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Asymmetry-induced particle drift in a rotating flow
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We report on an intriguing phenomenon taking place in a liquid rotating around a fixed horizontal
axis. Under suitable conditions, bubbles and particles are observed to drift along the axis of rotation
maintaining a constant distance from it and a constant angle of elevation above the horizontal.
Absence of fore-aft symmetry of the bubble or particle shape is a prerequisite for this phenomenon.
For bubbles, this requires a volume sufficiently large for surface-tension effects to be small and large
deformations to be possible. Particle image velocimetry and flow visualization suggest that the wake
does not play a role. The dependence on bubble radius, particle shape, liquid viscosity, and speed of
rotation is investigated. © 2005 American Institute of Physics. [DOI: 10.1063/1.1978921]

INTRODUCTION

In the course of an ongoing project to study the forces
acting on bubbles in a rigid-body rotating flow, we encoun-
tered an intriguing phenomenon which is reported in this
paper. In the experiment, a liquid-filled horizontal glass cyl-
inder (length of 500 mm, diameter of 100 mm) is in steady
rotation around its axis. Under certain conditions, a large
bubble (equivalent radius R,>5 mm) injected in the liquid
starts moving back and forth along a line parallel to the axis
of the cylinder, without any external force acting in this di-
rection, while maintaining a constant distance from the axis
and elevation from the horizontal. Further experiments indi-
cate that certain particles also exhibit a similar axial drift.

DRIFTING BUBBLES

The cylinder is filled with a glycerin-water mixture and
maintained in steady rotation with angular velocities w be-
tween 0 and 40 rad s™'. In this flow, small bubbles (bubble
radius R,= 1 mm) reach a steady equilibrium position under
the action of buoyancy, drag, added mass, and lift."” In a
water-glycerin mixture with relatively large viscosity (v
=107 m?s7!) and at sufficiently large angular velocities, on
the other hand, large bubbles (equivalent bubble radius
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5 mm=<R,<10 mm) are observed to drift parallel to the cyl-
inder axis, see Fig. 1(a). Their shape has no obvious symme-
try. The drift appears to be very regular and steady and to
take place at a fixed distance r, from the axis of rotation and
at a fixed angle of elevation ¢, above the horizontal. When
the bubble reaches an end cap of the cylinder, it bounces, its
shape is reflected, and it starts traveling in the opposite di-
rection at the same speed as before. At lower viscosities,
these large bubbles tend to break and, when they do not, their
translational motion in general is less stable. If the bubble is
too large (R,= 15 mm) or the rotation rate is too high, the
bubble also breaks.

The drift velocity v, is found to be dependent on the
angular velocity w, the equivalent bubble radius R;, and the
liquid viscosity. Figure 1(b) shows v, versus the rotation rate
for different R, and v.

A first obvious hypothesis as to the nature of this phe-
nomenon is a large-scale flow caused by Ekman layer pump-
ing due, perhaps, to the presence of a Taylor column (of
length ~R,3,w/ v) produced by the bubble. This possibility is
however easily dismissed as small particles present in the
liquid away from the bubble did not exhibit any axial mo-
tion. Furthermore, estimates of the length of a possible Tay-
lor column are at most a few centimeters, much less than the
length of the cylinder. Ekman layer pumping may, however,
help in making the bubble bounce at the end caps of the
cylinder.

© 2005 American Institute of Physics


http://dx.doi.org/10.1063/1.1978921

072106-2 Bluemink et al.

(a)

4
3.5
@
E 3
N
>
2.5
15 20 25 30 35
(b) o (rad/s)

FIG. 1. (a) A photograph of the experiment with the drifting bubble. The
scale is in cm. (b) The axial drift velocity vs the rotation rate of the cylinder
for large bubbles on a log-log scale. 0 R,~6.2 mm, O R,=~7.2 mm; >, &
R, not specifically measured. [J v=6.7X 107 m?s~'; O, I>, and ¢ v=1.7
%107 m?s~!. Solid line: v, w*®. The inset shows the coordinate system.
[Enhanced online; (a) links to a real-time movie of the drifting bubble.]

In order to gain some understanding of the nature of the
flow near the bubble, the liquid was seeded with tracer par-
ticles illuminated by a light sheet perpendicular to the cylin-
der axis in a standard particle image velocimetry (PIV) ar-
rangement. Figure 2 shows a cross section of the disturbance
velocity field around the bubble, the undisturbed velocity
field being estimated assuming solid-body rotation. Here the
rotational Reynolds number, defined as Re,=wr,R,/v is
about 20. The x axis is horizontal and the y axis vertical in a
plane perpendicular to the cylinder axis, which goes through
(x=0, y=0) and which is marked by the cross. The magni-
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FIG. 2. (Color). Difference between the velocity fields with and without the
bubble in a plane perpendicular to the cylinder axis; the bubble (black sil-
houette) is moving towards the camera. ®=22.6 rad/s, v=9.9 X 107 m?/s,
and R,=8 mm.

tude of the velocity vectors is represented both by their
length and the color coding. Due to the subtraction of the
solid-body rotational velocity, the figure is a representation
of the velocity field in the rotating frame. Thus, the image
must be interpreted as showing a bubble moving (counter-
clockwise) in an essentially quiescent liquid. The velocity
ahead of the bubble is seen to be very small, suggesting that
the wake trailing the bubble in the circular motion has essen-
tially dissipated by the time the liquid has completed an en-
tire revolution. Thus, the bubble does not seem to interact
appreciably with its own wake.

By recording the tracer particles trajectories with a
longer exposure we obtain an indication of the path-lines of
the flow. In Fig. 3 the path-lines in a cross section of the
(x,y) plane are shown for a bubble moving away from the
camera. Here several vortices are apparent, although it is not
clear whether they remain attached to the bubble or are shed
similarly to a Kdrman vortex street. The relatively low Rey-
nolds number of the rotational flow, Re,~ 20, suggests the
first possibility as the more likely one.

DRIFTING PARTICLES

Since the phenomenon only occurs with strongly de-
formed bubbles, we decided to investigate whether it would
also occur with asymmetrically shaped rigid bodies made out
of a plastic material with a density p=900 kg m~. As a con-
trol, we used particles with fore-aft symmetry such as solid

FIG. 3. Path-lines in (x,y) plane
around a bubble moving through a
light sheet away from the camera. w
=28.3 rad/s, v=1.8X10"* m?/s, and
R,=10 mm.
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FIG. 4. Particles that display axial drift in rigid-body rotation. Side view
(left) and top view (right). The legends in Figs. 5-8 refer to the letters in this
figure.

spheres, prolate spheroids, and cylinders and spheroids cut
by planes parallel to the major axis. All these symmetric
bodies aligned their major axes with that of the rotating cyl-
inder and came to an equilibrium position (fixed r,, ¢,, and
axial location) just like spherical bubbles. When the fore-aft
symmetry is broken, however, the same axial drift observed
with large bubbles sets in. The presence or absence of axial
symmetry did not seem to play a role. Thus, we find that
cones [Figs. 4(a)-4(c)] exhibit axial drift, as well as “muti-
lated” cylinders [Fig. 4(d)], and spheroids cut at an angle to
their symmetry axis [Figs. 4(e) and 4(f)]. The linear dimen-
sions of the particles we studied were of the order of 10 mm
and the angular velocities for which the drift occurred were
substantially lower than for bubbles, between 2 and
20 rad s~'. Unlike bubbles, for particles the axial drift was
found in fluids with both high and low viscosities (e.g., wa-
ter); however, the phenomenon was robust when v
=10~ m2s~!. In addition, in contrast to bubbles, which are
observed to turn around once they reach one of the bases of
the cylinder, solid particles remain at the bases—a behavior
which agrees with the idea that the reflection of the bubble
shape is directly responsible for the change of sign of the
axial velocity.

We characterize the size of the particles in terms of the
radius of the base shown in the right column of Fig. 4; this
characteristic length will be denoted by the same symbol R,
used earlier for the equivalent bubble radius. Given the vari-
ables w, v, R, and the gravitational acceleration g, two non-
dimensional parameters can be defined, a “Froude number”
Fr=w’R,/g and a dimensionless angular velocity ()
=wR,?/v. This latter parameter represents the square of the
ratio of the particle radius to the viscous diffusion length.
The response of the system can be characterized in terms of
the rotational Reynolds number Re, defined earlier, the drift
Reynolds number Re,=v R,/ v, and the angle of tilt a of the
particle with respect to the cylinder axis.

Figure 5 shows the tilt angle « vs () for a glycerin-water
mixture of 80% glycerin by weight. The particles only tend
to align with the cylinder axis at high rotation rates, while at
low rotation rates the tilt can be quite substantial. The par-
ticles display the largest drift velocity when their angle of tilt
is between 20° and 40°.

In Fig. 6 the drift Reynolds number Re, is plotted as a
function of the dimensionless numbers () and Fr for particles
of different size and shape, and for different viscosities. The
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FIG. 5. Tilt of the particle with respect to the cylinder axis (@) vs ). The tilt
is determined with a protractor, which accounts for the rather large error.

cut cylinder and small cone have the same base surface,
while the base surface of the large cone is twice as large. The
aspect ratios for all particles in the figure is 2:1. The cones
follow their tips, the cut cylinder follows the side where the
material is cut away.

It was already mentioned that the particle drift depends
on the liquid viscosity. Figure 6 shows the drift Reynolds
number of the particles in glycerin-water mixtures of 60%
and 80% by weight versus Q [Fig. 6(a)] and versus Fr [Fig.
6(b)]. The straight lines in Fig. 6(a) correspond to Re,
~1/Q? or v,~1*/(«’R}), while the straight lines in Fig.
6(b) show the relation Re,~Fr™' or v.~ vg/(w’R}). These
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FIG. 6. Drift Reynolds number vs (a) Re,;= wR,/ v, and (b) Fr=w’R,/g for
cones moving in the direction of the tip. Open symbols: data for particles
estimated to be near the cylinder wall.
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FIG. 7. Scaled drift Reynolds number Re,/Q vs Fr?/Q for cones moving in
the direction of the tip.

figures seem to exhibit two different regimes, one for the
lower values of () or Fr, and one for larger values of these
quantities.

In Fig. 7 the same data are plotted in the form of
Re,/Q vs Fr?/Q). This figure indicates that, for sufficiently
large values of the parameter Fr?/() and the larger viscosity,
the results for Re,/{) exhibit an approximate collapse onto a
line Re,/Q~ Q/Fr?, implying v, ~ g’R,,/ (vw?).

It seems that the direction of motion depends on the
orientation of the particle: The tip seemed to be inclined
towards the axis of rotation, when the drift was in the direc-
tion of the tip. For drift in the opposite direction, the tip
seemed to be oriented away from the axis. If the orientation
is reversed by shaking the cylinder, so immediately is the
direction of travel. The reverse motion seemed to be favored
for larger particles and less viscous liquids. Figure 8 shows
the drift Reynolds number Re, plotted as a function of () and
Fr for the larger cones in a fluid with a lower viscosity. These
cones drift in the direction opposite to the orientation of their
tip. The two cones have the same surface area and different
aspect ratios of 2:1 and 3:1.

DISTANCE OF PARTICLE FROM THE AXIS

An obvious concern in the interpretation of these data is
the possibility of wall effects when the particles stabilize too
close to the cylinder wall. While a precise measurement of
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FIG. 8. Drift Reynolds number vs (a) ), and (b) Fr for cones moving away
from the tip. Decreasing the viscosity or increasing the size of the particle
can reverse the direction of drift.
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the distance of the particles from the cylinder axis was not
possible, an approximate estimate can be found by a force
balance in the plane through the particle perpendicular to the
axis of rotation. For the purposes of a rough estimate we
assume that the same forces act on the particle as would act
on a spherical bubble. Expressions for the forces on bubbles
can be found in Refs. 3 and 2. The drag force is expressed in
terms of a drag coefficient, for which we take the large Re
limit 48/Rer.3 The inertial, or added mass, force has the
usual expression in terms of a coefficient C, for which we
use the sphere value 1/2. For the lift force we use the high-
Reynolds number expression of Ref. 4 with a lift coefficient
C; also equal to 1/2. In this way, as shown in Ref. 2, one
finds

_ Ry (p1— pp)g
‘ plw\/Slvz + ‘]-‘Rb“w2

(1)

Here p; and v are the liquid density and kinematic viscosity,
and p,, the bubble or particle density. For small viscosity this
relation reduces to p;r,w”>=(p;—p,)g, which expresses a bal-
ance between the centrifugal and gravitational pressure gra-
dients. Similarly, when viscosity dominates, we find
wiwr,)R,=R}(p,~p,)g, which balances the Stokes-type
drag in a liquid with viscosity w; with buoyancy. Thus, while
(I) may not rest on a particularly firm theoretical basis, it
does embody the correct limiting behaviors and may offer a
reasonable interpolation between the two for intermediate
situations.

At large rotation rates, Eq. (1) shows that wr, = w™'. The
proportionality of the drift velocity v, to w™ pointed out
before in connection with Fig. 7 would then be understand-
able if the force causing the drift were to scale like the square
of the rotational velocity at the particle position as with a
Bernoulli effect. For low rotation rates, on the other hand,
Eq. (1) shows that the particle is closer to the cylinder wall
and wall effects eventually may become dominant. The data
for which the particles are estimated [with Eq. (1)] to be less
than a particle diameter from the wall are indicated by open
symbols in Figs. 6—8. While most of the data points falling
away from the straight lines appear to correspond to loca-
tions affected by the proximity to the wall, others do not.
Hence, whether the two regimes apparent from the figures
are indeed to be ascribed to wall effects must remain an open
question at present.

A QUALITATIVE EXPLANATION

A qualitative explanation for the transverse motion can
be found by considering the pressure distribution over the
particle or bubble surface. When a fluid flows over an object,
on the high velocity sides of the object surface the pressure is
low causing suction forces. If the flow did not separate, a
nonzero lift force would be generated since opposite surface
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elements are not parallel to the axis. It is likely that a similar
stress distribution is responsible for the phenomenon de-
scribed before. Under the action of this lift force, the particle
would drift axially at a velocity such that the drag balances
the lift. In this sense the drift we have observed can be un-
derstood as analogous to the forward motion of a falling
inclined cone, with the falling velocity replaced by the liquid
rotation.

Mathematically, an equivalent description may be given
in terms of the added mass tensor.” In the absence of fore-aft
symmetry, the added mass tensor has nonzero off-diagonal
elements when expressed in the cylindrical coordinates of
the present situation. In particular, there will be a nonzero rz
element with the result that a radial acceleration (in the
present case the centrifugal acceleration) produces a force in
the z direction. At low rotation rates the particle has more tilt
with respect to the cylinder axis, the situation is more asym-
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metric, and the off-diagonal components of the tensors in-
crease, giving rise to higher transverse velocities.
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