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Summary.  - -  We study the motion of a classical (nonquantal) charged 
particle in a uniform magnetic field by means of i) the Abraham-Lorentz 
equation, ii) the Dirac relativistic equation and iii) the Caldirola 
nonrelativistic, finite-difference cquation. In cases i) and iii) closed-form 
solutions are obtained. For case ii) we apply for the first time the two- 
variable asymptotic method which enables us to obtain a uniformly 
valid approximate solution free of the secular terms present in the results 
of previous authors. 

1 .  - I n t r o d u c t i o n .  

I n  the  present  s t u d y  we consider  the m o t i o n  of a classicM (i.e. nonquan ta l )  

cha rged  par t ic le  in a un i fo rm  magne t i c  field in te rms  of the  A b r a h a m - L o r e n t z  

nonre la t iv is t ic  equat ion ,  of the  Dirac  relat ivis t ic  equa t ion  and  of the  Cal- 

dirola nonrela t iv is t ic ,  f inite-difference equat ion.  This pape r  has been  mot iv-  

a t ed  p r imar i ly  b y  the  renewed  interest  in the  classical mo t ion  of charged  par-  
ticles, bo th  for  technological  appl icat ions  a nd  for  f u n d a m e n t a l  reasons (~-5). I n  

par t icu lar ,  the  ch ronon  t heo ry  of Caldirola (6) exhibi ts  an  in t r iguing  va r i e t y  

(1) W. MA•s and J. })J~TZOLD: J.  Phys. A,  11, 1211 (1978). 
(~) M. SOl, G: Z. Natu~'forsch., 29a, 1671 (1974); 3In, 644, 1133 (1976); 32a, 101, 659 
(1977). 
(a) G. H. GO]~D:~C~E: Nuovo Cimento B, 28, 225 (1975). 
(4) H. L]~vIN~, E. J. Mo~Iz and D. H. SHAPP: Am.  J .  Phys.,  45, 75 (1977). 
(5) P. CALDI~OLA, G. CASATI and A. P~osP]~TTI :  Nuovo Cimento A,  43, 127 (1978). 
(6) P. CALDIROLA: ~UOVO Cimento Suppl., 3, 297 (1956); ~uovo Cimento .A, 45, 548 
(1978); 49, 497 (1979); .Lett. Nuovo Cimento, 15, 489 (1976); 16, 151 (1976); 17, 461 
(1976); 18, 465 (1977); 20, 519, 632 (1977); 21, 250 (1978); 23, 83 (1978); Riv. Nuovo 
Cimento, 2, N. 13 (1979). 
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2 ~ 4  A. PROSPERETTI  

of aspects which deserve to be invest igated in view of their  possible bearing 
on the current  microscopic description of the physical  universe. Fo r  the Dirac  
model  we apply  here for the first t ime the asympto t i c  me thod  of two-var iable  
expansion (7) which is found to be ideally suited for the present  purpose and  

to hold considerable promise for other applications of the Dirae equation. 
The unifying theme of this s tudy  is the effect of radia t ion react ion on the 

mot ion of the charged particle (8). I n  the Abrahum-Loren tz  model  this reac- 
t ion is computed  f rom classical c lectrodynamics as the effect of the electro- 
magnet ic  field produced b y  the charge distr ibution of the particle on itself (0,10). 

DI~AC provided a relativistic generalization of this result  on the basis of the  
conservat ion laws for the energy and m o m e n t u m  of the electromag~letic 
field (n-13). 

I n  the equat ion of CMdirola, radia t ion react ion appears  na~turally as a con- 
sequence of the fundamenta l  postula te  of the theory,  namely  the discontin- 
uous in teract ion between the part icle  and  the  externM forces ~eting on it  a t  

successive instants  separa ted  by  a fundamenta l  t ime interval,  the chronon (5,6). 

2.  - P r e l i m i n a r y  c o n s i d e r a t i o n s .  

We per form first of all an  approx imate  analysis of the prob lem with the 
purpose of determining tile impor t an t  physical  quantities.  The basis for this 
t r ea tmen t  is the assumpt ion  tha t  radia t ion react ion is small  so tha t ,  to first 
order, it can be considered as a pe r tu rba t ion  of the mot ion  of a nonradia t ing 
particle. Then, to zero order, the mot ion of the particle is determined solely 

b y  the Lorentz  force through Newton ' s  equat ion 

V 2 
(1) m - -  = e B V ,  

f' C 

where V = IV] is the magni tude  of the veloci ty component  perpendicular  to 
the magnet ic  field, r is the radius of the orbit,  B is the magni tude  of the mag-  
netic field, e is the  speed of l ight ~nd m, e ~re the  m~ss ~nd electric charge of 

(7) See, e.g., J. D. COLE: Perturbation Methods in Applied Mathematics (Waltham, 
Mass., 1968). 
(s) T. ERBER: Fortschr. Phys., 9, 343 (1961). 
(9) J. D. JACKSON: Classical Electrodynamics (New York, N.Y.,  1962, 1975). 
(s0) W. K. H. PANO~SKu and M. PHILLIPS : Classical Electricity and Magnetism (Reading, 
Mass., 1955). 
(~) P. A. M. DmAC: Proc. R. Soc. Londo~ Set. A, 161, 148 (1938). 
(lz) A. O. BARUT: Electrodynamics and Classical Theory o/ 2"ields and Particles (New 
York, N.Y.,  1964). 
(in) F. ROHRLICn: Classical Charged Particles (Reading, Mass., 1965). 
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the  particle. Equa t ion  (1) shows lha t  the l ra jec tory  of the particle is a cireh~ 
of radius 

] 
(2) ~ . . . . .  V ,  

(!)L 

where 

eB 
(:3) ~,)~ : -  - 

~tt(', 

is the La.rmor frequency, i.e. the animlar f requency of the unl)erturbed motion.  
The per tu rba t ion  induced by radiat ion on the mot ion described by  (1) 

and (2) can now b(: computed  approxim'~tely equat ing the t ime der ivat ive  of 
the kinetic energy, -J, mV '2, to minus the radia ted i)ower 1 ) given, according to 
the well-known result  of Larmor  (~.~o), by  

P : "  5 V \ , l t ]  " 

In  this way we m a y  write, using (1) to compute  (dg'(tt)", 

d '2 e,'-(eB V) ~ ' 

f rom which 

(-1) d V _ '2 d" o~, l ' .  
dt 3 me a 

The solution of this equat ion is 

(5)  v = Vo e x p  [ -  Oo)[t], 

where Vo == V(0) and O, 4he so-cMled chronon (~), is given by  

'2 e"- 
(6)  0 = 

~ ~t~( '3 

The radius r can be obtained f rom (5) and (2) as 

(7) r --- r~ e x p  I -  0(,;[ t ] ,  

where r0-:= Vo/ohj. ] t  is seen tha t  ill this approx imate  t r ea tmen t  the trajec- 
tory  of the t)article is a spiral of slowly decreasing radius. I f  ~he veloci ty com- 
ponent  parallel to the magnet ic  field is zero, the pa.rlicle will eventual ly  come 
to rest  a t  the centre of the orbil. Clearly, for the results (5) and (6) to be a|l 
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acceptable  approx imat ion ,  the characterist ic  t ime for the decrease of the  ve- 
locity mus t  be much  greater  than  tha t  for the complet ion of one revolution~ i . e .  

(8) 0 ~  << 1 .  

3 .  - The Abraham-Loren tz  equation. 

A more  precise t r ea tmen t  of the problem at  hand can be made  on the basis 
of the Abraham-Loren tz  equat ion of mot ion for a charged part icle (9,~0) which 
incorporates in a sys temat ic  way the energy loss by  radiation. For  the present  
case this equat ion is 

dV 2 e  2d2V e V x B ,  
( 9 )  m - 

d~ 3 c 3 d~ ~ c 

Taking B directed along the posit ive z-axis and  project ing on the x and y axes, 

we obtain a sys tem of two equations which can be compact ly  wri t ten as 

~ t - - O ~  V = ~ ) ~ A V ,  

where 

(11) A =  ~ 0 1 , V =  I u 

and  u, v a le  the  x and  y components  of V. 

Equa t ion  (10) can readily be solved by  expanding the vec tor  V on the basis 
formed the eigenvectors of A. I n  this way we find solutions with a t ime de- 
pendence of the form 

where 

(12) 

(13) 

and the notation 

( 1 4 )  

/Ji : - -  b • ico, ui : b ' •  io9, 

4 C ~ 
T : 2 0  ---- - - -  

3 m ~  3 

i = 1 , 2 ,  
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has been used. I t  is clear t ha t  Re  r i : b f }  0, SO tha t ,  for the solution to be 
bounded for t -~ oo, we mus t  set q~ - -  0, i ---- 1.2. The appeurance of these non- 

physical,  unbounded solutions is a well-known problem with  the  Abraham-  
Lorentz  and  Dirae  theories which is a consequence of the presence of the second 
t ime der ivat ive  of the veloci ty in (9) (9-~3). This difficulty has led to various 

reformulat ions of the theory  (e.g. in terms of an integro-differential equation, 
see ref. (~3)) and has also been one of the elements t ha t  has induced other 

~uthors to abandon  al together  the differential-equation formulat ion in favour  
of finite-difference ones (6). 

The remaining two constants  p~ are to be determined f rom the initial con- 

ditions u(0)--~ u0, v ( 0 ) =  Vo. Final ly  we find 

( ]5 )  
u --~ exp [--  bt] (uo cos o~t Jr vo sin o~t), 

v ---- exp  [ - -  bt] (-- uo sin o~t q- Vo cos o~t). 

The m~gni tude  V of the veloci ty  is given b y  

(16) V - ( u  2 ~ v ~ )  �89 V o e x p [ - - b t ]  

and is, therefore, seen to decrease exponent ial ly  with t ime as had been ob- 
tained in the approx ima te  t r ea tmen t  of the previous section. I n  order to com- 

pare  the ra te  of decrease, notice tha t ,  for small values of r 

(17) b = ~ 0 [ ~  - -  5 (o~0)  ~ + 0 ( ~ 0 ) 4 ] .  

Hence,  in this limit, we recover the previous result, as was to be expected.  
Similarly, the f requency co with which the orbit  is described is for small  values 
of c%0 

( i s )  o~ = ~,.[1 - 2(~L0) ~ § 0(~L0)4], 

in agreement  with (3). 

Another  integrat ion of (15) gives the co-ordinates x(t), y(t) of the particle. 
We find 

O~Vo + buo exp [--bt]  
(19a) x(t) = xo -f b~ q_ r 2 § be § ~o 2 

(19b) y(t) ~ Yo 

- -  [(o)u, - -  bvo) sin oot-- (buo + ~ovo) cos oJt] , 

~ouo - -  bvo exp [--  bt] [(~OVo b~ + ~ ~ b~ + ~ + buo) sin wt 4- (~ouo-- bvo) cos ~ot], 

where xo ~ x(0), Yo--~ y(0). The co-ordinates x~ ,  y| a t  which the particle 

17 - I I  Nuovo  Cimento ]3, 
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will eventual ly come to rest  clearly are 

COVe + buo o)uo - -  bye 
(20) x~ = Xo + - -  Y~ = Yo 

b 2+(,)2 ' b ~ + o ~ 2  

The distance r(t) f rom this point  can readily be found to be given by  

(21) r(t) ~ ro exp [--  bt] , 

where ro is the initial distance f rom (x~, y~) given by  

Vo (22) ro - -  
(b ~ § o~)~ " 

The t ra jec tory  is thus still a spiral and the result  (22) coincides with (7) for 
small values of o~0. 

4. - The  Dirae  relat ivist ic  equat ion .  

The relativistic generalization of (9), as obtained by  DIRAC (n) and WHEEI~ER, 
and F E Y ~ A ~  (~4), is 

(23) i~, = --me ~z€200 + 0 ~t~ - -  ~ u~iv'i~,, , 

where the dot denotes differentiation with  respect  to the proper  t ime, the 
summat ion  convention on repeated  indices is used, and the metr ic  is such tha t  

u~u~ ~ - -  c ~. Again we l imit  ourselves to the plane ease, for which the spat ial  
pa r t  of eq. (23) e~n be compact ly  wri t ten as 

(24) 1 , , # . # +  (vx P), v] 

where r IT, A have  been defined in (3) and  (11). 

This equat ion does not  appear  to be amenable  to an exact  solution of 
physical  significance. I n  the pas t  PLass  (~5,~) has a t t e m p t e d  an approx imate  
solution b y  u regular pe r tu rba t ion  method,  which, however,  is unsui table  

for the present  problem because it  gives rise to secular te rms of the type  

(14) j .  A. WHEeLeR and R. P. FE:c~tA~: I~ev. Mod. Phys. ,  17, 157 (1945). 
(15) G. N. PLASS: Rev. Mod. Phys . ,  33, 37 (1961). 
(16) H. ARZ]~LI]~S. t~ayonnement et dynamique du co~wuscule chargd ]orteme~t accdlerd 
(Paris, 1966). 
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t cos ogt or t sinoJt which limiB its validity t5o times much smaller than the 

decay time of the motion, which is of the order of (0o~)-k Here we shall treat  

eq. (24) by the method of multiple time scales, especially designed to avoid 

secular terms in the perturbat ion expansion (7). To our knowledge this is the 

first t ime that  this method has been applied to the Dirac equation. 

According to the method, instead of the proper time T we introduce a 

(, fast ~) and a (, slow ~ (dimensionless) time [, [ defined by 

(25a) 

(25b) 

where the parameter  e is given by 

(26) e ~ o)]. 0 . 

I n  the following we shall take e be to small, so tha t  our perturbat ion expansion 

will be suitable in the case of weak energy loss by radiation. The constants 

L , . . . ,  ml , . . . ,  are to be determined by imposing the absence of secular terms 

in the solution. The unknown V(T) is now to be considered as a function of 
the two variables (25), V([, i), so that,  for instance, 

(27) 

and similarly for V. We Mso expand V in powers of e as 

(28) V =  Vo + e V~ 4" (<'g2 4- . . . .  

Substi tut ing (25), (28) into the Dirac equation and separating the terms ac- 

cording to their order in ~,, we obtain a set of equations which can be solved 

recursively according- to the procedure which now we describe. The initial 

conditions of V will be imposed on Vo, so tha t  V1, V~, ... will be taken to satisfy 
homogeneous initial conditions. 

The physicM basis of the method to be used is that ,  in the case of weak 

radiation, the motion can be considered as given by a ~( modulated ~> circular 

motion, i.e. a circular motion of (( slowly ,~ varying radius. The orbit of this 

motion is described in a time of order 2x/o)~ (i.e. an interval A[ of order 1), 
where~s the time scale on which the radius varies appreciably is much longer, 

of order 2z~//eo~ (i.e. an interval Ai of order 1). 

Order e2. To this order we simply find 

(29) 
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which describes an undamped circular motion. We can express the solution as 

(30) Vo = ~(~) R(~) +- fi(~) s ( i ) ,  

where 

(31)  R(~)  = c o s ~  S( [ )  = s in  tl 
- -  s in  ~ ' co s  ~ i 

and ~, fi are suitable integration constants. Notice that ,  since (29) gives in- 
formation only on the dependence of F0 on the (( fast )~ variable ~, g and fl are 
allowed to depend on the (( slow ~) variable t, which has been explicitly indicated 
in (30). The functional  form of this dependence will be determined at  the 
following step. 

Order e. If  we take into account  (29), the equation for this order can 
be wri t ten as 

(32) (e~ + Vo. Vo) \ ~ -  - AVl - e~-- ~ + 'gi-! = - ~ [ \ W ]  e ~ + (Vo ~VoVl 

Upon substi tut ion of (30) we find 

+ 

The condition for the solution to be free of secular terms is tha t  the right- 
hand  side of this equat ion be orthogonal to the solutions of the homogeneous 
equation, which are proport ional  to R and S (7). (The t ru th  of the above state- 
ment  can be proven in an elementary way if (33) is wri t ten out in component  
form and is solved by  elimination. Then one would find equations of the form 
~2ul/~ ~ @ ul = p sin [ -t- q cos ~, the solution of which would indeed contain 
terms of the type  ~sin ~ and ~ cos [ unless p = q = 0.) 

Therefore, we must  require the coefficients of R and S to vanish~ which 
leads to the following system of equations determining e and/3:  

~ii + 1 +  e ~ )  ~ = ~  

(34b) dfi ( ~2 +f l~)  
d t - b  1 + c ~  fi = 0 .  

This system is readily seen to be Hamiltonian,  so tha t  its solution is straight- 
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forward. We find 

e sin 
(35a) ~(~) = (Q exp [2t] - l ? '  

c cos 
(35b) ~(i) = (Q exp [2i] - - 1 ) ~ '  

where 

C 2 
(36) Q - § 1 ,  

v~(o) 

and the angle ~ is to be determined f rom the unitial  conditions, tg ~ ~ Vo/Uo. 
Having determined a and/3,  we can now solve for V~, to find 

(37) V1 = ~ f i )  R(~) + t i f f )  s ( ~ ) .  

The integrat ion constants a~, fl~ will be determined f rom the second-order 
equation. Notice that ,  as was already stated,  we take V~(0) = 0, so tha t  we 
must  impose 

~1(i = 0) = t i f f  = o) = o .  

Order e% Again taking into account  (29), we find the following equat ion 
at  the order s2: 

(3s) (c~ + Vo. o) t--~- - AV~ § ~-~- + m~ ~ -  + ~ 

c ~ + VoX Ylq- + + 
c~ t ~ ]  L o-~-Ft-~-~- -3-f 

'v ,  ~Vo\ r v ~Vo ~. [~Vo ~v,' t 1}) 
+ t  - +  . 

Subst i tut ing (30), (37) we find for V~ an equat ion similar to (33), for which 
again we must  impose the vanishing of the coefficients of R and S in the right- 
hand side. In  this way we obtain the following equations for gl(t) and ill(i): 

~2 
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(39b) d~'~ ( ~ + fl~ 
d--y+ ] +  c--~-- 

,'), 
e2 fl , 

in which  ~ ~nd fi a re  g iven  b y  (35). To  solve this  s y s t e m  i t  is useful  to  se t  

aft)  
~' = (Q e x p  [2 t [  - 1 ) ~ '  

bfi) 
t)l = (q e~p [2t] -- f)~=" 

W i t h  this  subs t i t u t i on  eqs. (39) c~n be  c o m p a c t l y  w r i t t e n  as 

where  

d ai  I 4 a~ c I~' 

sin 2 ~v sin ~ cos 
M = sin ~v cos ~ cos2 T 

p = Q exp  [2[] [m~ sin ~v - -  (2 d- 12) cos ~v] + 12 cos q~, 

q = Q exp  [2t] [m~ cos cf -4- (2 + 12) sin qv] - 12 sin qJ. 

D iagona l i z ing  the  m a t r i x  M we are  led to the  fol lowing pa i r  of (now sepa ra ted )  
equa t ions  

dCl _ cl2 - -  2cQ exp  [2/] 
dr Q exp  [2f] - - 1  ' 

dd~ 4 mlQc exp  [2/] 
a-~ + 0 ~ ) ;~2~  2 ]  d, = Q e~p [2~]-  1 '  

where  

Cl = C o S t a  I - -  S i l l  ~ b  1 ,  

dl = sin ~ a~ ~- cos ~v bl �9 

These  equa t ions  a re  v e r y  read i ly  solved to find 

0 - - 1  ] (40a) c1([) = e logQ _ exp [2i] (12 + 2)i , 

(40b) d l ( [  ) 1 r, exp  [4[] - -  exp  [2[] 

where  h o m o g e n e o u s  ini t ia l  condi t ions  h a v e  a l r eady  been  imposed.  I t  is clear  
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tha t  c~ and d~ diverge as i -+ c~ unless 

(41.) 1.~ z -_ 2 , m~ ---- 0 .  

Thus we see that,  if these constants are chosen in this way, expansion (28) will 
be uniformly valid in time to the present order in s. 

Collecting the previous results we have the following expression for g cor- 
rect to first order in e 

(42) 

where 

( 4 3 )  

( Q_I ) 
V -- (O exp [2so~)~T] - -  1),~ sin r q- e cos q~ log o _ exp ; ~ G ~ T ]  R q- 

( q- (Oexp[2ee)nT]--l)~ c ~ 1 7 6  ' 

R = 
cos (1 - -  2~),,)~ T I 

- - s i n  (1 - -  2s2)e)LT I ' 
sin (1 - -  2e~)e)~  

S = cos (1 - -  2s~)(,~, " 

F rom these expressions we can easily trace the origin of the difficulty encoun- 

tered by PLASS. Indeed, for fixed T we have 

sin (1 -- 2s2)e)~T ~ sine)L:/' -- 2s~e)~ T cos e)~T -4- .... 

Clearly a perturbat ion method which generates the result in the form of the 

series on the r ight-hand side of this equation is bound to give results non- 

uniformly valid if only a finite number  of terms is retained. This problem 
would of course disappear if all the terms in the series were retained. The 

multiple time scale method is superior in so far as at  each time step it adds 

new terms to the perturbat ion expansion but, a t  the same time, it adjusts 

the previously found terms by bringing up to date their time dependence 

through J and i so tha t  no secular terms arise. 

5 .  - C o m m e n t s  o n  t h e  r e l a t i v i s t i c  s o l u t i o n .  

F r o m  eqs. (43) we see that ,  to order s 2, tile angular frequency with which 

the charged particle goes around its orbit is 

( 4 4 )  e)  = e)~[1 - 2 s  2 -I- O ( s ~ ) ]  �9 

Comparing with (18) we see that ,  to order e 2, this is precisely the frequency 

predicted by  the nonrelativistic Abr~ham-Lorentz  theory. The relativistic 

effect enters only in the rate at  which the particle velocity decreases. I f  we let 
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v = IVi, we find to first order in ~: 

(45) v(~') = c(Q exp [2~o)~ T] - 1)-~. 

)~or c - >  co, this result becomes 

V ( E )  ~_ V(O) exp [-- Se,L T[1 + O(s2)JJ, 

which, by  (17), coincides with the nonrelativistic one up to order ~:2 included. 
(In fact, this correspondence can be carried fur ther  to cover the individual 
components  of V since the loguri thm in eq. (42) vanishes for c - ,  ~ . )  

A part icularly interesting feature of the technique adopted to obtaiu our 
approximate  relativistic solution is the fact the unphysical  ((ruuaway ,) so- 
lutions tha t  are contained in the general solution of the ])irac equation arc 
eliminated automatical ly by the mathemat ica l  procedure which takes care 
of the secular terms. Thus the outcome of the calculation is an expression 
which appro• only the physically siguificant solution. 

Finally it may  be of some interest  to consider the energy balauce for the 
relativistic case. F r o m  the fourth component  of (23) we readily obtain in 
the s tandard way (see, e.g., ref. (~5)) 

d[o ( ~)-~] c ' - V - . f + ~ ( V •  "- 
(46) ~ (c" !- V") � 8 9  OV" P i . . . . . .  Oc- (c "~-I V~') ~ " 

The instantaneous radia.ted power is found to be given by 

= :  , T,,- 2 i,,,~,~ ~ (47) P,~d mOco~ V'2(1 T ,," , , 

which agrees with the previously quoted nom'elativistic result for c - +  c~. 
The energy lost in one revolution (i.e. between two t ime instants separated by  
2z/co with ~> given by  (44)) is 

(48) 

(~otice tha t  the second te rm in brackets in (46), the so-called Sehott  energy (8), 
is of second order in ~ "rod, therefore, negligible to the present approximation.)  
I f  the two velocities appearing in (48) are not  very  differeut, we have 05) 

(49) A E  ~ 2usmV~(1  + V2ic2) ~- . 

6 .  - T h e  C a l d i r o l a  f i n l t e - d i f f e r e n c e  e q u a t i o n .  

A total ly different approach to the dynamics of charged particles has been 
proposed by  CAL~)n~OI.A (6) on the basis of a iinitc-difference equation which, 
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in the nonrelat ivist ie  approximat ion ,  is 

(50) m IV(t) - -  V ( t - -  z)] = F[X(t ) ,  V(t), t], 

where F is the force 7 X is the position, and r is given by  (14). This equat ion 

mus t  be complemented  b y  the so-called transmission law, which establishes 
a connection between posit ion and velocity,  

(51) 1_T [X(t) - - X ( t - -  ~)] = ~ IV(t) + V ( t - -  T)]. 

The reader  is referred to the  references cited for a discussion of the advantages  
and of the interest ing possibilities tha t  this finite-difference formula t ion  has 
over the Abraham-Loren tz  equation. S u ~ c e  it to say here t ha t  eqs. (50)7 (51) 
do not  exhibi t  any  unbounded  solutions and that ,  in the vicini ty of an equi- 
l ibr ium point,  all solutions t end  to this equil ibrium point  (~). 

Le t  t. = ,aT be the t ime measured  f rom the initial ins tant  and  set V~ 
= V(t.~). Then, using the Lorentz  force for F in (50) and project ing on the x, y 
axes normal  to the  field B,  we obtain a sys tem of two difference equations, 
which can be wri t ten compac t ly  as 

(52) ( I  --  o~ L zA) V~ = V._~, 

where I is the ident i ty  two-mat r ix  and A and V are defined b y  (11). Le t  w~, 

i = 17 2, be the eigenvectors of the opera tor  appear ing  in (52) and  r the cor- 
responding eigenvalues : 

( I  --  wL'cA) wi  =- v~iw~ 7 i = 1 , 2 .  

A stra ightforward calculation gives 

(53) al,z = 1 ~- iOgLT, 

(54) w~ : 2-~ I 2-~ 1 Ibl~ 2 = 
i 1 '  i - - i i  

Now set 

(55) -(1) W ~ _(l) V n =  o n 1 -~- cn w 2  7 

subst i tu te  into (52) and  project  on the two eigenvectors to find the following 
equations for ~(i). (;n ~ 

") c "1 i = 1, 2, 
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f rom which 

C (i) c ( i ) ( ~  - n  
n ~ 0 i ' 

(i) where c o are the init ial  da t a  de te rmined  as before. I n  this way  the  fol lowing 

solut ion is f ound :  

1 Uo '--iVo 1 Uo--iVo 
~ n  - -  ~ -  2(1 @ i ~ o L Z )  ~ 2 ( 1 - -  iogLv) n '  

1 vo+iUo 1 vo--iUo 
% = 2 (1 - -  io)~ v)" + 2 i l  + i(OLT)"" 

This solut ion can be wr i t t en  a l t e rna t ive ly  ns 

(56) 
~)-'l~(u o cos n~ + Vo sin nO), u .  =- (1 + oJ~ 

~)  "/~(Vo cos n6 --  u0 sin n6 ) ,  v.  = (1 + ~% 

where  the  angle 6 is defined b y  

-;) (57) t g  5 --~ o~L~ - - ~  < d < . 

The  compar i son  wi th  the  previous  resul t  (15) is faci l i ta ted b y  se t t ing  n = t/v, 

(58) 1 1 
b = - - log (1 + ~o~ C ) ,  

2 ~  

1 
(59) (o = - a r c t g  (oLv, 

T 

since then  eqs. (56) become ident ical  in fo rm with eqs. (15). Clearly a resul t  

ident ical  to  (16) can also be obta ined.  
E x p a n d i n g  eqs. (58), (59) for b a nd  o) for  small  e ~ 0%0, we find 

(60)  b = OoJ~(1 - -  2e  2 § . . . ) ,  o~ ---- c%(1 --~-e~ 2 + . . . ) ,  

which  agrees, to  first order  in e, wi th  the  results  ob ta ined  f r o m  the  A b r a h a m -  
L o r e n t z  equa t ion  a nd  f r o m  the  a p p r o x i m a t e  t r e a t m e n t  of sect. 2. I t  is inter-  

es t ing to  not ice  t h a t  a difference be tween  (58), (59) a n d  (12), (13) appears  
a l ready  a t  second order  in e, so tha t ,  if the  Caldirola equa t io~  is indeed  the  

correc t  equa t ion  of m o t i o n  for classical charged  particles,  the  domain  of va- 

l id i ty  of the  A b r a h a m - L o r e n t z  t h e o r y  would  no t  be grea te r  t h a n  t h a t  of the  

simple a priori es t imate  of sect. 2. 
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I t  is rea(lily shown that  the lransmission l:~w (5)~ viewed as an equat ion 
ill X for given V, has the solution 

(61) X,, = - X . -  ~ r(V, '-- Vo) @-c i V~. , 
k -  0 

where Xo is Ibe initial condition. Upon sul)stil.ulion of (56) into (61) it is found 
tha t  the sumanation indicated in this equat ion involves tile following sums: 

<- cos kr) 
,~,  (I 2. (,q z',)~..."-" 

2 Sill kb 
1,, -- x" 

/ t 9 .~ /r o "  
k = , ,  (1 - ; -  ( ! ,s  r ' )  ' "  

A elosed-form expression for these qu~mtitics can be obtained by observing tha t  
the, combination R,, !- iI,, can readily be evahtated since it is just  a geometric 
progression of argument  exp[ i6]  (1 --- o [  ~") :. i n  this way, separaling the 
reM and imaginary pa.rt of tile result, we have 

(62) 

~s cos L'6 sin .nrJ 
,::o {i :-~,,~ ~)-~,:~ =-s i~ i -o  (.t -I- ,q.<-')-'"~';~ + .t ,  

~. sin I,'6 cos ?~.b 
ctg 6 (1. =- (,~ ~")-("="),'". 

;7~ (1 .:- (,)~T~)~, ~ sin 0 

These expressions lead to 1he following resulls for X,~ = (x,,, y ,) :  

1 ( . .,.~ ,'-'.-- ( 6 3 a )  x, ,  = : x o  i S T  Uo - -- 
' 12 ( ~ r , ' r l  2o), (1 (,)nr) . . . . . .  �9 - : - I 2 2 n / 2  

1 ( 2Uot , (2Co--r rUo) s inn6 ! (2uo-- oq, Tro) cosn6 
( 6 3 b )  Y. = ]/O ~ -  "2 "7" V 0 - -  O ) I , T ]  I 2o) i . (1  - -  o ~  z")";:  

Tile position (,%, y=) at which the paI'tiele will eventually come to rest is 

,*'- - -  ,"o -i- =; T "o + (", r ] '  

2Uo t 
.t ro Oh, T] y~o - : y o - ! - : j r  - -  

and the. distance r~ from this point~ follows the law 

'r,, = r(O)(1 �9 oq. r ~) "/~, 

where r(O), the distance of (xo, Yo) from (,r~, y~), is given by 

r(O) ( 1 - I - ~  ~ � 9  
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I t  is obv ious  t h a t  a l l  t hese  resu l t s  (and  in par t icu la . r  t he  l a s t  one) b e a r  a s t r o n g  

r e s e m b l a n c e  wi th  those  of t he  p rev ious  sec t ion  if (58), (59) a re  used. 

I n  o rde r  to  c o m p l e t e  t h e  e o m p a r i s o a  of t h e  Ca ld i ro l a  m o d e l  w i th  t he  clas- 

s ical  l ) i r a c  one, i t  wotf ld  be  n e c e s s a r y  to  o b t a i n  an  a p p r o x i m a t e  so lu t i on  of 

t he  r e l a t i v i s t i c  Ca ld i ro l a  i in i t e -d i f fe renee  e q u a t i o n .  F o r  th i s  p u r p o s e  '~ f ini te-  

d i f ference a a a l o g ~ e  of t he  t w o - t i m i n g  m e t h o d  shouh l  be  deve loped .  Ef fo r t s  

in  th is  d i r ec t ion  a re  c u r r e n t l y  u m l e r  way.  

The  a, u t h o r  is g r a t e f u l  to  Prof .  P .  C_~,DmOT,.X for sugges t ing  this  p r o b l e m  

a n d  for  his  c o n t h m e d  i n t e r e s t  in t he  d e v e l o p m e n t  of t he  s t u d y .  This  work  

ha, s been  s u p p o r t e d  in p a r t  b y  Grup l )o  N a z i o n a l e  di F is ica  5 I a t e m a t i c a  of C .N.R 

a n d  b y  Min i s t e ro  del]~ l )ubb l i ca  I s t ruz ione .  

�9 R I A S S I J N T 0  

Si studia il inoto non qua,ntistico di um~ particella carica in un campo magnctico uni- 
forme media.rite l 'equazione non rel'~tivistica di Abraharn e Lorentz,  quclla relati- 
vistiea di Dirac e que]la alle differenze tinite non relat ivist ica di Caldirola. Ncl primo 
e nol terzo case si ottengono soluzioni in forzm~ chius~. Alla cqua.zione di l)ira,c si applica 
invece per ]a, prim~ volta il metodo pcr turbat ivo della doppia variabile tcmporale,  
giungendo ad una soluzione priva, dei h*rmini secolari prescnti helle soluzioni approssi- 
mate ot tenute  da altr i  autori.  

,~BHTt~eHHe 3ap~DNellllOfi qaCTHHIM B O~HOpO~HOM MaFIilITHOM IIo:ie. 

PeamMe (*). - - M~t Hccne~yeM 5BH~erlHe ~.-mccH~recKofi (tie KBaf~TOBO~) 3apn~errHofi 
~tCTl-illb[ B O~IIrOpO~HOM MaFHI, ITHOM llOJIe, 14CIIO:lb3H~ 1) ypammHr~e A6paraMa- 
5Iopem~a, 2) pc:InTrtnrmrcKoe ypaBnet~He ~ p a K a  n 3) rrepesInrrrBrfCXCKOC Koue~IHO- 
pa3rrocTHoe ypaHBellHe KaJJ;iHpoJIbr. B HCpBOM H TpeTbeM c:iy~ra~x Iio~yqaroTcs peluegua 
B 3aMKHyTO~ d~opMe. ~ q ~  BTOpOFO c~ay~tau M~,t BrlepB~,le np!4MeH~eM aCEMnTOT!4qeCKI4~ 
MeTO~ IIO /IByM rlepeMeHHblM, KOTOpbl~ 1703BO.q~OT ~aM !r/oJIyqHTb FIpH6.-UI~KCHHOe 
pelneHHe, CBO6021HOe OT COKyYDIpHblX qJleltoB, I'IpHCyTCTBylOLIHtX B pe3y~bTaTax ~2pyrBx 
aBTOpOB. 

(') l-lepeee3eno pe3aKqueft. 


