free surface z=0 
of the tank acts as a pressure release boundary so that 

P(r,z=0)=0, O•r<R t. (5) 

In our earlier studies (Lu et al., 1990; Yoon et al., 1991 ) 
an excellent agreement between theory and experiment had 
been obtained by assuming that both the bottom and the 
side walls of the tank behaved as pressure-release bound- 
aries. Here we shall make the same assumption for the side 
walls, 

P(r=Rt,z)=O, -h<z<0, (6) 

and for the experimental situation without the concrete 
slab inserted at the bottom of the tank, 

P(r,z=--h)=O, Rc<r•Rt, "soft" bottom. (7) 

With the concrete slab in place, we assume instead a rigid 
boundary condition: 

=0, R c < r<Rt, "rigid" bottom. (8) 3z 
Z-- --h 

The validity of these models can also be examined experi- 
mentally, as will be discussed below. 

Outside the bubbly mixture the general solution of the 
Helmholtz equation satisfying (5), (6), and either (7) or 
(8) may be written 

P= • C•f•(r)sin ;tnZ. (9) 
n=l 

Here, for the soft-bottom case, we take 

A,,=A•S=½rn/h, "soft" bottom, (10) 

while, for the rigid-bottom case, 

An=--AnR= (½r/h) (n-«), "rigid" bottom. ( 11 ) 
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The functions fn(r) can be written in several equivalent 
ways, each of which presents some numerical advantages 
in different ranges of the variables. We use the following 
forms: 

Jo ( n ) Yo ( n ) 
•-- •n real, (12) f n(r) --Jo(a•n) Yo(a•n) ' 

=H(01) (?'•n) 

In view of the completeness of the set (sin ;tn z) for both the 
soft- and the rigid-bottom cases the coefficients (An) and 
(Cn) can be determined by taking the scalar product of 
(17) and (18) with sin itjz, j = 1,2, .... In this way, and 
assuming that the order of integration and summations can 
be interchanged, one finds 

oo 1 

E ajnJo(xn)•In--• fn(Rc)Cj=bj , (21) 

H(o l ) ( R t• n ) 
Jo ( R t• n ) 

Jo(/'•tn), •t n imaginary, (13) 
oo 1 

E ajnXnJl(Xn)An--• $jgj(Rc)Cj=O' (22) 
n--1 

where Here 

•n = !Jk2 __,j,2n. (14) 
To express the pressure disturbance p(m) in the bubbly 

liquid we use superposition and write 

p(m) sin gz oo __• ,tkz , (15) sin gh + • A •Jø ( r!• •m ) ) sin s k=l 

where 

(16) 
The first term is a solution of the Helmholts equation sat- 
isfying the free-surface boundary condition (5) and the 
bottom condition (4). The second term satisfies the same 
free-surface condition, but vanishes at the bottom z=- h. 
Since this is the same bottom condition applicable to the 
pure liquid region in the soft case, it t =;t• in (15). Rather 
than using superposition as in (15), the standard approach 
to this problem would be to take a Hankel transform. The 
result is the same, but the method much more cumbersome 
than the present one. 

The coefficients At and Cn are to be determined by 
imposing the continuity requirements at r=R c mentioned 
before. The condition of continuity of pressure gives 

oo oo sin •z 

• AnJo(xn)sin A, nSz -- • Cnfn(Rc)sin •nZ--si n •h' 
n=l n=l 

(17) 

Similarly, the continuity of the pressure derivative normal 
to r=R½ gives 

E •nXnJ1 (Xn) sin •n sz-- • Cnsn gn(Rc)sin '•nZ=0' 
n=l n=l (18) 

where xn=Rd.•(n m), $n=Ralzn, and, depending on the form 
of fn used, gn is given by one of the expressions 

Jl (Rd.•n) Yl (Rd.•n) 
gn(r) =Jo(Rt•n) Yo(Rt•n) , l•n real, (19) 

or 

gn( r) =H(ll ) ( Rou, n) 

Ho(1) ( R t•n ) 
Jo(R•n) 

Jl ( Rdzn) , •t n imaginary. (20) 

fo = sin ,tjz sin ,J, (nrn)2 dJ, (23) ajn -h 

sin •[j2 sin gz dz b J- sin gh h 

1 (sin(•:-,•j)h 
-sin •ch sin(g+I/)h) ( tr + /l,j ) h ' (24) 

Upon elimination of the Cj's the following infinite alge- 
braic system for the A n'S is found: 

) Z Jo(Xn) XnJ1 (Xn)fj(Rc) nl __ sjgJ (Rc) ajn•nbj. (25) 
For the soft-bottom case, ;[j=;[] and ajn=«•jn, SO that the 
solution of the system (25) is 

.•n=bn(Jo(xn ) XnJl(Xn)f n(Rc) ) -1 _ Sngn(Rc) . (26) 
For the rigid-bottom case, however, 

sin(;t-;tnS)h sin(;t+;tnS)h (27) 
aJ n= (g•__gnS)h (g•+gnS)h ' 

and it is necessary to find an approximate solution numer- 
ically after truncation to a finite number of equations. It is 
found that the coefficient matrix is well behaved and any 
standard method of solution can be used. We have adopted 
the L-U decomposition technique retaining 30 terms in the 
sum (25). This number was established on the basis of the 
usual convergence tests. 

As a check on both the analysis and the numerical 
results, in the rigid-bottom case, one can take scalar prod- 
ucts with {sin gnSz} rather than {sin gn•Z} to find, in place 
of (25), 

oo( jo(Xn)Sngn(Rc) ) n• fn(Rc)-- ajnCn=bj, =1 XnJl ( Xn) 
(28) 

with the same ajn'S defined in (27). We have verified nu- 
merically that the two procedures gave identical results. 

To identify the frequencies of the normal modes we 
look for the maxima of the pressure field as a function of 
frequency at a fixed position in space (either inside or out- 
side the column). For the soft-bottom case an alternative 
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procedure is to identify the position of the minima of the 
denominator in Eq. (26). The results obtained by the two 
methods were identical. 

B. The forcing 

The quantity measured experimentally is the sound 
spectral density SD defined by 

I 
SD-- 10 log T(/•ref/Hz ) , (29) 

where Pr is the Fourier transform of the measured pres- 
sure, T the duration of each sampling interval, and Pre• the 
reference pressure taken as 1/•Pa. By virtue of the convo- 
lution theorem of the Fourier transform, the spectral re- 
sponse of a linear system (in this case Pt) is given by the 
product of the Fourier transform of the forcing times the 
complex frequency response, which is the response of the 
system to an excitation of unit magnitude at frequency co. 
The latter is just the quantity•P calculated in Sec. II A and, 
if we denote the former by P•, we have 

Irl IllPI (30) 
As already explained, we assume that P• is due to the 

process of bubble formation at the base of the column. 
With the assumption that each such process is independent 
from the others, the associated acoustic emissions are in- 
coherent and we have 

IPl:-nrl I (31) 
in which Q•) denotes the average contribution of each 
bubble to the excitation of the column and ri is the number 

of bubbles generated per unit time given by 

ti = •r/•ra3, ( 32 ) 

where P' is the total volume flow rate of air out of the 
needles and a the radius of the bubbles. In writing (31 ) 
and (32) we have assumed that all the bubbles radiate 
identically, and that the acoustic emission of each bubble is 
virtually completed by the end of the sampling time T. For 
a=l.8 mm the damping constant is b_•200 s -• so that 
bT= 200 X 0.1 >> 1 and this requirement is amply met on 
average. To close the formulation of the problem it is now 
necessary to formulate a model for the calculation of •). 

As air is pushed out of a needle, the surface separating 
it from the surrounding liquid deforms until, at a certain 
instant, opposing points come together and a closed surface 
is formed. The cavity thus produced is not in equilibrium, 
and it is this initial energy that gives rise to the oscillation 
of the bubble after it detaches from the needle. At very 
slow growth rates the initial bubble energy is due to the 
fact that the surface enclosing the air pocket does not have 
the equilibrium spherical shape. At the higher growth rates 
of this experiment, however, a much greater amount of 
energy is stored as kinetic energy in the liquid. 

We assume that, as can be verified a posteriori, the 
bubbles oscillate linearly with the natural frequency co 0 and 
damping parameter b introduced before in Eq. (3), and 
we write 

R(t)=a[ 1 +Xo exp(-bt)sin(oot+•p) ], (33) 

where X0 is the initial amplitude of oscillation and ½ is the 
initial phase. Since the initial kinetic energy is much 
greater than the initial potential energy due to the distor- 
tion of the spherical shape, ½ is small and we therefore take 
½=0. If the system consists of N needles, the initial radial 
expansion velocity/• (0) of the bubble wall when the bub- 
ble detaches from the needle is given approximately by 
(Strasberg, 1956) 

4,rNa21• (0) = P'. (34) 

By substituting the time derivative of (33) at t=0 into this 
relation we find 

X0= f•/4•rNa3coo = ri•v/3O0. (35) 

In the experiment typical values are ri•v•50 s -• and 
o0_•2rrX1900 s -• so that X0_•0.001, which is indeed 
small enough to justify the hypothesis of linear oscillations. 

The considerations of this subsection have so far been 

focused on the acoustic emission of the individual bubbles, 
while the model of the bubbly column described in Sec. 
II B is an average one in which the bubbles' individuality is 
disregarded. We must establish a connection between the 
two points of view so as to determine the effectively uni- 
form forcing at the base of the column assumed in the 
previous analysis. 

The pressure field at a distance r from the center of an 
isolated bubble is 

p•=p(a2/r)•. (36) 

The base of the column of bubbly liquid has an area rrR 2 C' 

We associate to each one of the N needles the area 

An=rrRc2/N and average (36) over this area to find 

1 f a 2 P-•=•nn PBdAn=2pX••c•' (37) 
The production noise due to one "generation" of N bubbles 
(one per needle) at the base of the column would be nec- 
essary to give rise to this pressure level. The contribution of 
just one bubble, which is the quantity needed in Eq. (31 ), 
is therefore 

I ) (38) 
so that 

IP12--4p2r(a4/R2) l 12. (39) 
A simple interpretation of the argument used to obtain this 
result is that the base of the column has been divided into 

N incoherent "pistons," each one of which acts on the 
column with a pressure equal to the (37) over the area 
rrRc2/N. 

An alternative derivation of the same result is as fol- 

lows. Suppose that the bubbles are separated in time so 
that each one has essentially reached equilibrium by the 
time another one is produced. With a damping constant of 
the order of 500 s-• and a bubble frequency of the order of 
50/s this condition is approximately verified. The average 
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FIG. 4. Example of the hydrophone output (log scale) for the soft- 
bottom case. The hydrophone was positioned 0.170 m from the axis of the 
column at a depth of 0.110 m. The bubble volume fraction was 0.70%. 

pressure to be associated with each bubble must now be 
calculated by using the entire column cross-sectional sur- 
face and is 

{Pt,) = 2 p ( a2/Rc) •, (40) 
which can be substituted directly into (31 ) to find the same 
result (39). • 

To calculate R we take R =a for t < 0 and use (33) for 
t>0 to find 

2•r (b2__to2 + tog)2 +4to2b2. (41) 
At frequencies much below the resonance frequency the 
second fraction is approximately 1 and the forcing pressure 
amplitude is therefore approximately constant. For a= 1.8 
mm the resonant frequency is w0/2rr-1883 kHz. The 
damping parameter b is a function of frequency. It equals 
197 s-• at resonance and m 1000 s-• at 400 Hz. 

III. RESULTS 

We show in Fig. 4 a typical example of the power 
spectrum of the hydrophone output as displayed on the 
oscilloscope. The several peaks are interpreted as corre- 
sponding to the normal modes of the system, and we wish 
to compare their level and location with those predicted by 
the theory outlined in the previous section. Before we do 
so, however, it is useful to recall the points in which the 
mathematical model deviates from the experimental sys- 
tem. 

(i) The outer boundary of the experimental set-up is 
square, while the mathematical model postulates a circular 
shape. Hence, in the comparison, we do not expect close 
agreement for those modes that are not exponentially at- 
tenuated outside the column, but retain an appreciable am- 
plitude near the outer boundary. These modes can be iden- 
tified from the theoretical results. Furthermore, the value 
to be assumed in the theory for the radius of the outer 
boundary is somewhat arbitrary and could range between 
0.49 m--i.e., one-half the side of the cubical tank---and 
0.71 m--one-half the diagonal of the cube's faces. 

(ii) For the rigid-bottom case the height of the bubbly 
column is unambiguously defined because the needle tips 
are flush with the concrete slab. For the soft-bottom case, 
however, the situation is not so clear-cut. The needles are 
mounted on a rectangular metal plate so that their tips are 
0.102 m above the tank's bottom and 0.820 m below the 

water level (the experimental error in these data is judged 
to be q- 2 mm). Any value of h between 0.820 and 0.925 m 
can therefore in principle be justified. 

(iii) The pressure-release boundary condition assumed 
at the external boundary and at the base of the tank is an 
approximation of unknown accuracy, which is bound to 
get worse as the frequency of the modes--and therefore 
their order--increases. 

(iv) The model assumes a monodisperse bubble cloud, 
while in reality the bubble diameters spans a finite (if 
small) range. The bubble-size effect is negligible at fre- 
quencies much lower than the natural frequencies of the 
bubbles, but increasingly less so with increasing frequency. 
Furthermore, albeit small, there is an effect of the hydro- 
static pressure as the bubbles rise from the needles to the 
surface. 

(v) As was mentioned earlier, the bubbles at the pe- 
riphery of the column rise with a velocity that is about 
14% smaller than those at the center. Since the airflow into 

each needle is approximately the same, this means that the 
column has a slightly higher void fraction at its boundary 
compared to the core. 

(vi) The excitation model for the bubble column is 
clearly a simplification of the actual physical situation. 

(vii) The background noise level in the experiment 
was around 60-70 dB. Any theoretical prediction below 
this level cannot therefore be compared with the data. 

It is against the backdrop of these differences between 
physical system and mathematical model that the compar- 
ison that follows must be judged. Hence, rather than on the 
agreement or disagreement of individual theoretical predic- 
tions and experiment, the focus should be on the overall 
consistency and experimental validation of the interpreta- 
tion of the data that emerges from this study. 

A. Soft bottom 

Figure 5 shows a graph of the first six modes as mea- 
sured (symbols) and calculated theoretically (lines) as a 
function of the gas volume fraction. For these results a 
bubble radius of a= 1.8 mm, a tank radius of Rt=0.71 m 
(equal to one-half of the diagonal of the tank's square 
platform), and column height of h=0.87 m (from the free 
surface to the base of the needles) were assumed in the 
theory. There is generally a good agreement between the- 
ory and experiment, which however deteriorates somewhat 
at the lowest void fractions. This feature is probably a 
consequence of the fact that here the frequency of the nor- 
mal modes becomes closer to that of the bubbles, a region 
where the effective-medium model for the bubbly mixture 
used here is known from previous work not to be as accu- 
rate (Commander and Prosperetti, 1989). Since the actual 
height of the bubbly region is 0.820 m, rather than 0.87 m, 
to generate the previous figure the value of/• was adjusted 
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FIG. 5. Graph of the lowest five modes for the soft-bottom case as a 
function of the volume fraction. The symbols are the data and the lines 
the theoretical results. The experimental precision is estimated to be 
•10 Hz. 

so as to keep the same gas volume in the bubble cloud. 
Furthermore, the equilibrium pressure was assumed to cor- 
respond to the hydrostatic pressure halfway through the 
tank. If both these adjustments are removed, the compar- 
ison deteriorates somewhat with the theoretical lines mov- 

ing more and more toward lower frequencies as the void 
fraction is decreased and the mode number increased. For 

the fifth mode and/•=0.20% the difference is of the order 
of 4.3%, and for/•= 1.00% of the order of 4%. For all the 
following results the adjusted values of the hydrostatic 
pressure and gas volume fraction have been used. 

In the course of the experiment it was noticed that, as 
the hydrophone was moved vertically toward the bottom 
of the tank, the position of the resonance peaks shifted by 
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FIG. 6. Modulus of the quantity ].tnR t defined by (14) as a function of 
frequency for the different modes. Here,/•n is pure imaginary to the left of 
the zeros and real to the right. exp[--(•-/znR t) ] may be interpreted as the 
ratio between the pressure amplitude on the column axis and at the tank 
wall. Note how the higher modes are progressively more attenuated. 

FIG. 7. Theoretical pressure distributions (in units of dB re: 1 
/•Pa/Hz 1/2) in the tank in correspondence of the first, second, fourth, and 
sixth eigenmodes for ft= 1.05%. The left vertical boundary is the axis of 
the bubble column. The bubbly liquid edge and the positions for which 
the different modes are plotted are marked by a solid line and dashed 
lines, respectively. The width and height of each frame are 0.500 and 
0.820 m, respectively. 

10-20 Hz. We estimate the data shown in this figure to be 
affected by an error of this order. These points are based on 
hydrophone readings taken midway down the column, 
near its outer edge in the pure liquid region. 

We have also explored the effect of the bubble size on 
the predicted eigenfrequencies. Going from 1.8 to 1 mm 
has a completely fiegligible effect on the first mode while 
the frequency of the fifth mode is left unchanged for 
/•>• 1%, but gradually rises for smaller volume fractions by 
as much as 10% at/•=0.2%. 

A variation in the tank radius from 0.5 to 0.71 m has 

a very small effect, which gets weaker as the order of the 
mode grows. The maximum difference for mode 1 is of the 
order of 1%. If the nature of the tank wall is changed from 
soft to rigid, again the higher modes are unchanged while 
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FIG. 8. Comparison between measurements (circles) and theoretical re- 
sults for the spectral density distribution in the lowest four modes along 
the axis of the bubble column with •= 1.05% in units of dB re: 1 
/zPa/Hz •/2. The experimental and theoretical frequencies are, respec- 
tively, (a) 290 and 283 Hz; (b) 345 and 346 Hz; (c) 400 and 402 Hz; (d) 
455 and 461 Hz. 

the first mode eigenfrequencies drops by a maximum of 
about 9.7%. To understand this lack of sensitivity to the 
position and nature of the tank's wall it is useful to con- 
sider Fig. 6, which shows the modulus of the quantity •nRt 
defined in (14) for n = 1 ..... 5 as a function of frequency. In 
the portion of the curves to the left of the zeros, •n is 
imaginary, and exp[-- (•/znRt) ] may be interpreted as the 
ratio between the amplitude on the column axis and at the 
tank wall. To the fight of the zeros the exponentials are 
purely imaginary and there is only cylindrical spreading. It 
is seen that, over the entire range of frequencies depicted in 
Fig. 5, the modes are exponentially attenuated with a 
higher and higher rate as the mode order increases. Hence, 
one expects a somewhat higher sensitivity to the tank 
boundary for the lower modes. 

We now examine in greater detail the pressure levels 
and distribution in the system. Unless otherwise stated, all 
of the calculations have been done for the same conditions 

as Fig. 5 above. An overall picture of the sound field is 
given in Fig. 7, which shows the calculated intensity con- 
tour plots (in dB re: 1 ftPa/Hz 1/2) for the first, second, 
fourth, and sixth normal modes at/•= 1.05%. In agree- 
ment with Fig. 6 the lowest modes are seen to propagate 
farther from the axis, while the sound field of the higher 
ones is strongly localized near the bubble column. 

Figures 8 and 9 compare the predicted and measured 
vertical pressure distributions of the first four modes along 
the column axis, r=0, and along the line r=0.4 m. The 
theoretical curves are plotted for the theoretical mode fre- 
quencies, which in some cases are slightly different from 
the experimental ones as indicated in the figure captions. 
The experimental frequencies were set near the top of the 
column and are therefore slightly different from those plot- 
ted in Fig. 5, which are based on midheight readings. Each 

FIG. 9. Same as Fig. 8 along a vertical line at a distance of 0.4 m from the 
column axis. The background noise level was 60-70 dB re: 1/zPa/Hz •/2 
depending on the frequency. 

experimental data point is the average of 500 to 1000 read- 
ings. Since the peak position underwent slight fluctuations 
during the experiment, one expects that the averaging will 
result in some underestimation of the peak pressure. 

Inside the column (Fig. 8), there is a general consis- 
tency of the profile shape and sound level. The level 
matches the data for the lowest mode, but the comparison 
gets progressively worse as the mode number increases. 
The wavelengths of the modes appear to be underpredicted 
by the theory, but this is a consequence of the use of an 
"effective" depth of 0.875 m. If the depth is set at the 
actual tank depth of 0.925 m (Fig. 10), the theoretical 
wavelength becomes much closer to the experimental one. 
In spite of this result, we continue to use the depth of 0.875 
m for consistency with the mode frequencies of Fig. 5. 
Analogous comments apply to the results shown in Fig. 9. 

Similar comparisons for the sound distribution in the 
horizontal plane z=--0.48 m are shown in Fig. 11. The 
data shown here and those of a similar nature discussed 

later were taken along a line perpendicular to the sides of 
the tank and passing through the column's axis, while the 
theoretical calculations are carried out for a greater hori- 
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FIG. 10. Effect of column height assumed in the theory on the spectral 
density distribution along the column axis for the second and third mode. 
The experimental and theoretical frequencies are, respectively, (a) 345 
and 346 Hz; (b) 400 and 402 Hz. 
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FIG. 11. Comparison between measurements (circles) and theoretical 
results for the spectral density distribution corresponding to the lowest 
four modes in a plane at a depth of 0.480 m with/•-- 1.05%. The back- 
ground noise level was 60-70 dB re: 1/tPa/Hz •/2 depending on the fre- 
quency. 

zontal dimension, Rt:0.71 m. While the effect of this dis- 
crepancy will not be large because of the attenuation of the 
sound field away from the bubbly region, some differences 
near the outer boundary of the tank may be expected and 
are indeed apparent from the figures. The sound level 
matches the data well for the lowest mode, but overesti- 
mates them for higher modes as before. The noise "floor" 
at 60-70 dB affects this comparison. 

Figures 12 and 13 show similar results for a smaller 
gas volume fraction, B=0.70%. The point we wish to 
stress with these figures is that the results found previously 
for B--1.05% are quite typical. At the lower gas volume 
fraction, on average, there is a somewhat closer match 
between theory and experiment, but the same trends are 
present. In particular, agreement with the measured wave- 
lengths improves with the use of h--0.925 m. In this case, 
much of the higher-mode data is below the background 
noise level. 
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FIG. 12. Comparison between measurements (circles) and theoretical 
results for the spectral density distribution in the lowest two modes along 
the axis of the bubble column with •--0.70%. The experimental and 
theoretical frequencies are, respectively, (a) 350 and 344 Hz; (b) 420 and 
421 Hz. 
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FIG. 13. Comparison between measurements (circles) and theoretical 
results for the spectral density distribution corresponding to the lowest 
two modes in a plane at a depth of 0.480 m with/•--0.70%. The back- 
ground noise level was 60-70 dB depending on the frequency. 

B. Concrete bottom 

The experimental readings were more difficult when 
the concrete slab was inserted into the tank because the 

system was found to be much noisier than before. Figure 
14 shows a comparison between the measured and com- 
puted eigenfrequencies of the system in this case. As ex- 
plained before, no adjustment of the column height and 
volume fraction is now necessary. Agreement between the- 
ory and experiment is, however, not as good as the one 
found previously, particularly for the lowest mode and par- 
ticularly at low volume fractions. An important effect that 
may account at least in part for this difference can be il- 
lustrated with reference to Fig. 15 which is analogous to 
the previous Fig. 6 and shows the dimensionless wave 
number •nRt given by (14) as a function of frequency for 
the different modes. It will be recalled that in the range to 
the left of the zeros, exp[-- (•/•nRt)] may be interpreted as 
the ratio between the amplitude on the column axis and at 
the tank wall. It is seen that, for the lowest mode, this ratio 
is relatively large: the modes propagate appreciably far 
from the column, the details of the outer boundary are 
important, and the mismatch between the model's geome- 
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FIG. 14. Graph of the lowest five modes for the hard-bottom case as a 
function of the volume fraction. The symbols are the data and the lines 
the theoretical results. The experimental precision is estimated to be 
:•10 Hz. 
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preted as the ratio between the pressure amplitude on the column axis and 
at the tank wall. Note that the radial attenuation is much smaller than in 

the soft-bottom case. 

try and the actual one affects strongly (and negatively) the 
comparison. The attenuation of the higher modes with dis- 

. - , • -, , axis is- ,-,- --, .... fore the 
. 

comparison is more favorable. The problem with the lower 
volume fractions is the same as before, namely the mode's 
frequency getting close to the resonant frequency of the 
individual bubbles. 

Figure 16 shows a computed two-dimensional "map" 

11o 

I 

FIG. 16. Theoretical spectral density distributions in the tank in corre- 
spondence with the first and fourth eigenmodes for/•= 1.05% and rigid- 
bottom boundary conditions. The left vertical boundary is the axis of the 
bubble column. The bubbly liquid edge and the positions for which the 
different modes are plotted are marked by a solid and a dashed line, 
respectively. The width and height of each frame are 0.50 and 0.820 m, 
respectively. 
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FIG. 17. Comparison between measurements (circles) and theoretical 
results for the spectral density distribution in the lowest two hard-bottom 
modes along the axis of the bubble column with/•= 1.05%. The experi- 
mental and theoretical frequencies are, respectively, (a) 282 and 262 Hz; 
(b) 331 and 331 Hz. The mathematical model in these cases does not 
correspond closely to the experiment. See text. 

of the sound field similar to that of Fig. 6 of the soft- 
bottom case for the first and fourth modes. 

Some examples of a comparison of the measured and 
calculated sound fields of the single modes are shown in 
Figs. 17 and 18. Generally speaking, the situation is con- 
siderably worse than in the soft-bottom case. Figure 17 
shows the sound intensity as a function of depth along the 
axis of the column for the first two modes. The theoretical 

levels are generally higher and the computed wavelength 
does not match the experimental one. A similar picture 
emerges from Fig. 18 where the sound level distribution on 
the horizontal plane z=--0.600 m is shown for the first 
four modes. 

We believe that this situation is the result of an insuf- 

ficient rigidity of the concrete slab which fails to provide a 
true rigid-bottom boundary condition. To prove this state- 
ment, recall the expression for the lowest natural frequency 
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FIG. 18. Comparison between measurements (circles) and theoretical 
results for the spectral density distribution corresponding to the lowest 
four hard-bottom modes in a plane at a depth of 0.600 m with/•= 1.05%. 
The experimental and theoretical frequencies are, respectively, (a) 282 
and 262 Hz; (b) 331 and 331 Hz; (c) 386 and 392 Hz; (d) 494 and 455 
Hz. The mathematical model in these cases does not correspond closely to 
the experiment. See text. 
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v s of a square slab of thickness H clamped along the edges 
(see, e.g., Landau and Lifshitz, 1959) 

( E ) •/2 •rH 1 - . 
Here E is Young's modulus, v•, is the Poisson ratio, Pc is 
the density of the material, and A the length of the side. 
One can assume the slab to behave rigidly only if v s is 
much greater than the frequencies of interest. Upon taking 
E---- 21 GPa, vp--0.15, and Pc---- 2400 kg, all of which are 
reasonable values for concrete, with H----0.05 m, one finds 
Vs•-- 136/A 2. With A=0.5 m (an average distance between 
the wooden beams supporting the tank on the floor), 
rs--543 Hz. A direct measurement of the slab resonances 
gave approximately 580 and 720 Hz. Hence, far from a 
rigid boundary, one is really dealing with a very complex 
coupled system in which the modes of the fluid and the 
concrete couple and interact. In this situation not much 
more than a qualitative agreement between theory and ex- 
periment can be expected, and indeed such is the conclu- 
sion that can be drawn from Figs. 17 and 18. In particular, 
we wish to draw the reader's attention to the fact that once 

again, as in the soft-bottom case, the excitation mechanism 
of the system based on the free oscillations of the departing 
bubbles seems to be able to roughly account for the mea- 
sured levels. 

Since the model and the data correspond really to two 
different situations, we do not include a more detailed dis- 
cussion of this case. 

IV. CONCLUSIONS 

We have presented a comparison between data and 
theory for the system shown in Fig. 1. While the mathe- 
matical model departs in several respects from the physical 
system so that an exact correspondence cannot be ex- 
pected, the results lend a strong support to the theory itself 
and to the conceptual model on which it is based. 

The theory of the acoustic behavior of the bubbly mix- 
ture rising at the center of the tank had been presented 
earlier and shown to agree with the data for the fundamen- 
tal mode. The results of this paper complete and strengthen 
the earlier ones. Furthermore, we have presented an anal- 
ysis of the manner in which the normal modes of the sys- 
tem are excited. We have postulated that this excitation is 
due to the free oscillations of the bubbles as they depart 
from the needles. In spite of the fact that these oscillations 
occur at frequencies of the order of 3-6 times the normal 
modes of the system, we have found that the absolute noise 
levels predicted on the basis of this hypothesis match the 
data. This is due to the nonzero width of the single-bubble 
spectrum caused by damping. 

This study had been undertaken to examine in a lab- 
oratory setting the validity of the hypothesis that bubble 
clouds at the ocean surface could be responsible for low- 
frequency oceanic ambient noise. We have shown that low- 
level normal modes exist and that they can be excited by 
the mechanism by which the individual bubble are formed. 
This conclusion lends support to the previous hypothesis. 

In a related paper (Oguz, 1994), on the basis of an ap- 
proach similar to the present one, oceanic ambient noise is 
estimated with very good agreement with the data both in 
terms of spectrum and levels. Those results are found to be 
quite robust with respect to details of the actual nature of 
the breaking process and attendant air entrainment such as 
void fraction, extent in space and time, bubble radius, and 
number. 
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