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A simplified model for linear and nonlinear processes in
thermoacoustic prime movers. Part II. Nonlinear oscillations
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The simplified quasi-one-dimensional model of thermoacoustic devices formulated in Part |
[Watanabeet al., J. Acoust. Soc. Am102, 3484—-34961997] is studied in the nonlinear regime.

A suitable numerical method is described which is able to deal with the steep waveforms that
develop in the system without inducing spurious oscillations, appreciable numerical damping, or
numerical diffusion. The results are compared with some experimental ones available in the
literature. Several of the observed phenomena are reproduced by the model. Quantitative agreement
is also reasonable when allowance is made for likely temperature nonuniformities across the heat
exchangers. ©1997 Acoustical Society of Amerid&80001-496607)01512-9

PACS numbers: 43.35.UHEB]

INTRODUCTION The equation of continuity is

The literature contains evidence of the presence of non- dp 1 4
_ , , : _ —+=—(Spu)=0. (1)
linear processes in thermoacoustic devices already at rela- 5t ' S gx
tively low oscillation amplitudes(Atchley et al, 1990a,

1990h. The available linear theory, although quite well de- . e : .
veloped(see, e.g., Rott, 1980; Wheatley, 1986; Swift, 1088 necessarily rectilinearS(x) is the local cross sectional area,
T ' : ' ' ' ndp andu are the gas density and axial velocity averaged

is incapable of dealing with these phenomena, nor does itd th tional Th i tion tak
extension into the nonlinear realm appear easy. Furthermor yer € cross-seclional area. The momentum equation takes

Here, x is the coordinate along the axis of the devic®t

even if such an attempt were successful, one would mo e form
likely end up with a very complex model that would not lend d 19 ) .
itself to the ready exploration of parameter space and the g (PUW+ g 55 (Spu9)+ - =—(u), 2

evaluation of different design alternatives.

These considerations motivated Part | of this stQda-
tanabeet al, 19979, in which an approximate quasi-one-
dimensional model of thermoacoustic devices was develop

where p is the cross-sectional average of the gas pressure
and the drag operatar will be specified shortly. The energy
egquation is used in the form

by integrating over the cross-sectional area. Although sim-9 1 1 L\, 19 02 1
plified, the model is nonlinear. Furthermore, upon lineariza; | 5,—7 P+ 5 PU"| T g5, US| S PT5 pU
tion, it reproduces the pressure field and the eigenfrequencies
of the linear theory exactly. o dTy
In the present paper we continue the analysis of the =ZATw=T) dx ), @)

model extending it into the nonlinear regime. Our initial at- . . o
. S : where y is the ratio of the specific heats of the gdsthe
tempts in this direction(Prosperetti and Watanabe, 1994 :
cross-sectional average of the gas temperafliggx) the

encountered numerical difficulties due to the ready appear- . : A
. . . surface temperature of the solid surfaces in contact with the
ance of quasi-shock waves in the system. Overcoming this

obstacle has required the adoption of a rather complex ”Lgfjs’;ﬂdr;g%;%ﬁ?f&i:ﬁ:h:): Zifggﬁ%begm Int:]hee
merical method that is described in detail in Sec. Il of thisp ! P 0 9

. : stack will be taken as given and independent of time. Work
paper. In Sec. IV a comparison between the numerical resulis . ; . . L .
. . . on an improved model in which this quantity is calculated is
and some available experimental data is presented. Experi- : .
currently under way. The set of equations is closed by as-

mentally observed phenomena such as unstable growth or . - .
. .suming the validity of the equation of state of perfect gases,
the wave and eventual saturation are well reproduced in

gualitative terms. The computed wave amplitude tends to bgamely,
higher than the measured one, probably due, among others, P=RpT, )

to an effectively lower temperature difference than the nomiiynhere R is the universal gas constant divided by the gas
nal value and to other dissipation phenomena not included ifyglecular mass.

the model. A key aspect of the model is the specification of the
terms ¥, .77, andZ. On the basis of the results of Part | we
. MODEL set
We summarize here the equations of the present model. . a9, 9
Their derivation can be found in Part I. Z(W=Dp| 1+ 0y at Tu X U ®
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J J J J y—1T dp J
.yf/(TW—T)ZHpCp 1+0-|— E"FU 07_X) (TW—T) E+H 1+9TE>}T=TBE+H 1+0TE)TW
+k ” L +E uz) (6) +EI‘92p. (15)
nox? | y—1 PTZ P v p ox
P 9 We assume thaiT/dx=0 at the end points. Since the con-
U)=CppQ| 1= g Zr+u —]|U, (7)  stantk, will be taken to be very small and, away from the

stack regionH is also very small, this relation then essen-
wherec,, is the gas specific heat at constant pressure. In thgally implies the adiabatic pressure—temperature relation of
version of the model presented in Part | the term with theperfect gases.

second spatial derivative i{®) was omitted. It is introduced The velocity boundary conditioi13) at x=0 will be
here for reasons discussed in the next section; the quégtity modified for the simulation of a piston-driven tube described
is a constant. In Part | the other parameters have been estater in Sec. IV.

mated by imposing that the results of the linear version of the

model reproduce those of the exact linear theory. In this wa

it was determined that I. THE LINEAR SPECTRUM

As shown in Part | if, in the expressiois)—(7) for the

D(1+tiwby)=iw lf_—vf (8) momentum and energy transfer terms .77, and 7, o is
v chosen as the exact eigenfrequency of any one mode, the

f linear version of the present model witty=0 gives the

H(l+iwbr) =10 7= f (9)  pressure equation of the exact Rott theory for that nisde

Eqg. (6) in Rott (1976 or Eg. (60) in Part I. In a time-
i 1 1 o dependent nonlinear calculation as the one of present con-
Ql-lwbg)= [ (1—fv_ 1—fy -1 (10 cem the separation of modes, although not impossible, is a
nontrivial task that we have not attempted. For the purposes

with o the gas Prandtl number. For a stack consisting off thjs study we shall use a single valuewthat we denote

plane parallel plates spaced by an amduahe has by wo. While this will be treated as an adjustable parameter,
tani(1+i)1/26, it will always be close to théreal part of the¢ fundamental
V:W’ (11 mode of the system for which an approximation can be given
v as
where dy is the viscous boundary layer thickness given by
VYRTy

o= , (16)
5=\ /i—”. 12 L

whereT_W is the average wall temperature:
Outside the stack regioh,should be taken as the hydraulic 1
diameter of th_e local cross section. The functignhas the Tw=— f T (X)dx. (17
same expressiofll) with &y replaced by the thermal bound- L Jo

ary layer thicknessj = 5V/Jf—7- Graphs ofif/(1-f) areé  1ne need to fix the parameter has a strong effect on the
given in Part |. Upon separating real and imaginary parts, thgnear spectrum of the problem, that is reflected in the non-
coefficients in the left-hand sides 8)—(10) are readily de- |inear calculations.
termined. . . _ To illustrate this point, we show in Fig. 1 the imaginary

If the parametew is chosen as one of the linear €igen- part |m , of the exact linear eigenvalues as a function of the
modes of the system, a linearization of the present modgl,yqe numben, with 1<n=20. The circles are connected
will reproduce the exact pressure eigenequation of the lineay 5 solid line as an aid to the eye. The conditions here are as
theory (Rott, 1976. In a nonlinear, time-dependent calcula- gpacified in Sec. IV below in connection with Fig. 7, but the
tion, frequencies cannot be easily separated and a definigaenerm behavior is typical. The eigenvalue problem was
single value ofw must be committed to. We address this solved by the inverse iteration methé@resset al, 1992. It

point in the next section. _ is seen that only the first mode is unstable @m<0). The
_ For the present prime mover case, the velocity must vanseond one has a relatively small dampinith a Q value of
ish at the tube ends: approximately 170) and all the other ones are heavily
u=0 atx=0, x=L. (13  damped. If one calculates the linear eigenvalues keeping
] o equal tow=3327.7 s%, instead, the results shown by the
The momentum equatiof2) then implies that triangles and the dashed line are found. Although the first
p few eigenvalues are not very different, the approximation
5=0 at x=0, x=L. (14 renders several of the higher-order modes unstable as well.

The consequence of this is that, while a numerical calcula-
As shown in [, it follows from the energy and continuity tion with a coarse discretizatiotand a consequently large
equations that the temperature satisfies, at both ends, numerical dampingwould superficially look acceptable, an
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FIG. 1. Imaginary part of the first 20 eigenvalues for the system and conFIG. 2. (a) Imaginary part of the first 20 eigenvalues for the system and
ditions of Fig. 7 below. The circles connected by the solid line are the exactonditions of Fig. 8 below. The circles connected by the solid line are the
results of the linear theory. Note that only the first mode is unstableexact results of the linear theory. The other lines, in descending order, cor-
(Im w,<0). The results shown by the triangles and the dashed line correrespond taw,=2658.6 §2, k,=0.42 nf/s, wy=2791.5 s, k,=0.31 nf/s,
spond to setting the parameterin Egs.(5)—(7) equal tow defined in(16) wo=2858.0 51, k,=0.26 nfls, w,=2924.4 51, k,=0.21 nf/s.

that here has the value 3327 7sThe higher modes become unstable with

this approximation. The squares and the dotted line are the linear spectrum

for w=w(=2762.0 s andk,=0.25 nf/s. scribed by calculating the exchange terms by means of con-

volutions in time with kernels given by the inverse Fourier

G h i Id lead h id h ftransforms 0f(8)—(10). This procedure would, however, add
attempt to refine the grid would lead to the rapid growth Of,q complexity to the calculation. Another approximate
short-wavelength instabilities that destroy the calculatlon,scheme possibly better than the one used here, could be to
The thermoacous.tic effe_c t requires_ a very delicate balanc‘Slpecify ihe exchange terms by means of differéntial equa-
and dqes_ not easily survive apprOX|mqt|ons_ tions rather than explicitly as done above. This approach has

.Th|.s IS the reason why we havg mtrod_uced a S_econdbeen advocated by Achard and Lespindi®81) for the

derivative in the exchange tern¥. With a swtablg 'adjust- similar problem of the time-dependent flow in a tube.
ment of wg anql of the pseudo-the_rmal Cor_'dUCt'V'tyk“' We plan to pursue this idea in future work. For the time
we can approx_|mate the important first few linear modes an‘E)eing we proceed in the manner described. Even though this
?ampen the T]'gheﬁ[ one?. ﬁ\s an exain;glgzvxcl)ejl(mgtsd is an approximation, it enables us to gain some insight into
ine, squaresthe effect of choosings,= HSTandky,  the time-dependent problem, nonlinear growth, and eventual

=0.25nf/s. It is seen that the only large differences be-g .y ration, for which no theoretical framework is currently
tween the exact and the approximate results are relegated Qailable

the high-order modes that are heavily damped anyway an
should therefore not have a large effect on the results. It
might appear that treating both, andk,, as adjustable pa-
rameters makes the formulation of the model nonunique. Ihll. NUMERICAL METHOD
practice, however, we find that the two requirements of
matching the growth rate of the unstable mode and requiring
the higher modes to be all damped leaves little room to ad-
just the values of these two quantities. In particular, as will
be seen in Sec. IV, the nonlinear steady-state amplitudes are
not greatly affected.

Figure 2 is similar to Fig. 1 and shows some examplegor the momentum fluxm and total energe it is easy to
fOI’ the case Of F|g 8 beIOW. The CiI’C|eS and the Solid Iine arqlerify that the Continuity, momentum, and energy equations
agail’l the exact Spectrum, for which m:_473 S_l. The (l), (2), and(3) may equiva|ent|y be written as
other lines, in descending order, correspond &g
=2658.651, k,=0.42nf/s (Imw;=—4.715Y), o,

With the expression&)—(7), and the definitions

_ _ 1 1 ) 18
m=pu, e—ﬁersz, (18

dp Jm mdJS

=2791.5s8%, k,=031nf/s (Imw;=—4.735Y), w, 4 —+——=0, (19)
=2858.0s%, k,=0.26nf/s (Imw,=—472sY, o, 9 X S
=2924.4 51, k,=0.21 nf/s (Imw;=—4.72 Y. All these
curves differ by very little for the first few modes which om ¢ mu dS
carry most of the energy. The main differences are in thézy T 7x (MU+tP)+ <5 o
higher modes, which have a minor effect on the waveform of 1
the steady-state solution as will be seen in Sec. IV. A Jm 4
In principle, one can avoid the approximations just de- =0=-Dim+dy W+ S ax (mus) ' 20
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de, @ os Y es IS P
ot T ox tute+p)] —(e P o w=|ml, (23
e
de om 1
=Hcpp(T,—T)—yHo; 7t (ue)—u 2 u? the flux vectorF by
p 1o ] dT, o
12 ax (MU)|—m - Cy(HOr+Q) F=| pu“+p (24)
(et+p)u
T i i i
+ dT. c,Q om + 9 (um) | +k &—2, (21)  the vectors accounting for the effect of changes in the cross-
dx PR ot ax " x :
sectional area by

We rewrite this system of equations in vector form as

pu
ow , F e - s=| pu? %Z—S (25
T TSTBgth @2 (e+p)u| S
wherew is given by and
J
0 0
0 _Dav O
B= : (26)
1, dT,
Hor coTw—5 u?|  yHOru+ = c,Qog —yHé6:
0
—D|m+ b Sum
m+ —/—— u
b= 1 (27
O+ dT 8g 9 9%e
Hcp p(TW—T)+ [puS(T -D]|— cpQ|m (umS+kn pN:

Our first attempt at solving Eq22) was based on a Evidently, a TVD scheme cannot produce an oscillatory so-
straightforward centered-difference spatial discretizatiorlution starting from monotonic initial data. We have found
with a predictor—corrector time stepping proced(Peosper-  that the scheme proposed by Har{@®83 proved suitable
etti and Watanabe, 1994We found that, whenever condi- for our problem.
tions were such that quasi-shocks developed, a series of spu- The system(22) is first discretized explicitly in time as

rious grid-dependent oscillations also appeared. Such ntl .n  Zn “n

S . . . W T—W; E —F
oscillations are a well-known numerical artifact affecting (1-BM) — L i1 "1/Z+§:biﬂ, (30)
computations in the presence of steep gradiése®, e.g., At Ax

Roe, 1986; Fletcher, 1988and their elimination has moti- where superscripts indicate time levels and subscripts spatial
vated a large amount of research. While a complete bibliognodes. The spatial derivatives appearinddimnds are dis-
raphy would be out of place here, it may be useful to cite thecretized by central differences. The essential aspect of the
review by Roe(1986 and a few other paperSod, 1978; numerical method is the manner in which the modified fluxes
Harten, 1983; Osher, 1984; Osher and Chakravarthy, 1984 are specified in terms of some auxiliary quantities that we
Sweby, 1984; Harteet al, 1986; Harten and Osher, 1987 now define.

This effort has led to a new family of schemes for hyperbolic Let
equations known as total variation diminishin@VD)

schemes. The name is a consequence of the definition of the 1 1
total variation TV(u") of a grid function{u}, i=1,2,..., rRu—| Y€ . R?= ,
N+1 at timet": eP_ e S22
2
N g (31)
VUM => |u',—ull, (28) 1
=1 @_| utc
and of the fact that these schemes have the property that R™= e+tp
TV(u") is a nonincreasing function of time: P tuc
TVUM=TV(u"t?). (299  wherec=yRT, and
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aV=u—c, a®=u, a®=u+c. (32
Furthermore, let
(1) 1
& =5 | (Pi+17P) = Pis v U1~ Ui)
i+1/2
2
Pi+12Mi+1/Ci+ 172 }
—s)l, 33
(ui+1/2_ci+1/2)5i+1/2(3+1 ) 49
(2) 1 2
"=z [Chadpiva=pi) = (Piva =P, (34)
i+1/2
(3) 1
Y (Pi+17 Pi) +pi+1Ci+ 12 Ui+ 17 Uj)
i+1/2
2
Pi+12Ui+1/Ci+ 172
-S|, (39
(Ui+1/2+ci+1/2)Si+l/2(S+l )

20 T T T

p (Pa)

_10 i

1
0.00 0.05 0.10 0.15 0.20
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FIG. 3. Decay of pressure oscillations in a rigid isothermal tube for the
conditions described in the text. The solid line is the result of the numerical
computation. The dashed lines are the exponential envelope proportional to

where the quantities carrying a half-integer subscript are cal=exp(-bt) with b given by (40).

culated as arithmetic averages, elg., /o= 1/2(u; 1+ U;).
Then

3

A 1 At
Fivi=5 (FieatF)+ 5+ |:21 [gi" +g{l1—Q(ryy
+H " IRY 12, (36)
where
At gi'1i—g’
V(l)zﬁ al, 7i(|)=_l+a(l) I (37

The quantitiesgi(') appearing in these definitions are a cor-
rection to the components of the flialong the character-
istic directions and are the smaller one in modulus betwee

I I I
[Q( Vi(421/2 - Vi(+)1/2] a'i(+)l/21

and

| | |
[Q(w ) — vV plef .

(38)

This flux correction is introduced to account for the discreti-
zation error and guarantees second-order accuracy in spa

The last quantity to be defined is the functi@x) that
may be considered as a modified. Specifically, following
Harten (1983, we take

X2

Q(x)= E-f— e, for |x|<2e,

for |x|=2k€,

=[x, (39

with e=0.1. This quantity plays the role of an artificial vis-

cosity.

Since the integration is explicit in time, the preceding

n

ce.

tion to this problem is available, this simulation is a useful
test of the numerical method. Theoretically the solution con-
sists of exponentially damped oscillations with a decay bate
given by (see, e.g., Pierce, 1989, p. 534; the spatial decay
rate given in this text can be converted to a temporal one by
dividing by the sound speet= \ yRT,):

(y—1) woa'krlz 1+ y—1

wherea is the tube radiug the gas thermal conductivitp,
the undisturbed pressure, angh=mc/L the natural fre-
guency of the eigenmode.
The pressure at one of the tube’s rigid terminations
given by the numerical method described in the previous
section is shown in Fig. 3 as a function of time. The tube has
a length of 99.9 cm and a diameter of 3.82 cm. The gas is
helium at a static pressum, =170 kPa and temperatufg,
=293 K. For this case there are no unstable modes and we
setk,=0 in Egs.(8) and(9) and fix w as in Eq.(16).
At time O the system is at rest with an initial pressure
disturbance consisting of the lowest eigenmode with an am-
plitude of 17 Pa. The dashed lines in Fig. 3 are the exponen-
tial envelopexexp(—bt) with b given by (40). The agree-
ment between the analytical and numerical results is
remarkably good, which gives some confidence on our com-
puter code. For these calculation 500 nodes proved sufficient
for a good resolution and the time step was adjusted so that
the maximum Courant numbert|a(|/Ax, with thea” de-
fined in Eq.(32), remained below 0.8.

As another test, we consider the nonlinearly driven tube

b (40

:gy

formulas are sufficient to construct the solution at all theStudied by Gaitan and Atchlg#993. The tube contained air

interior nodes at time level"! starting from the known

at ambient pressure and temperature and was 82.55 cm long

values at". The solution at the two boundary nodes is cal-With a diameter of 5.82 cm. For this simulation we excite the

culated from the boundary conditio$3)—(15).
IV. RESULTS

tube by prescribing a sinusoidal gas velocityxat0. The
boundary conditions on pressure and temperature are still
given by (14) and (15). Again there are no unstable modes

As a first test of the numerical method, we consider theand we sek,=0.

thermoviscous damping of the lowest linear acoustic mode in

In the experiment the driving frequency was chosen so

a rigid-walled, empty, isothermal tube. Since an exact soluas to match the pipe’s frequency. We found that by using the
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FIG. 4. Level of the harmonics of order 2—8 of a tube driven at resonancg g, 5. The solid line is the cross-sectional area of the thermoacoustic prime

by a piston as a function of the level of the fundamental normalized accordy,qyer of Atchleyet al. (1992 and Atchley(1994 according to the geo-

ing to (41). The lines are the present computational results. The data thénetrical specifications given in the papers. The dotted and dashed lines are

experimental points of Gaitan and Atchl€}993. the cross-sectional area after applying the smoothing operation of Part | 100
and 310 times, respectively.

reported valud =209 Hz, our “numerical pipe” was not in

exact resonance conditions. To match the resonance it was We have pointed out in Part | the effect on the linear
necessary to usie=207 Hz. This sensitivity is not surprising growth rate of the instability of using discontinuous versus
in view of the rather larg€ value of this system that, on the smoothed prescriptions for the axial variation of the cross-
basis of our numerical results, is approximately 134. Gaitarsectional area and of the wall temperature. The discontinui-
and Atchley(1994 show in their Fig. 4 the dependence of ties in area and axial derivative of the wall temperature are
the higher harmonic pressure amplitudes on the strength pgertainly not a realistic approximation to the actual spatial
rameter, i.e., the amplitude, of the fundamental normal- distribution of these parameters and their presence depends

ized by on featuregsuch as natural convection, microstreaming,)etc.
that are not included in the model. In Part | we have used a
smoothing prescription
Py =@ P, (41
1 ype *
TuO) = A Tw(Xi 1) + 2T () + Tw(Xi+1)] (42)

where B is the nonlinearity parameter equal to 1.2 for air.
They do not report a value fd@ and we used the one de- (wherex; is theith spatial nodgiterated a number of times
duced from our computations quoted above. A comparisoiso as to have results in agreement with reported data, and we
of the calculated(lines) and measuredcircles results is follow the same approach here. From the data reported by
shown in Fig. 4. The comparison is very good especially forAtchley (1994 for a mean pressure of 376 kPa and a tem-
the lower harmonics that have a higher level and are thereperature difference of 379 K along the sta@id, presum-
fore less sensitive to noise and parasitic damping. For thesgbly, an ambient temperature of 293, Kne finds that the
calculations we used 500 nodes and a maximum Courariemporal growth rate of the perturbation is 5.0.sUpon
number of 0.4. assuming discontinuous distributions f8fx) andT,,(x) we

We now turn to thermoacoustic prime movers, specifi-find from the exact linear theory 11.7% By repeating the
cally the helium system used in the experiments of Atchleysmoothing operation 310 times, the calculated linear growth
et al. (1992 and Atchley(1994. As described in these ref- rate becomes 5.13& The cross-sectional area and wall
erences, the tube length was 99.89 cm and the diameter 3.82mperature distributions resulting from smoothing 100 and
cm. The cold portion of the tube was 87.5 cm long. At the310 times are shown in Figs. 5 and 6. The corresponding
end of this section was the cold heat exchanger consisting dfitial unsmoothed distributions are shown by the solid lines.
two identical structures separated by 1.5 mm. Each structur€he difference is not large, which gives an indication of the
consisted of 25 nickel plates 0.45-mm thick, spaced by 1.04ensitivity of the thermoacoustic energy conversion process.
mm and 1.02 cm long. Attached to the second part of then all the calculations shown in this section we have used
cold heat exchanger was the stack consisting of 3.5-cm-longrea and temperature distributions smoothed 310 times.
stainless-steel plates spaced by 0.77 mm, with a thickness of After matching the linear growth rate with the exact lin-
0.28 mm. The hot heat exchanger was attached to the othear theory, in order to proceed with the time-dependent non-
end of the stack. This heat exchanger was equal to the coléhear calculation, we must select values of the parameger
one except that it consisted of only one section 7.62 mnand pseudoconductivitl,. By a process of trial and error
long. The hot section of the tube was 5.5 cm long. The areave find that, withk,=0.25 n¥/s and w,=2762.05?, the
blockage fraction was approximately 30% in the heat exdinear growth rate becomes 5.01'40 be compared with the
changers and 27% in the stack. measured one of 5.08 On the basis of a convergence
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the simulation of the case studied by Atchlgy994 and shown in Fig. 7.
The dotted and dashed lines are the distributions after applying the smoot!
ing operation of Part | 100 and 310 times, respectively.

study we found that 2000 spatial nodes are sufficient for ¢
grid-independent solution. The maximum Courant numbe
allowed was 0.4.

Figure 7 shows the numerically computed pressure a
the cold end of the tube versus time for these conditions. Th
initial disturbance is taken to be the fundamental lineat
eigenmode, with an amplitude of 100 Pa. The dashed line
are graphs of an exponential growth with the growth rate of .
5.13s ! of the exact linear theory. Figure(@ shows the R0 0z 04 08 08 10 12 14 1s
initial buildup of the oscillations. The initial growth rate as (b) Time (sec)
deduced from these results is exponential, but at a rate o
5.25 s, just slightly higher than the exact linear result of FIG. 7. Pressure versus time at the cold end of the prime mover for the case
5.13 $1. We consider this 2.3% difference as an acceptabletudied by Atchley(1994) described in the texta) shows the initial buildup
consequence of the numerical error affecting the time-Of the oscillations(b)_shows the long-term evo!ution of the _system to steady

. . . state. The dashed lines portray an exponential growth with the growth rate
dgpendent caI(_:u_Iat|on. At first the numerical results tracky 5 1351 of the exact linear theory.
with great precision the exponential growth. Soon thereatfter,
however, nonlinear effects set in as evidenced by the grow-
ing asymmetry between positive and negative pressuréhe experimental setup used in this work was the same de-
peaks. Figure (b) (note the change in the vertical scale scribed before in connection with Fig. 7.
shows the same results over a longer time interval. Here one Figure 8 shows the computed steady-state pressure dis-
sees the eventual divergence of the linear result as opposéarbance at the cold end of the tube for a mean pressure of
to the finite-amplitude stabilization of the nonlinear one. 307 kPa and a temperature difference along the statk

Figure 7b) shows that the system saturates at a positive=368 K. The solid line is for wy=2658.65%, k,
pressure amplitude of approximately 25.0 kPa, i.e., about0.42 nf/s and the dashed line fow,=2924.45%, k,
6.6% of the static pressure. If the same calculation is re=0.21 nf/s. The corresponding linear spectra are shown by
peated with cross-sectional area and wall temperature distrthe curves marked with stars and diamonds, respectively, in
butions smoothed only eight times instead of 3D&., very  Fig. 2. The two waveforms are very similar to each other, in
nearly discontinuoys the saturation value for the positive particular for what concerns the period and the amplitudes of
pressure amplitude is approximately 41.0 kPa. Again, this ishe positive and negative portions. The main difference is the
an indication of the sensitivity of the process. greater amount of fine structure present in the dashed curve

We have found two papers in the literature where datahat reflects the weaker attenuation of the higher modes evi-
are presented for nonlinear steady oscillations. One is bgent from Fig. 2. The corresponding spectra are shown in
Atchley et al. (1990, and the other by Swiff1992. The Fig. 9, where also one observes mainly differences in the
stack used by the latter was of the honeycomb, rather thahigh-frequency components.
parallel plate, type and therefore cannot be simulated in the These results should be compared with those shown in
framework of the present model. Hence we focus on thd-igs. 4 and 5 of Atchlet al. (1990. Qualitatively, the nu-
results of Atchleyet al, and in particular on those corre- merical results are close to the experimental ones. The pe-
sponding to a nominal temperature difference along the stackiod, 1.95 ms, is identical within the precision with which it
of 368 °C that are documented in good detail in their papercan be read from the figure. The waveform exhibits a strong

p (kPa)
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FIG. 8. Steady pressure waveform for a temperature difference between tt 0
hot and cold ends of the stadkT =368 K and the conditions of the experi-

ment of Atchleyet al. (1990 described in the text. The solid line is for —101 1
0,=2658.6 51, k,=0.42 nf/s, the dashed line fowy=2924.4s?, k, Y |
=0.21 nf/s. The corresponding linear spectra are shown, respectively, b
the stars and the diamonds in Fig. 2.

— 30 .
__40_ -
asymmetry, with the negative amplitude much smaller thar >
the positive one. The general spectral shapes also comps
favorably with the spectrum flattening out 35—40 dB below
the fundamental around the 6th to 7th harmonic. The majo -80F
difference between calculations and experiment is the ampli _gof
tude, that is about 24.7 kPa according to Fig. 8, but 13.5kP . . . ‘ . . .
in the data. 0 ! 2 3 4 S 6 7 8
Atchley (private communicationhas pointed out to us ) frequency (kHz)

that his temperature data were obtained from a thermocouple o
near the outer wall of the tube and, at such high power, gmi > Spe(itlra Of_the P Wavem_rms o thipre\ﬁous figenés for

) - ’ wo=2658.6 51, k,=0.42 nf/s, (b) for wy=2924.4 51, k,=0.21 nf/s. The
substantial temperature nonuniformity across the hot stackoresponding linear spectra are shown, respectively, by the stars and the
could be expected, as large as 50 K, with a likely value ofdiamonds in Fig. 2.
20-30 K. The present model is below the instability thresh-
old if AT is reduced by 50 K. The result for a reduction of 25 ) , .
K is shown in Fig. 10. Now the maximum pressure distur-€MpPerature gradient, withT=325 K. In our model this is

. _ 71 .
bance is 14.6 kPa, with the peri¢t.97 ms hardly affected. 1USt below threshold, with Inv,;=0.44 s In view of the
However, the waveform shown in Fig. 10 exhibits a front €Xtreme sensitivity of a system so close to threshold to even
less stee,p than the experimental one minute adjustments of parameters or operating conditions,

Other features of the results that can be compared with/€ 90 n?tlfeel that a comparison with these data would be
experiment are the ratio of the positive and negative amp"_meanlng ul. ) _ )
As a last topic we give two examples that illustrate the

tude, and the time interval between the zero crossings, e.g.hc  the tube’ ional distributi h
of the positive part of the wave. The data for these quantitie§ €t Of the tube’s cross-sectional area distribution. The con-

are 1.53 and 0.77 méThe latter quantity may, however, be ditions and the system sir_nulated are the same as in Fig. 8
affected by the fact that the experimental waveform exhibitsexce‘)ft thlat the csros_s—se_ctlonsl area of the midsection of the
some dc bias as the net area under the curve does not seenf{f€: forsL<x<aL, is given by

—60F .
—-70}

Relative level (dB)

vanish) For the two computations of Fig. 8 the positive/ 2% 2

negative ratio is 2.29 and 2.37, while the interval between  S(x)=Sy|1+C cos = T—l” ,

zero crossings is 0.82 ms. For the smalldr case of Fig. 10,

the corresponding values are 1.97 and 0.90 ms. for LL<x<2L. (43)

Clearly, there are discrepancies between data and theory.
Unfortunately, on the basis of the available information it iswhile S= S,= 37(3.82) cn¥ elsewherdexcept for the stack
not clear whether the origin of the observed differences reregion. Figure 11 shows the steady-state pressure distribu-
sides in the approximations of the present model or in thdion at the cold end of the tube fa€=0.2. The pressure
data. More detailed experiments would be highly desirable t@amplitude is now about five times that found for the
help resolve the matter. constant-area case. The formation of a shock is also evident
Atchley et al. (1990 also report results for a smaller from the figure. If the tube is narrower in its central region,
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FIG. 10. Steady pressure waveform fof = 343 K and the other conditions FIG. 12. Steady pressure waveform for the same conditions as in Fig. 8,
as in Fig. 8. Time in ms. except that the tube’s cross section is decreased in the midsection according
to (43) with C=—0.2. Time in ms.

on the other hand, we have the result shown in Fig. 12 for . o o
C=-0.2. The amplitude of the wave is now reduced byconclusmns on the reason for this discrepancy at this time. It

about 3% to approximately 24.4 kPa with respect to the coniS Possible that in the experiment the actual temperature dif-

stant area case. While the amplitude is not much differemf,erence along the stack was less than thg nominal value. It
the waveform is strongly affected with a markedly smallerWould also appear from the reported experimental waveform
steepening. These results are consistent with the correspon@i:-'g' 4 of Atchleyet al,) that the mean of the pressure over
ing linear ones presented in Part . the wave is _not zero. W_e_have also_found that the simulation
of this case is very sensitive to details of the temperature and
cross-sectional area distribution. Lastly, the model requires
V. CONCLUSIONS the introduction of a certain number of approximations con-

In this paper we have adapted the model introduced iperning critical terms that govern the energy exchange be-
Part | to the nonlinear regime and we have described a reliween the stack and the wave, and it is possible that the
able numerical method for its integration. The numerical reJesults are negatively affected by these approximations.
sults agree very well with experiment for the case of a reso- A more detailed characterization of future experiments
nantly driven tube. For a thermoacoustic prime mover, thevould be desirable to resolve some of these points. Hope-
model has been shown to describe the growth and eventuiflly. this paper will stimulate such further experimental
saturation of the oscillations. While the qualitative predic-Work. On the theoretical side, better approximations of the
tions match observation, the computed wave amplitude for §nergy exchange terms of the model should be sought. To
case studied by Atchlest al. (1990 exceeds the experimen- this end we are currently pursuing the idea mentioned at the

tally reported one. It does not seem possible to reach definitgnd of Sec. I.. o _
Even with the limitations and uncertainties that affect it,

the simplified mathematical model that we have developed is

p (kPa)

pe=307kPa, AT=368K

140
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I 1 1 1 i !
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of some interest. In the first place, it is the only model to date
capable of describing the time-dependent behavior of ther-
moacoustic prime movers. Second, it can be used to compare
design options. For example we have found that, under iden-
tical conditions in the stack, a device with a thicker cross
section in the central part will develop a much stronger wave
than one with a constant cross section.

Clearly, the present formulation can be extended in sev-
eral directions. In the first place, we can account for heat
conduction in the stack. Second, we can extend the model to
the refrigerator case. Third, we can pursue the nonlinear as-
pects at the analytical level by using the techniques of
weakly nonlinear stability theory. Efforts in all these direc-
tions are currently under way.
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