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Summary. We study the motion of a classical (nonquantal) charged
particle in a uniform magnetic field by means of i) the Abraham-Lorentz
equation, ii) the Dirac relativistic equation and 1iii) the Caldirola
nonrelativistie, finite-difference equation. In cases i) and iii) closed-form
solutions are obtained. For case ii) we apply for the first time the two-
variable asymptotic method which enables us to obtain a uniformly
valid approximate solution free of the secular terms present in the results
of previous authors.

1. — Introduction.

In the present study we consider the motion of & classical (i.e. nonquantal)
charged particle in a uniform magnetic field in terms of the Abraham-Lorentz
nonrelativistic equation, of the Dirac relativistic equation and of the Cal-
dirola nonrelativistic, finite-difference equation. This paper has been motiv-
ated primarily by the renewed interest in the classical motion of charged par-
ticles, both for technological applications and for fundamental reasons (*%). In
particular, the chronon theory of Caldirola (%) exhibits an intriguing variety
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254 A. PROSPERETTI

of aspects which deserve to be investigated in view of their possible bearing
on the current microscopic description of the physical nniverse. For the Dirac
model we apply here for the first time the asymptotic method of two-variable
expansion () which is found to be ideally suited for the present purpose and
to hold considerable promise for other applications of the Dirac equation.

The unifying theme of this study is the effect of radiation reaction on the
motion of the charged particle (8). In the Abraham-Lorentz model this reac-
tion is computed from classical electrodynamics as the effect of the electro-
magnetic field produced by the charge distribution of the particle on itself (%),
Dirac provided a relativistic generalization of this result on the basis of the
conservation laws for the energy and momentum of the electromagnetic
field (11-18),

In the equation of Caldirola, radiation reaction appears naturally as a con-
sequence of the fundamental postulate of the theory, namely the discontin-
uous interaction between the particle and the external foreces acting on it at
successive instants separated by a fundamental time interval, the chronon (*%).

2. — Preliminary considerations.

We perform first of all an approximate analysis of the problem with the
purpose of determining the important physical quantities. The basis for this
treatment is the assumption that radiation reaction is small so that, to first
order, it can be considered as a perturbation of the motion of a nonradiating
particle. Then, to zero order, the motion of the particle is determined solely
by the Lorentz force through Newton’s equation

VZ
(1) m-— =BV,
s C

where V = |V| is the magnitude of the velocity component perpendicular to
the magnetic field, » is the radius of the orbit, B is the magnitude of the mag-
netic field, ¢ is the speed of light and m, ¢ are the mass and electric charge of

(") Bee, eg., J. D. CoLe: Perturbation Methods in Applied Mathematics (Waltham,
Mass., 1968).

(®) T. ErRBER: Fortschr. Phys., 9, 343 (1961).

(®) J. D. Jackson: Classical Electrodynamics (New York, N.Y., 1962, 1975).

(1°) W. K. H. PaNorsky and M. Purrrips : Olassical Electricity and Magnetism (Reading,
Mass., 1955).

(**) P. A. M. DirRAC: Proc. B. Soc. London Ser. A, 161, 148 (1938).

(*2) A. O. BARrUT: Electrodynamics and Classical Theory of Fields and Particles (New
York, N.Y., 1964).

(13 F. RouruicH: Olassical Charged Particles (Reading, Mass., 1965).
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the particle. Equation (1) shows that the trajectory of the particle is a circle
of radius

1
(2) re---1,
o8
where
e
3 (! -t - -
(3) “L T e

iy the Larmor frequency, i.e. the angular frequency of the unperturbed motion.

The perturbation induced by radiation on the motion described by (1)
and (2) can now be computed approximately equating the time derivative of
the kinetic energy, 1m172, to minus the radiated power P given, according to
the well-known result of Larmor (*1°), by

p. 2 ¢ (dV\?
T 3l\dt)

In this way we may write, using (1) to compute (dV'dt)?,
d /1 - 2¢/el3 - E
—| =—_-—|—
a2 ™ 3 e*\me ’

av - 2 (‘g(l)i .
dt 3 me?

from which

(4)

The solution of this equation is

(5) V= V,exp[— bwlt],

where V, — ¥(0) and #, the so-called chronon (8), is given by
2 et

(6) f —

T3 e

The radius 7 can be obtained from (3) and (2) as

{v) T =1 exp|— Ow: t],

where ry == Vo/owy, . It is scen that in this approximate treatment the trajec-
tory of the particle is a spiral of slowly decreasing radius. If the velocity com-

ponent parallel to the magnetic field is zero, the particle will eventually come
to rest at the centre of the orbit. Clearly, for the results (5) and (6) to be an
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acceptable approximation, the characteristic time for the decrease of the ve-
locity must be much greater than that for the completion of one revolution, i.e.

(8) 06011&< 1.

3. — The Abraham-Lorentz equation.

A more precise treatment of the problem at hand can be made on the basis
of the Abraham-Lorentz equation of motion for a charged particle (»20) which
incorporates in a systematic way the energy loss by radiation. For the present
case this equation is

9 ~——~——:-: > .
®) mdaf 3 ¢ de? GVKB

Taking B directed along the positive z-axis and projecting on the z and y axes,
we obtain a system of two equations which can be compactly written as

d d2
where
0 1] }u
11 = -

and #, » are the # and y components of ¥.

Equation (10) ean readily be solved by expanding the vector ¥ on the basis
formed the eigenvectors of A. In this way we find solutions with a time de-
pendence of the form

piexplu.t] + g, exp[v.t], i=1,2,
where
i=—"b+ 1w, v;= b4 iw,
12) b =T e 4 1 - 1),
(13) o =278 1[1 + do? 72 — 1}3,

b o= 11 (2H[1 + 42 72 + 1} 4 1)

and the notation

2
(14) r—op—22¢
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has been used. It is clear that Rey, = b’ > 0, so that, for the solution to be
bounded for ¢ — co, we must set g, = 0, ¢ = 1.2. The appearance of these non-
physical, unbounded solutions is a well-known problem with the Abraham-
Lorentz and Dirac theories which is a consequence of the presence of the second
time derivative of the velocity in (9) (*3). This difficulty has led to various
reformulations of the theory (e.g. in terms of an integro-differential equation,
see ref. (%)) and has also been one of the elements that has induced other
authors to abandon altogether the differential-equation formulation in favour
of finite-difference ones (¢).

The remaining two constants p, are to be determined from the initial con-
ditions %(0) = u,, »(0) = v,. Finally we find

% = exp [— bt] (u, cos wt 4 v, sin wi) ,
(15)
v = exXp|— ] (— u, 80 wi | v, 08 wi) .

The magnitude V of the velocity is given by
(16) V= (u? 4+ v2)} = V,exp[— bf]

and is, therefore, seen to decrease exponentially with time as had been ob-
tained in the approximate treatment of the previous section. In order to com-
pare the rate of decrease, notice that, for small values of w0,

(17) b= o261 — B5(w,0)* + 0w, 0)4].

Hence, in this limit, we recover the previous result, as was to be expected.
Similarly, the frequency w with which the orbit is described is for small values
of w6

(18) w = w,[1 — 2(w;0)* 4+ 0w, 0)],

in agreement with (3).
Another integration of (15) gives the co-ordinates x(f), y(f) of the particle.
We find

o + bu, = exp [— bt]

(190) a(t) = a0+ -t +

[(e0its — bvy) 8in wf — (buy + wv,) cos wt],

wuy — by, | exp [— bt]

(lgb) ’!](t) =Yo— bt + w? bt 4+ w?

[(cwvy + buy) Sin wt + (e — bv,y) cos wit],

where x, = #(0), ¥, = y(0). The co-ordinates ., ¥, at which the particle

17 ~ Il Nuovo Cimento B.
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will eventually come to rest clearly are

o WYy -+ bty . Wiy — b,
20) xw—xo—f—m, Yo == Yo b+ w2’

The distance r(¢) from this point can readily be found to be given by
(21) r(t) = r, exp[— bt],
where 7, is the initial distance from {(x_,y.) given by

v
22 SR A
(22) "o (0® + w?)t

The trajectory is thus still a spiral and the result (22) coincides with (7) for
small values of w 6.

4. — The Dirac relativistic equation.

The relativistic generalization of (9), as obtained by DirAc (*) and WHEELER
and FEYNMAN (1), i3

. e . . 1 o
(23) Uy = chuvuv -+ 0 (uu—gz uuwm) ,

where the dot denotes differentiation with respect to the proper time, the
summation eonvention on repeated indices is used, and the metric is such that
wuy = — ¢ Again we limit ourselves to the plane case, for which the spatial
part of eq. (23) can be compactly written as

. .1 02]}.]}' L (VX V)z
(24) V=, AV +6 [V—F\.ﬁ%_v% Vi,

where w , ¥V, 4 have been defined in (3) and (11).

This equation does not appear to be amenable to an exact solution of
physical significance. In the past Prass (15%) has attempted an approximate
solution by a regular perturbation method, which, however, is unsuitable
for the present problem because it gives rise to secular terms of the type

() J. A, WaerLer and R. P. Fey~xman: Rev. Mod. Phys., 17, 157 (1945).

(**) G. N. Prass: Rev. Mod. Phys., 33, 37 (1961).

(**) H. ArzeLIES: Rayonnement et dynamique du corpuscule chargé fortement accéleré
(Paris, 1966).
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tcos wf or ¢sinw! which limit its validity to times much smaller than the
decay time of the motion, which is of the order of (§w?)-'. Here we shall treat
eq. (24) by the method of multiple time scales, especially designed to avoid
secular terms in the perturbation expansion (). To our knowledge this is the
first time that this method has been applied to the Dirac equation.

According to the method, instead of the proper time 7' we introduce a
«fast» and a «slow » (dimensionless) time 7, ¢ defined by

(25a) t=ow, T +etl, +..),
(25b) t=co, T +em, -+ ...),
where the parameter ¢ iy given by

(26) R—

In the following we shall take ¢ be to small, so that our perturbation expansion
will be suitable in the case of weak energy loss by radiation. The constants
lyy ..y My, ..., are to be determined by imposing the absence of secular terms
in the solution. The unknown V(T) is now to be considered as a function of
the two variables (25), V(f,{), so that, for instance,

27 V=oc, [(1 Lty b ) o el emy + ) i} V(i t)

ot

Xl

and similarly for ¥. We also expand V in powers of ¢ as

(28) V=V, +teVy+eVy+ ...

Substituting (25), (28) into the Dirac equation and separating the terms ac-
cording to their order in ¢, we obtain a set of equations which can be solved
recursively according to the procedure which now we describe. The initial
conditions of ¥ will be imposed on ¥, so that ¥;, V,, ... will be taken to satisfy
homogeneous initial conditions.

The physical basis of the method to be used is that, in the case of weak
radiation, the motion can be congidered as given by a «modulated » cirenlar
motion, 4.e. a circular motion of «slowly » varying radius. The orbit of this
motion is described in a time of order 2m/w, (i.e. an interval Af of order 1),
whereas the time scale on which the radius varies appreeciably is much longer,
of order 2m/ew; (i.e. an interval Af of order 1).

Order ¢°. To this order we simply find

c¥,

29 -
(29) 5

~ AV,,
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which describes an undamped circular motion. We can express the solution as

(30) Vo= a(t) RE) -+ () S(E
where

5 .~ |sinfl
B1 R() = —sin ¢’ 0 = cos?|

and o, § are suitable integration constants. Notice that, since (29) gives in-
formation only on the dependence of ¥, on the «fast» variable #, « and § are
allowed to depend on the «slow » variable {, which has been explicitly indicated
n (30). The functional form of this dependence will be determined at the
following step.

Order ¢. If we take into account (29), the equation for this order can
be written as

) o, W\ L[V, LAY
(32) (c? + ¥y V)(at — AV, — atz LS at) —;[(—a—z-) c —}—(VOX 85)]1/0‘

Upon substitution of (30) we find

AV, = — [§§+(1+“2+52)a]R [dﬁ (1+ +ﬂz)ﬂ]s.

oV,

(33) o

The condition for the solution to be free of secular terms is that the right-
hand side of this equation be orthogonal to the solutions of the homogeneouns
equation, which are proportional to R and $ (?). (The truth of the above state-
ment can be proven in an elementary way if (33) is written out in component
form and is solved by elimination. Then one would find equations of the form
0%, /o8 4 u; = p sinf 4 ¢ cos?, the solution of which would indeed contain
terms of the type fsinf and ¥ cos? unless p = ¢ = 0.)

Therefore, we must require the coefficients of R and S to vanish, which
leads to the following system of equations determining « and f:

(344) %4—(1+“ +’82)<x¥0
di
4 /3

(34b) S +( )ﬂ 0.

This system is readily seen to be Hamiltonian, so that its solution is straight-
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forward. We find

ax N esing
(334) A = (G exp @1 — 1)1
o cCOSQ
(350) PO = o T
where
02
(36) @=gag 1

and the angle ¢ is to be determined from the unitial conditions, tg ¢ = vy/u,.
Having determined « and g, we can now solve for ¥;, to find

(37) Vi = a(t) R() + pult)

The integration constants o4, B will be determined from the second-order
equation. Notice that, as was already stated, we take ¥,{0) = 0, so that we
must impose

(E=0)=p(f=0)=0.
Order ¢2. Again taking into account (29), we find the following equation

at the order e2:

oV, AV+Z8V+ 18@1;_}_8

0y, o, oV, aZVo o)
“Zﬁa—z*“gz?)“” V‘(a —AN = +az)_

1([, (V\ o, oW, [V, | OV,
:72([“ () (o) o2+ F)
oV, oV, oV,
o) o e *af)”]})

Substituting (30), (37) we find for ¥, an equation similar to (33), for which
again we must impose the vanishing of the coefficients of R and S in the right-
hand side. In this way we obtain the following equations for «,(f) and £,(f)

(38) (¢t + Vi V)(

d“l o? + pg? 4ofp

+—) +Fﬁl =

i Eeal+ S

(394)

+(1+
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N (AT

:[lz+2(l +azt’82)]oc+ml(1+a2:;5i)ﬁr

4

in which o and § are given by (35). To solve this system it iy useful to set

a(t) by()

@espiti—1)" P T (Qexpl— i)

y =

With this substitution eqs. (39) can be compactly written as

| {

_d_‘;al/\ ; 4 . e |p
di|b,| " Q(exp[2t1—1) © | by Qexp[2t]—1)lgq|’
where

| sin*g sin ¢ cos @

" isingcosg cos?p |7

P = Q exp [2t][m, sin ¢ — (2 - 1,) cosp] + 1, cos @,
q = Q exp [2t][m, cosp + (2 + 1,) sin p] — L, sin ¢ .

Diagonalizing the matrix M we are led to the following pair of (now separated)
equations

de, 2¢Q exp [2t]
dt Q exp 2] —1
dd, 4 . myQcexp [21]

@ Gexp—1™ T Qexp 2t —1’
where
¢ =CoSgpa, —sin @b,

i, =singa, +cosgb,.

These equations are very readily solved to find

. 0—1 .
(40a) o(t) = 0[10gm — (s + Q)t] )
o1 exp [4f] — exp [2f]
(400) dy(t) = 5 m Qe Q exp [21] —1 ’

where homogeneous initial conditions have already been imposed. It is clear
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that ¢, and d, diverge as ¢ — oo unless
(41) lh=—2, m,=0.

Thus we see that, if these constants are chosen in this way, expansion (28) will
be uniformly valid in time to the present order in e,

Collecting the previous results we have the following expression for ¥V cor-
rect to first order in ¢

e . Q—1
4z V= (Q exp e, T —1)F (Sm g hecosplog g T seon T]) R+
¢ . QO —1
i (@ exp [2ew, T]—1)* (OOS(’D —esinglog Q — exp [— 23wLT]) S,
where
| eos(1—2e%)w, T| _|sin (1 —2e%w, T
(43) R = —gin (1—282)(IJLT§’ §= leos (1 —2e?) o, T

From these expressions we can easily trace the origin of the difficulty encoun-
tered by Prass. Indeed, for fized T we have

sin (1 — 2e%)o, T ~sinw, T — 2eto, T cosw, T + ...

Clearly a perturbation method which generates the result in the form of the
series on the right-hand side of this equation is bound to give results non-
uniformly valid if only a finite number of terms is retained. This problem
would of course disappear if all the terms in the series were retained. The
multiple time scale method is superior in so far as at each time step it adds
new terms to the perturbation expansion but, at the same time, it adjusts
the previously found terms by bringing up to date their time dependence
through  and ¢ so that no secular terms arise.

5. — Comments on the relativistic solution.

From eqs. (43) we see that, to order ¢2, the angular frequency with which
the charged particle goes around its orbit is

(44) o = w1 — 24 0(e%)].
Comparing with (18) we see that, to order £2, this is precisely the frequency

predicted by the nonrelativistic Abraham-Lorentz theory. The relativistic
effect enters only in the rate at which the particle velocity decreases. If we let
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= |V, we find to first order in ¢
(45) V(T) = ¢(Q exp[2ew, T]-- 1)1,
For ¢ — oo, this result becomes

V(T) ~ V e}\p [— &a) T[l (“2)]] ’

which, by (17), coincides with the nonrelativistic one up to order ¢2 included.
(In fact, this correspondence can be carried further to cover the individual
components of ¥ since the logarithm in eq. (42) vanishes for ¢ — o0.)

A particularly interesting feature of the techuique adopted to obtain our
approximate relativistic solution is the fact the unphysical « runaway » so-
lutions that are contained in the general solution of the Dirac equation are
eliminated automatically by the mathematical procedure which takes care
of the secular terms. Thus the outcome of the calculation is an expression
which approximates only the physically significant solution.

Finally it may be of some interest to consider the energy balance for the
relativistic case. From the fourth component of (23) we readily obtain in
the standard way (see, e.g., ref. (%))

ol 72\ ~} W2 4 V
(46) ﬁ[( I LI 7 V(l - L) ]:——(Jc V(I T(;/;( "

The instantaneous radiated power is found to be given by

(47) P, = mlwl VX1 + V)i,

T

which agrees with the previously quoted nonrelativistic result for ¢ — co.
The energy lost in one revolution (i.c. between two time instants separated by
2n/w with o given by (44)) is

(48) AE = mf[e* + VT + 2mjo)]t— [¢* + VHT)J} .

(Notice that the second term in brackets in (46), the so-called Schott energy (8),
is of second order in & and, therefore, negligible to the present approximation.)
If the two velocities appearing in (48) are not very different, we have (%)

(49) AE =~ 2memV2(1 4+ Vijer)t.

6. — The Caldirola finite-difference equation.

A totally different approach to the dynamics of charged particles has been
proposed by CALDIROLA (%) on the basis of a finite-difference equation which,
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in the nonrelativistic approximation, is
"
(50) — Vi) =Vt — )] = FIX@), V1), 11,

where F is the force, X is the position, and 7 is given by (14). This equation
must be complemented by the so-called transmission law, which establishes
a connection between position and velocity,

(51) %[X(t) —X(t—1)] = %[V(t) +Vit—7)].

The reader is referred to the references cited for a discussion of the advantages
and of the interesting possibilities that this finite-difference formulation has
over the Abraham-Lorentz equation. Suffice it to say here that eqs. (50), (51)
do not exhibit any unbounded solutions and that, in the vicinity of an equi-
librium point, all solutions tend to this equilibrium point (%).

Let t, = n7 be the time measured from the initial instant and set V, =
= V¥(t,). Then, using the Lorentz force for F in (50) and projecting on the x, »
axes normal to the field B, we obtain a system of two difference equations,
which can be written compactly as

(52) I-o,tA)V,=V,,,

where I is the identity two-matrix and A and V¥ are defined by (11). Let w,,
4 =1, 2, be the eigenvectors of the operator appearing in (62) and o, the cor-
responding eigenvalues:

(I—wL‘L‘A)wZ:O‘Zw” i:1,2.

A straightforward calculation gives

(53) Oy, = 1 oy 7T,
| T
(54) wo—2 |, w—2| Y
v =
Now set
(55) V,=c"w 4 w,,

substitute into (52) and project on the two eigenvectors to find the following
equations for c:

(3) __ ,ld) -
o,¢) =06, 1=1,2,
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from which

) __ L0 ~n
cn =0 0;

where ¢/’ are the initial data determined as before. In this way the following
solution is found:

1wy i, 1 uy— 1,
Wy =G e S
201 +tort)  2(1—itwLT)
Q)n:—]; fu(,%jiuo +} @O—Tiuo '
2(1—1twy )" 2(1 4 1w 7)"

This solution can be written alternatively as

U, = (1 -+ w2 72)7"2(uy cos n6 + v, 8Sin10),
(56)
v, = (1 4 02 7%)""*(v, cos nd — u, sin nd) ,

where the angle ¢ is defined by
7 44
(57) tg 6 = w7 (———2—<6<§).

~

The comparison with the previous result (15) is facilitated by setting n = #/r,

11 .
(58) b —5 - log(l + i),
1
(59) w = —aretg w7,

T

since then eqs. (56) become identical in form with eqs. (15). Clearly a result
identical to (16) can also be obtained.
Expanding eqs. (58), (59) for b and o for small ¢ = w6, we find

(60) b=0wi(1—224..), o=ofl—%+..),

which agrees, to first order in e, with the results obtained from the Abraham-
Lorentz equation and from the approximate treatment of sect. 2. It is inter-
esting to notice that a difference between (38), (b9) and (12), (13) appears
already at second order in &, so that, if the Caldirola equation is indeed the
correct equation of motion for classical charged particles, the domain of va-
lidity of the Abraham-Lorentz theory would not be greater than that of the
simple a priori estimate of sect. 2.
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It is readily shown that the transmission law (3), viewed as an equation
in X for given ¥, has the solution

(61) X“-_-Xn ‘“]ZT(Vn'%_VO)-}_TZVk?

k-0

where X, is the initial condition. Upon substitution of (36) into (61) it is found
that the summation indicated in this equation involves the following sums:

n & cos ko I i3 sin k9
Hog =" L 77 S avgra? T L T 2 ekt
iy (L - o TR = (1= e T2)HE

A closed-form expression for these quantities can be obtained by observing that
the combination R, - iI, can readily be evaluated sinee it is just a geometric
progression of argument exp(id](1 - @?t?) % In this way, separating the
real and imaginary part of the result, we have

n 08 kO sin nod
. (_ IR )‘I 14 o2 T‘.!)—(nl—l)/i 41 ,
S (1 it sing .
(62)
n, sin ko . Ccosno
N elg d— (L k)
2o (1= @} T3)ki2 ‘ sin o ’

These expressions lead to the following results for X, = (x,, y.):

630) o ot Lol 20) (e — @y sinmd — (20 - 0 70) o5 b
i T Uy i o T - ()’(’) (1 2 T."')"/Z ’
el L AL g ‘L

(63b) Yn = Yo —

1 20\ |, (200 =+ @ TUo) SIN WD 1 (20 — 0, TT,) COS N
TG — )+ = e
’ ’ 20, (1 - 0T

The position (r_, y,) at which the particle will eventually come to rest is

1 o2
S T= Ly - 5T Uy — ('; )
= . T

‘ L 2
Yo o 2 Yo - 57 Yo — ’0) -
=~ L

and the distance r, from this point follows the law
., = r(0)(1 - n)'i r?) ufd y
where r(0), the distance of (ry, y,) from (v, y.), is given by

7(0) = (1 -F 1wtV o, .
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It is obvious that all these results (and in particular the last one) bear a strong
resemblance with those of the previous section if (58), (59) are used.

In order to complete the comparison of the Caldirola model with the clas-
sical Dirac one, it would be necessary to obtain an approximate solution of
the relativistic Caldirola finite-difference equation. For this purpose a finite-
difference analogue of the two-timing method should be developed. Efforts
in this direction are currently under way.

* ok %
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@ RIASSUNTO

Si studia il moto non gquantistico di una particella carica in un campo magnetico uni-
forme mediante Pequazione non relativistica di Abraham e Lorentz, quella relati-
vistica di Dirac e quella alle differenze finite non relativistica di Caldirola. Nel primo
e nel terzo caso si ottengono soluzioni in forma chinsa. Alla equazione di Dirac si applica
invece per la prima volta il metodo perturbativo della doppia variabile temporale,
giungendo ad una soluzione priva dei termini secolari presenti nelle soluzioni approssi-
mate ottenute da altri autori.

JBH:kenHe 3apskeHHOR YacTHUBLI B OAHOPOIHOM MATHHTHOM mHOJIe.

Pesrome (*). - - Mol uccilenyeM ABHKEHHC K1dccHYecKOM (He KBAHTOBOI) 3apsKeHHOM
YACTHUBL! B OJAHOPONHOM MATHHTHOM I0Ie, MCIO:1b3ust 1) ypaBHemue Abparava-
Jlopenua, 2) pessaTHEBHCTCKOC ypaBHeHHC Jlupaxa W 3) HEPENSATHBHCTCKOC KOHCYHO-
pa3HocTHOC ypauseure Kasjiupo:sl. B mepBoM u TpEThHEM CIIyYasaX IOJyYaroTCs peLICHHA
B 3aMKHYTOH topme. L1 BTOPOro ¢ilydas Mpl BIOCPBLIC NPUMCHAEM ACHMITOTHYECKHHN
METOA 110 ABYM MEPEMEHHBIM, KOTOPHIH MNO3BOISCT HAM INOIYYHThb NPHOINKCHHOE
peuienye, cBOOOOHOE OT CeKyJIAPHBIX YJIEHOB, NPHCYTCTBYIOUIMX B pe3yNbTAaTax APYTHX
aBTOPOB.

(*) IHepesedeno pedaxyueii,



