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A recent detailed formulation of the dynamics of a gas bubble requires the numerical 
integration of a nonlinear heat equation in the bubble. In this article, a variety of numerical 
methods for this purpose are studied. The most efficient technique is found to be an adaptive 
Galerkin-Chebyshev spectral method, which is explained in detail. Examples of oscillations at 
high forcing and chaotic response are also given. These results differ very considerably from 
those obtained by use of the simpler models used by previous investigators. 

PACS numbers: 43.35.Ei, 43.25.Yw, 43.30.Nb 

INTRODUCTION 

A detailed mathematical model for the internal thermo- 

fluid mechanics of a gas bubble has been developed by Nig- 
matulin and co-workers•-3 and by Prosperetti et al. 4 In Ref. 
4, it was compared with the common, less sophisticated po- 
lytropic approaches (see, e.g., Refs. 5-9), and very signifi- 
cant discrepancies between the two results were found in so 
many cases that the reliability of the common approach in 
situations other than the simplest ones appears seriously 
questionable. For example, an effort to study the chaotic 
behavior of driven bubble oscillations •ø'•' or the propagatio. n 
of pressure waves in bubbly liquids'2'•3 in terms of this model 
cannot be expected to give results with better than order-of- 
magnitude accuracy. 

Unfortunately, the new model requires the solution of a 
nonlinear heat equation inside the bubble and is, therefore, 
considerably more demanding computationally than older 
ones. It is, therefore, important to develop simple and effi- 
cient numerical techniques. This is the objective we pursue 
in the present article. We compare the finite-difference tech- 
nique of Ref. 4 with a number of spectral methods. The best 
technique that we find offers an order-of-magnitude im- 
provement over the finite-difference approach. To facilitate 
the use of this technique, we give detailed explanations and 
formulas in the Appendix. As an example of its applications, 
we show a Poincar• plot of a chaotic attractor and a bifurca- 
tion diagram for a bubble oscillating under the action of a 
slowly growing pressure amplitude. Very significant differ- 
ences are found between these results and those obtained 

with the simpler models used by previous investigators. 

I. THE MODEL 

The radial dynamics of a bubble of radius R (t) in a 
compressible liquid is described by Keller's equation14-16 

__ 1 (I+R +Rd)[p• p•(t)], (1) Pc C C dt 

where the overdots denote time differentiation, p• is the liq- 
uid density, c is the speed of sound, p• is the "ambient" 
pressure, and pa is the pressure in the liquid just outside the 
bubble. The precise definition of p• is the pressure at the 

bubble center in the absence of the bubble, 14'•6 but, if the 
scale for the spatial change of this quantity is much lar•ger 
than the bubble radius, PA (t) also very nearly equals the 
liquid pressure far from the bubble. The pressurepB is relat- 
ed to the pressure in the bubble by the condition on the nor- 
mal stresses at the interface 

p =pB + 2cr/R + 4/UL (J•/R), (2) 
wherep is the internal pressure, cr is the surface tension coef- 
ficient, and/zL is the liquid viscosity. For the cases to be 
considered in this article, the ambient pressure PA (t) is a 
given function of time and the following, slightly modified, 
form of the radial equation is more convenient: 

-p--•-' -•- •• a-• 1+• • t+ . 
(3) 

The central point of the new model is the calculation of 
the internal pressure with the assumption of spatial unifor- 
mity of this quantity and perfect gas behavior of the bubble 
contents. It is shown in Ref. 4 that, with these assumptions, 
from the enthalpy equation of the gas in conservation form, 
the following expression for the radial velocity of the gas in 
the bubble readily follows: 

u -- --. (y- 1 )K- r•b . (4) 
yp 3r 3 

Here, y is the ratio of the specific heats of the gas, K is the 
thermal conductivity, T is the temperature, and r is the dis- 
tance from the bubble's center. By evaluating this expression 

ß 

at the bubble wall, where u = R, and solving for p, one finds 

.h = (7/-- 1)K-•r r • , (5) 

which is an equation for the internal pressure. To close the 
problem, an equation for the temperature is needed. In view 
of the way in which (5) was derived, one can use either the 
enthalpy equation in nonconservation form or the equation 
of continuity coupled with the equation of state of perfect 
gases. The first alternative leads to 
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7/- 1 t •- + (7/- 1)K Or 3 Y•rr -p 
= V.(KV T). (6) 

In Ref. 4, it is also shown that, in relatively "cold" liquids, 
such as water at normal ambient temperature, the exact 
boundary condition can be approximated by the simpler one 

T[r= R(t),t ] = Too, (7) 

where Too is the undisturbed liquid temperature. 
For numerical work, it is convenient to deal with a fixed 

spatial integration domain and we therefore use the new 
variable 

y -- r/R (t). (8) 

Furthermore, to account more easily for the variability of 
the gas thermal conductivity, we introduce the new depen- 
dent variable 

r= K(O)dO. (9) 

The linear relation K(T) -- A T d- B with A -- 5.528 erg/cm 
s øK 2 and B = 1165 erg/cm s øK gives a good fit to the ther- 
mal conductivity of air in the range 200 K < T< 3000 øK. 
Finally, it is also useful to deal with quantities nondimen- 
sionalized as follows: 

R=RoR . t=t./co, P=PaP., T=TooT., 
(10) 

r = DaPoV., D = DoD.. 

Here, Ro and Po are the values of the radius and internal 
pressure at equilibrium and are connected by 

œo = 2cr/Ro + p oo , ( 11 ) 

where p oo is the static pressure, co is a typical inverse time 
(e.g., the frequency of the sound field driving the bubble into 
oscillation), and Do is the equilibrium value of the thermal 
diffusivity given, for a perfect gas, by 

D= [(7/-- 1)/7/] [K(T)T/p]. (12) 

In terms of these variables, the pressure and temperature 
equations (5) and (6) become, omitting asterisks, 

8r 7/- 1 
8t 

1 8r 

/•'T y= 1 

•y ,( 8r RR 2 8y c)y y= • Y -- Dp' 

(13) 

__ X_•_D V2•. ' (14) 
R 2 

where primes denote differentiation with respect to the di- 
mensionless time and 

U=R'. (15) 

The parameter Z is defined by 

1 / = Do/oR 0 2 (16) 

and is the square of the ratio of the diffusion length to the 
equilibrium radius. In terms of r, the boundary condition 
(7) is 

r(1,t) --0. (17) 

With the linear relation used for the thermal conductivity, 
the dimensionless temperature T expressed in terms of r is 

T=(1/a)((l+2[(7/--1)/7/]ar} '/2+a--l} (18) 
and 

D= (1/p) [aT 2 + (1 -- a) T ], (19) 

where a = A Too/K( Too ). 
Upon substitution of (2) and (10), and omitting aster- 

isks, the radial equation (3) becomes 

1 --c T - Rc. ' 3c. 3-•c.'] U 

=Z[(I+ U )[p--pat + 3) -- W• MU] ½. 

c., R 2 ' 
where 

Po 
2 

pt•co2R o 

(20) 

(21) 
4/-• L CO __ C W= 2or, M=•, c.--•. 

RoPo Po toro 

The total mass of gas contained in the bubble is given in 
dimensionless units by 

fO y2 rn = 3RR 3 my. (22) 

We have found that the deviation of this quantity from 1, 
which is the exact value, giv•es, a reliable indication of the 
accuracy of the calculation. 

A finite-difference, second-order, predictor-corrector 
method for the solution of (13), (14), and (20) was de- 
scribed in detail in Ref. 4 and will not be repeated. In the 
following sections, we shall only consider some spectral 
methods applied to the approximation of the spatial opera- 
tors appearing in Eqs. (13) and (14). Since the use of such 
methods in fluid mechanics is so well documented in papers 
and books, only a brief description is necessary here. For 
more details, the reader may consult Refs. 17 and 18. For the 
time integration of the resulting system of ordinary differen- 
tial equations, use has been made of the standard subroutine 
DGEAR with Gear's stiff method of order 6. 

II. GALERKIN METHOD 

To apply the Galerkin spectral method, we approximate 
the temperaturelike field r by its projection onto the N-di- 
mensional manifold spanned by suitable basis functions 
•b,,,n = 1,2,...,N. If P N is the projection operator onto this 
manifold, we have rN = P•r or, more explicitly, 

N 

r• = • a• (t)•b• (y). (23) 
k=l 

Once the basis functions •b• are selected, the problem is thus 
reduced to the determination of the time dependence of the 
coefficients a• of this expansion. For this purpose, use is 
made of the energy equation (14). 

As basis functions, we use the shifted Chebyshev poly- 
nomials 
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•, = T2, -- To, (24) 
which ensure satisfaction of the boundary condition (17) at 
the bubble wall. Since polynomials of even order are even 
functions of y, this choice also satisfies Or/Oy = 0 at the bub- 
ble center. A minor disadvantage of the use of (24) is that 
these functions are not orthogonal. Explicit expressions for 
the scalar products (•k,•,)'are given in the Appendix. 

To apply the Galerkin method, the energy equation is 
projected in succession on the basis functions •,•2,...by tak- 
ing the scalar products 

8rN ) •' 8t = ( •,N (r m ) ) 
y- 1 •y 8'T'N (0•,Lrm), 

• pR 2 Oy y=l 
(25) 

with k = 1,2,.... In writing this equation, we have broken up 
the spatial operator in (14) into a linear part 

I•T N 
lr N =y• 

and a nonlinear part 

(26) 

n(r) D(TN)V2TN 7/-- 1.(O•'m )2 
+ D(rN)p'. (27) 

It is easy to show that 
N 

V2rm = • d,T:, (28) 

•T N N 

8y = • e, T2,_,, (29) n=l 

where the coefficients d n and e• are given in the Appendix. 
In view of the complicated dependence of D on r the integra- 
tion implicit in the scalar product (•bk,N (rN) ) must, how- 
ever, be performed numerically. For this purpose, we use the 
formula 

N 

j=l 

YP 8Y • +D[rN(•)]p', 
(30) 

where the %'s and yj's are the appropriate weights and zeros 
for Gauss integration also given in the Appendix. The other 
scalar product (•k,Lry) involving the linear term can be 
calculated analytically as shown in the Appendix. We also 
'tested the use of a Gauss-Lobatto, rather than Gauss, inte- 
gration, but found negligible differences. Another concern in 
the numerical integration arises because of possible aliasing 
errors. We have addressed this point by using 3N/2 and 2N 
quadrature points rather than Nand have found the formula 
(30) to be free from significant aliasing errors. •8 The extra 

accuracy thus gained in the integration does not have any 
effect even when a small number of terms, such as 4 or 5, is 
used. 

With the previous procedure, the energy equation (14) 
is reduced to 

m dan 

n= I dt 

y- 1 • 8TN 
y pR 2 (•y y=l 

(31) 

for k = 1,2,...,N, where the right-hand side is calculated as 
explained. This is a linear algebraic system for the time de- 
rivatives of the expansion coefficients da•/dt, which is 
solved by LU-decomposition (or explicitly, as shown in the 
Appendix) to yield values for these quantities. With the 
above manipulations, the partial differential equation is re- 
duced to a system of ordinary differential equations that can 
be integrated,in time. 

It will be seen from the numerical results that, during a 
large fraction of each period of oscillation, the motion is 
relatively slow and the temperature profiles sufficiently mild 
to require only a few terms in the expansion (23). In the 
neighborhood of the minima of the radius, on the other 
hand, velocities are high and the temperature field more se- 
verely distorted. This observation has motivated us to try a 
variant of the Galerkin method that improves efficiency and 
that consists in the use of a variable number of terms in the 

expansion (23). This idea is implemented as follows. The 
coefficient of the last term retained in (23) is compared with 
the coefficient of the first term. If the ratio of the two is larger 
than some small number ea ( -- •sv,,--,,s ,,, ), another term 
is added and the parameter N increased by one unit in all the 
previous relations. The initial value of the coefficient a N + 1 
for the next time.step is taken to vanish. If, on the other hand, 
the ratio is smaller than another preset small number 
(typically 10 -6), the last term of the series is discarded and 
N decreased by one. Since, to improve efficiency, all the coef- 
ficients appearing in relations such as (30) are calculated 
once at the beginning of the program, in the case of a variable 
number of terms, it is necessary to calculate and store sets of 
coefficients corresponding to several values of N, from the 
minimum allowed value up to the maximum one. In all 
cases, the number of terms retained was not allowed to fall 
below 4 or 5. 

A most welcome, and unexpected, feature of the Galer- 
kin method described is that the error in the mass contained 

in the bubble calculated according to (22) does not accumu- 
late in time even with the use of only a small number of terms 
in the expansion. This is in marked contrast with the finite- 
difference method of Ref. 4, for which the slowly growing 
error prevented integration over too many cycles unless an 
extremely small time step was used. 

III. COLLOCATION METHOD 

For the collocation method, we still approximate r by its 
projection on a finite-dimensional manifold, 
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N 

r =rs = • ak (t)•k (y). (32) 
k=O 

Rather than using the shifted Chebyshev polynomials (24) 
as in the previous Galerkin method, it is computationally 
slightly more advantageous to use the polynomials directly; 
i.e., •b• = T2t , . As before, the boundary condition at the bub- 
ble center is automatically satisfied by the use of only even 
polynomials. Now, the ordinary differential equations for 
the expansion coefficients a• are obtained by requiring the 
energy equation (14) to be satisfied exactly at a number of 
collocation points yj 

s da• ( • •bk(yj) -- N(rs) • =o dt 

y- 1 •' 8rs 
r pR oy 

(33) 

If the collocation points are taken to be the Gauss-Lobatto 
quadrature points, 

y• = cos(rrj/N), 0<•<N, 
the boundary point y = 1 is a member of the set, and, here, 
rather than imposing (33), we require 

N da k 
• dt •(1)--0, (34) k=0 

in agreement with the boundary condition (17). Note that 
T2• ( 1 ) = 1 for all k. 

IV. NUMERICAL RESULTS 

We shall now discuss several examples of the applica- 
tion of the methods described previously. Specifically, we 
consider ( 1 ) the adaptive Galerkin method with a variable 
number of terms, (2) the Galerkin method with a fixed num- 
ber of terms, (3) the collocation method, and (4) the finite- 
difference method of Ref. 4. The most precise and efficient of 
these approaches is the first one, and it is against this method 
that the other ones will be compared. Our objective in the 
present study is more to explore the accuracy and efficiency 
of the different methods than to show specific results of in- 
terest in bubble dynamics. Therefore, we shall consider a 
limited number of cases. In all the examples shown, the driv- 
ing pressure field is taken as 

p•(t) =p• (1 -- esin cot), (35) 

which, in the dimensionless variables (10) becomes, upon 
using (o to nondimensionalize the time, 

pA.(t) = (1- W)(1- esin t.). (36) 
Two of the examples used in Reft 4 were for bubble radii 

of 10 and 50 pm driven with e = 0.6 at a frequency 
too = 0.8. Here, too is the resonance frequency of linear theo- 
ry, and COo/2rr = 302.42 kHz for the 10-pm bubble, while 
COo/2rr = 62.204 kHz for the 50-pm bubble. These are the 
two cases we consider. The most direct effect of the calcula- 

tion of the temperature field in the bubble is on the internal 

pressure, and, therefore, we shall focus on this quantity rath- 
er than on the bubble radius that, being dependent of the 
second integral of p, is not as sensitive to the accuracy with 
which the pressure is calculated. 

Figure 1 shows on a semilogarithmic plot the internal 
pressure during the 20th (external) pressure cycle for the 
10-pm case. The calculation was started with R (0) = 1, 
U(0) -- 0, T(r,0) = 1, and it appeared that, by this time, the 
motion had settled down into steady state. This result was 
obtained by use of the adaptive Galerkin method with a max- 
imum of 20 terms (i.e., since only even polynomials are used, 
up to and including T4o). The criterion used for the addition 
of new terms was eA = 10 -4, and that for the deletion of 
terms was eo = 10 -6. The prominent feature of this result is 
the high pressure maximum, the position and magnitude of 
which are sensitive indicators of numerical accuracy. For 
this reason we shall show detailed comparisons of the peak 
structure rather than of the complete 20th pressure cycle. 
The maximum mass error occurred at the peak and was less 
than 1%. All the results to be discussed are accurate enough 
that, on a graph such as that of Fig. 1, they would essentially 
superpose and look identical. The times quoted are for the 
total duration of the program including the preliminary cal- 
culations and the integration for 20 pressure cycles. The inte- 
gration time for a single cycle can be estimated to vary 
between 1 and 2.5 min,depending on the accuracy. 

In Fig. 2, we show convergence of the finite-difference 
calculhtion. Here, and in the following figures, the solid line 
is the previous Galerkin result. The dotted line is the finite- 
difference result with 40.1 internal nodes and 4000 time steps 
per cycle, and the dashed line is the finite-difference result 
with 201 nodes and 2000 time steps. Convergence toward the 
Galerkin result as the discretization is refined is clear here. 

The two finite-difference calculations took 8.9 and 2.3 h of 

CPU time on a MicroVax II, while the Galerkin spectral 
calculation took 0.90 h. The superiority of the spectral meth- 
od is therefore quite apparent. In Fig. 3, a similar compari- 
son is shown for the Galerkin method with a fixed number of 

t0oo 

too 

I I I I I I I I I I I I , 

TIME 

FIG. 1. Internal pressure versus time during the 20th cycl• of the driving 
pressure for a 10-pm-radius air bubble in water driven at to/tOo -- 0.8 with a 
dimensionless pressure amplitude e = 0.6. By this time, steady state has es- 
sentially been reached. The calculation has been performed with the adap- 
tive 20-term Galerkin-Chebyshev expansion described in the text. 
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O. 70 O. 75 O. 80 O. 85 
TIME 

FIG. 2. Comparison of the peak structure of Fig. 1 as given by the adaptive 
20-term. Galerkin-Chebyshev method (solid line) and two finite-difference 
calculations. The dotted line has been obtained with 401 internal nodes and 

4000 time steps per cycle, the dashed line with 201 nodes and 2000 time 
steps. 

terms, 4 for the dashed line and 6 for the dotted line..The 4- 
term result gives a 13 % error in the height of the peak and a 
0.5% error in its position and takes 5 min. The correspond- 
ing errors for the 6-term result are 5% and 0.2%, respective- 
ly, with an integration time of 20 min. In Fig. 4, the dotted 
and dashed lines have been obtained with a variable number 

of terms up to 10 and 7, respectively, with eA- 10 -4, 
6z> = 10-6, while the dash-and-dot line has been obtained 
with a maximum of 10 terms but a coarser criterion for the 

deletion and addition of terms, eA- 10- 3 and ez• - 10-5. 
Compared with the precise 20-term variable calculation 
(solid line), the 7-term result has an error of 0.4% in the 
position of the peak and 1% in its level, but requires only 18 
min. This is less than the time required for the fixed 6-term 
calculation of Fig. 3 and the error is quite comparable. The 
results shown in these two figures imply that the numerical 
method is very robust and that its performance deteriorates 
only slightly with the use ofcoarser procedures, which, how- 
ever, lead to substantial savings of computing time. The 10- 
term calculations of Fig. 4 required 42 and 20 min, respec- 
tively. The small difference in computing time between the 
20-term (54 min) and the 1 O-term calculations is also inter- 
esting. It implies that extra terms are added during only a 
small fraction of the cycle, near the radius minimum. To 
illustrate this, we superpose, in Fig. 5, the number of terms 
used in the calculation with the pressure, both as functions of 
time. It is seen that the algorithm used to add and discard 
terms causes some oscillations in the number of terms used, 

•oo 

2O0 

lOO 

, 

: 

, 

, 

; 

, 

/ 

/ / 
/ / 

/ // 
/ 

\ 
\ 

\ 
\ 

O. 70 O. 75 O. 80 0.85 
TIME 

FIG. 3. Comparison of the peak structure of Fig. 1 as given by the adaptive 
20-term Galerkin-Chebyshev method (solid line), and the fixed 4-term 
(dashed line) and 6-term (dotted line) Galerkin-Chebyshev integrations. 

30O 

200' 

100' 

0.70 

, I , I 

o. 75 o. 80 
TIME 

0.85 

FIG. 4. Comparison of the p.eak structure of Fig. 1 as given by the adaptive 
20-term (solid line), 10-term (dotted line), and 7-term (dashed line) Ga- 
lerkin-Chebyshev method with e• -- 10 -4, E D -- 10 -6, and a variable 10- 
term calculation with e,= 10- 3, eo -- 10- 5 (dash_and.dot line). 
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lO.01 
FIG. 5. The number of terms retained in the adaptive 20-term Galerkin 
calculation is shown here superposed on the pressure-time curve of Fig. 1. 

but this is a minor problem that does not affect the accuracy 
of the calculation but only, in a very minor way, its effi- 
ciency. The number of terms retained was not allowed to fall 
below 5, and it can be seen that, for a substantial fraction of 
the cycle, 5 terms are quite sufficient. To explore the effect of 
the tolerance with which terms are added and discarded, we 
ran the same case with e• = 10 -5 and eo = 10 -7. This more 
precise calculation took about twice as much as the other 
one, 1.7 h, but the differences were found to be exceedingly 
small, 0.4% in the height of the peak and 0.1% in its posi- 
tion. 

Another set of comparisons is shown in Figs. 6 and 7 
between the 20-term adaptive Galerkin method (solid line) 

500 , i , i , 

and some collocation results. The first figure shows conver- 
gence of the collocation method with 8 collocation points 
( dotted line) and 12 collocation points ( dashed line). These 
calculations required 45 and 95 min, respectively. Therefore, 
the 12-point calculation takes about 50% longer than the 20- 
term Galerkin calculation, but does not perform nearly as 
well. Figure 7 shows the adaptive 20-term Galerkin result 
(solid line) compared with a fixed 6-term Galerkin calcula- 
tion (dotted line, 20 min), and a 6-point collocation (dashed 
line, 24 min). The conclusion to be drawn from these results 
is that the Galerkin method performs much better for a simi- 
lar computational effort. 

In many applications, such as some rectified diffusion 
calculations, one is interested in nonlinear oscillations of 
only moderate amplitude. In these applications, one would 
like to use a simple and fast integration procedure and it is, 
therefore, important to enquire about the limits of validity of 
a low-order method. Our experience is that a Galerkin meth- 
od with 4 terms for a 10-pm bubble driven with e = 0.5 at co/ 
COo--0.8 performs very well, while at higher amplitudes 
more terms are needed. The same result has been found in 

other cases, and it therefore seems that a simple 4-term ex- 
pansion has sufficient accuracy to be widely applicable. We 
give a detailed description of this method in the Appendix. 
As in all of these calculations, it is prudent to monitor the 
total mass in the bubble by evaluating the integral (22) sev- 
eral times during the cycle. A mass loss or gain in excess of a 
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FIG. 6. Comparison of the peak structure of Fig. 1 as given by the adaptive 
20-term Galerkin-Chebyshev method (solid line) with the 8-term (dotted 
line) and 12-term (dashed line) collocation results. 

O. 70 O. 75 O. 80 0.85 
TIME 

FIG. 7. Comparison of the peak structure of Fig. 1 as given by the variable 
20-term Galerkin-Chebyshev method (solid line) with the fixed 6-term 
Galerkin-Chebyshev method (dotted line) and the 6-term collocation 
method (dashed line). 
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few percent is an indication that an insufficient number of 
terms have been retained in the expansion. 

It is interesting to see to what amplitude the present 
numerical technique can be pushed. We have tested the 
adaptive 20-term Galerkin method with a forcing e = 2.05 
for a 50-/•m bubble driven at W/Wo = 0.8 and found no inte- 
gration difficulties in reaching steady state after 30 pressure 
cycles. This result is shown in Fig. 8, in which a subharmonic 
response is seen with four cycles of the driving pressure for 
one complete oscillation. A similar finite-difference calcula- 
tion, which requires 401 nodes and 6000 time steps per pres- 
sure cycle, takes about 16 h, to be compared with the 2 h for 
the one shown. As discussed in Ref. 4, the mathematical 
model of Sec. I is expected to break down when the Mach 
number of the bubble wall motion calculated with respect to 
the speed of sound in the gas approaches 1. During the oscil- 
lation shown in Fig. 8, the maximum Mach number with 
respect to the liquid velocity of sound is somewhat less than 
0.1. Since near the minimum radius the temperature in the 
gas increases by a factor close to four times the undisturbed 
temperature, this gives a gas Mach number of the order of 
0.25, which, although not very small, should result in an 
error of the order of 10% or less. It should be stressed that all 

existing models suffer from the same problem at high radial 
velocities and our model, if anything, can be expected to be 
less limited than others in this respect. Therefore, although 
quite numerous in the literature, results obtained at too high 
a level of forcing are necessarily rather speculative. In Ref. 
16, for high-amplitude oscillations, the use of a form of the 
Keller equation (3), based on the liquid enthalpy rather 
than the pressure, was advocated. In dimensional form, this 
equation is 

--- • • h B 
c c 

(37) 

1000 [ 
100 I 

tO 10 I 
[3. I 

0.1 

0.01 
0 

I I I I I I I I I I 

TIME 

FIG. 8. Internal pressure versus time during the 30th-33rd cycles of the 
driving pressure for a 50-/•m-radius air bubble in water driven at w/ 
Wo -- 0.8 and a forcing ß -- 2.05. The oscillations have undergone two sub- 
harmonic bifurcations and now have period four. This result was obtained 
with the adaptive 20-term Galerkin-Chebyshev method and the Keller 
equation (37) in terms of the enthalpy. 

where hB denotes the liquid enthalpy calculated for the value 
pB of the pressure just outside the bubble given by (2). For 
water, one can use the following equation of state: 

(P q- F)/(Poo q- F) = (P/Poo)", (38) 
where F -- 3049.13 bars and n -- 7.15, to find 

h = (c 2 -- c• )/(n -- 1), (39) 
with the speed of sound c given by 

c: = [n(p q- F)/p]. 
In all these relations, the subscript c• denotes reference val- 
ues and poo and coo have the same meaning as PL and c as 
used in Sec. I. The result shown in Fig. 8 has been obtained 
with this formulation in terms of the enthalpy. Use of the 
pressure as in (2) gives results that are indistinguishable if 
plotted on the same graph, but that are, nevertheless, some- 
what different. For example, the pressure maxima shown in 
Fig. 8 have the values 140, 264, 352, and 490, while the corre- 
sponding values obtained by using Eq. (20) are 160, 280, 
330, and 450. 

As another example, we present in Fig. 9 a bifurcation. 
diagram of the bubble radius sampled every 2•r dimension- 
less time units for the same case of a 50-/•m bubble driven at 
W/Wo = 0.8 and a slowly increasing driving pressure ampli- 
tude. After steady state was reached at e = 1.5, the pressure 
was increased linearly at a rate of 0.001 per cycle up to 
e = 1.9 and then at a rate of 0.0001 per cycle. Two subhar- 
monic bifurcations occur at e_• 1.75 and 2.03. These are fol- 

lowed by a third barely distinguishable bifurcation, a seem- 
ingly chaotic response, and a return to subharmonic oscilla- 
tions with further bifurcations and chaos. It is likely that an 
even slower ramping of the driving pressure would give a 
better resolution of these features. To explore the nature of 
the large-amplitude chaotic response, we calculated 1500 cy- 
cles with a constant forcing of e = 2.5 and constructed the 
Poincar6 maps in Fig. 10( a)-( c ), in which the internal pres- 
sure is plotted against the radius and the radial velocity. 
These graphs confirm the chaotic nature of the bubble's re- 
sponse in these conditions. In all these calculations, the nu- 

4 

o 
1.6 1.8 2.0 2.2 2.4 2.6 

FORCING PRESSURE AMPLITUDE 

FIG. 9. Bifurcation diagram of the bubble radius sampled every 2•r dimen- 
sionless time units for a 50-/•m-radius air bubble in water driven by a slowly 
increasing pressure field. 
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merical method used was the adaptive 20-term Galerkin ex- 
pansion with the radial equation (37) based on the enthalpy. 

Earlier studies devoted to the analysis of the chaotic 
response of oscillating bubbles have employed a polytropic 
pressure-volume relationship of the type'ø"' 

P: Po ( R(•/R ) 3•, (40) 

where 1<•c<%. It is, therefore, interesting to compare the 
results given by our model with those that are derived from 
this simple assumption. We show in Figs. 11 and 12 the bi- 
furcation diagrams obtained by use of Eq. (40) with •c: 1.4 
(adiabatic behavior) and •c: 1.2133, which is the value of 
the polytropic index given by linear theory. 4']9 These graphs 
are to be compared with the results of Fig. 9. The differences 
are so great as to cast serious doubt on the validity of the 
polytropic approximation. 

In the study of chaotic behavior, the use of a variable 
number of terms in the Galerkin expansion may appear rath- 
er questionable in view of the sensitive dependence of the 
chaotic response upon the detailed form of the equations. 
For this reason, we have compared the attractor of Fig. 10 
with the same attractor as computed with a fixed 20-term 
expansion. The two attractors were found to be nearly indis- 
tinguishable. From this finding, it seems reasonable to con- 
clude that the present adaptive technique does not introduce 
greater errors than those arising, for instance, from trunca- 
tion. 

V. LEGENDRE POLYNOMIALS 

The Galerkin and collocation procedures implemented 
above with Chebyshev polynomials have also been tested 
with Legendre polynomials. For the Galerkin method, we 
have used the shifted polynomials 

•,, =P2. --Po, 

while, for the collocation method, we have used the regular 
polynomials 4, -- P2,- Other than the use of a different set of 
polynomials, and, therefore, different recurrence relations 

1o 

5 

-1o 

I I I I I I I ' 

I I ! I I I ! 
0 I 2 3 4 

RAD ! US 

FIG. 10. ( a )-(c ) Poincar6 plots of the internal pressure (logarithmic scale ) 
versus radius and radial velocity sampled every 2•r dimensionless time units 
for e -- 2.5 for the same case as in Fig. 9. 
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FIG. 11. Bifurcation diagram of the bubble radius sampled every 2•r dimen- 
sionless time units for a 50-/•m-radius air bubble in water driven by a slowly 
increasing pressure field. The internal pressure is given by the polytropic 
relation (40) with •c- 1.4. 

ß 
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FIG. 12. Bifurcation diagram of the bubble radius sampled every 2•r dimen- 
sionless time units for a 50vim-radius air bubble in water driven by a slowly 
increasing pressure field. The internal pressure is given by the polytropic 
relation (40) with •c = 1.2133. This is the value of the polytropic index ap- 
propriate for linear oscillations. 
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FIG. 13. The internal pressure during the 20th cycle of oscillation of a 10- 
tim-radius bubble driven at w/wo = 0.8 and a pressure amplitude of e = 0.3. 
The solid line shows the two very nearly coincident results given by the fixed 
4-term Galerkin-Chebyshev method and the 101 nodes, 1000 time steps 
finite-difference calculation. The dotted line has been obtained with a fixed 

7-term Galerkin-Legendre method. 

and a different scalar product, the method of calculation is 
exactly the same as explained above. We do not give any 
detailed formulas because the Legendre polynomials con- 
verge much more slowly than the Chebyshev ones and there- 
fore, for the same computational effort, give poorer results. 
As an example, we show in Fig. 13 the 20th oscillation of the 
same 10-/•m bubble considered in the previous section, but 
driven at a much lower pressure amplitude, e = 0.3. The 
results of a finite-difference, 101 nodes and 1000 time steps, 
calculation and a fixed 4-term Chebyshev-Galerkin calcula- 
tion superpose on the solid line, thus proving the accuracy of 
these relatively coarse calculations in this case of low forc- 
ing. The dotted line shows the result obtained with a 7-term 
Legendre expansion, which required eight times longer to 
run, but exhibits some residual error. 

Vl. AN ALTERNATIVE APPROACH 

As already remarked in Sec. I, an alternative approach 
to the calculation of the temperature field in the bubble may 
be based on the equation of continuity and the equation of 
state of the gas which, in terms of the dimensionless quanti- 
ties defined in (10), is simply 

p=pT. (41) 

Here, the density p has been nondimensionalized with re- 
spect to its undisturbed value corresponding to the pressure 
Po and temperature T•. By use of the velocity field (4) and 
the normalized radial variable y defined by (8), it is readily 
shown that the continuity equation may be written as 

2(R 3jo) l-.•-•y[y2R,,•'(OOtø--ytøOtø )]--0. at y Oy •• y=l 
(42) 

The thermal diffusivity is given by (19), which now reads 

D= (1/p)[a(p/p) d- l--a]. (43) 

Upon introduction of the variable 

•=yp, (44) 

Eq. (42) becomes 

where 

Ot R 2 ( 1 20 d-y 
p2 

+ Oy y •y --• •' (45) 

y:l (46) 

The boundary condition at y -- 1 is, from (41 ) and (44), 

•(1,t) --p, (47) 

while at y -- 0 the condition Op/3y = 0 translates into 

020 =0. (48) 
oy• 

In terms of O, the equation for the total mass (22) reads 

rn = 3R 3 ytp dy. (49) 

Our original intent in using this formulation was to 
make use of the family of Jacobi polynomials orthogonal on 
the interval [0,1 ] with respect to the weight function y. In 
this way, the first term of the series expansion of fi would 
have carried the entire mass, which would have been con- 
served exactly. This plan was unsuccessful because instabili- 
ties set in already at forcings as low as 0.5-0.6. Since the 
Legendre polynomials PI equal y, mass would also be con- 
served exactly by expanding fi in a series of Legendre poly- 
nomials. We tried this approach, but it failed for the same 
reason although, where the method is stable, fewer terms are 
needed than with the Jacobi polynomials. Finally, we tried 
an implicit finite-difference scheme based on (45) with and 
without upwinding of the convective terms, and again found 
instabilities. The conclusion is that the formulation based on 

the temperaturelike variable r is far more easily amenable to 
a numerical solution than a formulation based on the den- 

sity. 
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VII. SUMMARY AND CONCLUSIONS 

We have studied a number of techniques for the numeri- 
cal integration of a detailed model of gas-bubble oscillations. 
An adaptive spectral method using a variable number of 
terms has been found to be the most efficient of the tech- 

niques considered, cutting integration times by an order of 
magnitude with respect to the earlier finite-difference meth- 
od. 

As an example of the results obtainable in this way, we 
have studied the regime of chaotic oscillations in a particular 
case, and we have compared the results with those of earlier 
investigations. The differences that have been encountered 
are so profound that the results given by the simpler models 

, 

used by previous investigators at best bear only the vaguest 
resemblance with those of our more precise approach. This 
finding is in agreement with our previous conclusions 4 and 
underscores the importance of a precise calculation of the 
internal pressure in the simulation of the oscillations of gas 
bubbles. 
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APPENDIX 

The value of the scalar product introduced in Sec. II is 

• 1 rc (•,,•m) -- •, (Y)•m (Y) dy -- • .... q- rr. 

The diagonal terms of the matrix of the linear system (31 ) 
are, therefore, all equal to 3rc/2, while all the off-diagonal 
terms are equal to re. The inverse of such a matrix is readily 
calculated and has a!1 the diagonal terms equal to 
2 (2N - 1 ) / ( 2N q- 1 ) re, while the off-diagonal terms are all 
equal to - 4/(2N q- 1 )•'. 

The Gauss points Yi and weights w• for the numerical 
integration appearing in (30) are 

yi = cos [ •(2j - 1 )/4N ], w• = z'/2N, 
withj = 1,2 .... ,N. 

We now give the reNtions that are needed to evaluate 
the spatial derivatives of r in Eqs. (28) and (29). For the 
coefficients e, of the first derivative, we have 

N 

e, = 4 • kak , 
k=n 

while, for the calculation of the Laplacian according to (28), 

d.=b.+2g,,, 
where 

V2 r-- O 2r 2 Or 
0y 2 y 0y 

and 

N N 

-- Z b,,T:. +2 Z 
n=0 n=0 

N 

f,g, -- 8 • kak, 
k•n+ I 

k + n = odd 

f,b, -b,+l =2(2n+l)e,+i, 

and b N -- 0. Here, we have defined 

i if n<0, f,= if n=0, 
if n>l. 

If we set 

C•TN N 

Y Oy -- •c, T2, n=O 

the scalar product of the linear part of the operator with the 
basis functions •a. has the form 

(•,LrN) = (re/2) (% -- 2Co), 
where 

c• -- •(f•e• q- ek + • ). 
The above expressions are general. As mentioned in the 

text, a very simple 4-term version of the Galerkin method 
has a rather wide range of applicability, and we shall there- 
fore present, in detail, the formulas for this case. The matrix 
of scalar products (• ,•,, ) appearing in the left-hand side of 
( 31 ), in this case, is 

3 1 1 1 

i 1 •_ 11 . (A1) 1 1 • 

In obtaining from (31 ) explicit relations for the derivatives 
of the expansion coefficients a,, the inverse of this matrix is 
needed. It is 

14 -4 -4 -4 

1 --4 '14 -4 -• 9• --4 --4 14 -- ' (A2) 
--4 --4 --4 14 

From the previous expressions, we have the following explic- 
it relations for the coefficients appearing in (27)-(29): 

el = 4a• + 8a 2 q- 12a3 + 16a 4, 

e2 = 8a2 + 12a3 + 16a4, 

e3 = 12a3 + 16a4, e 4 = 16a 4, 

do = 12a• + 32a2 q- 132a3 + 256a 4, 

d• = 80a 2 q- 192a3 + 544a 4, 

d 2 = 168a 3 + 384a4, d 3 - 288a4, 

c o = 2a I + 4a2 + 6a3 + 8a4, 

c• = 2a• + 8a 2 + 12a 3 + 16a4, 

c 2 = 4a 2 + 12a3 + 16a4, c3 = 6a3 + 16a4, c4 = 8a 4. 

The Gauss points for this case are cos(re/16), cos(3rr/16), 
cos(5rc/16), and cos(7rr/16) with equal weights re/8. 
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