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The simplified quasi-one-dimensional model of thermoacoustic devices formulated in Part I
@Watanabeet al., J. Acoust. Soc. Am.102, 3484–3496~1997!# is studied in the nonlinear regime.
A suitable numerical method is described which is able to deal with the steep waveforms that
develop in the system without inducing spurious oscillations, appreciable numerical damping, or
numerical diffusion. The results are compared with some experimental ones available in the
literature. Several of the observed phenomena are reproduced by the model. Quantitative agreement
is also reasonable when allowance is made for likely temperature nonuniformities across the heat
exchangers. ©1997 Acoustical Society of America.@S0001-4966~97!01512-9#

PACS numbers: 43.35.Ud@HEB#

INTRODUCTION

The literature contains evidence of the presence of non-
linear processes in thermoacoustic devices already at rela-
tively low oscillation amplitudes~Atchley et al., 1990a,
1990b!. The available linear theory, although quite well de-
veloped~see, e.g., Rott, 1980; Wheatley, 1986; Swift, 1988!,
is incapable of dealing with these phenomena, nor does its
extension into the nonlinear realm appear easy. Furthermore,
even if such an attempt were successful, one would most
likely end up with a very complex model that would not lend
itself to the ready exploration of parameter space and the
evaluation of different design alternatives.

These considerations motivated Part I of this study~Wa-
tanabeet al., 1997!, in which an approximate quasi-one-
dimensional model of thermoacoustic devices was developed
by integrating over the cross-sectional area. Although sim-
plified, the model is nonlinear. Furthermore, upon lineariza-
tion, it reproduces the pressure field and the eigenfrequencies
of the linear theory exactly.

In the present paper we continue the analysis of the
model extending it into the nonlinear regime. Our initial at-
tempts in this direction~Prosperetti and Watanabe, 1994!
encountered numerical difficulties due to the ready appear-
ance of quasi-shock waves in the system. Overcoming this
obstacle has required the adoption of a rather complex nu-
merical method that is described in detail in Sec. III of this
paper. In Sec. IV a comparison between the numerical results
and some available experimental data is presented. Experi-
mentally observed phenomena such as unstable growth of
the wave and eventual saturation are well reproduced in
qualitative terms. The computed wave amplitude tends to be
higher than the measured one, probably due, among others,
to an effectively lower temperature difference than the nomi-
nal value and to other dissipation phenomena not included in
the model.

I. MODEL

We summarize here the equations of the present model.
Their derivation can be found in Part I.

The equation of continuity is
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Here, x is the coordinate along the axis of the device~not
necessarily rectilinear!, S(x) is the local cross sectional area,
andr andu are the gas density and axial velocity averaged
over the cross-sectional area. The momentum equation takes
the form
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where p is the cross-sectional average of the gas pressure
and the drag operatorD will be specified shortly. The energy
equation is used in the form
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whereg is the ratio of the specific heats of the gas,T the
cross-sectional average of the gas temperature,Tw(x) the
surface temperature of the solid surfaces in contact with the
gas, and the operatorsH, Q will be specified below. In the
present model, the temperature distributionTw along the
stack will be taken as given and independent of time. Work
on an improved model in which this quantity is calculated is
currently under way. The set of equations is closed by as-
suming the validity of the equation of state of perfect gases,
namely,

p5RrT, ~4!

where R is the universal gas constant divided by the gas
molecular mass.

A key aspect of the model is the specification of the
termsD , H, andQ . On the basis of the results of Part I we
set
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wherecp is the gas specific heat at constant pressure. In the
version of the model presented in Part I the term with the
second spatial derivative in~6! was omitted. It is introduced
here for reasons discussed in the next section; the quantitykn

is a constant. In Part I the other parameters have been esti-
mated by imposing that the results of the linear version of the
model reproduce those of the exact linear theory. In this way
it was determined that
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with s the gas Prandtl number. For a stack consisting of
plane parallel plates spaced by an amountl one has

f V5
tanh~11 i !l /2dV

~11 i !l /2dV
, ~11!

wheredV is the viscous boundary layer thickness given by

dV5A2m

vr
. ~12!

Outside the stack region,l should be taken as the hydraulic
diameter of the local cross section. The functionf K has the
same expression~11! with dV replaced by the thermal bound-
ary layer thicknessdK5dV /As. Graphs ofi f /(12 f ) are
given in Part I. Upon separating real and imaginary parts, the
coefficients in the left-hand sides of~8!–~10! are readily de-
termined.

If the parameterv is chosen as one of the linear eigen-
modes of the system, a linearization of the present model
will reproduce the exact pressure eigenequation of the linear
theory ~Rott, 1976!. In a nonlinear, time-dependent calcula-
tion, frequencies cannot be easily separated and a definite
single value ofv must be committed to. We address this
point in the next section.

For the present prime mover case, the velocity must van-
ish at the tube ends:

u50 at x50, x5L. ~13!

The momentum equation~2! then implies that
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As shown in I, it follows from the energy and continuity
equations that the temperature satisfies, at both ends,
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We assume that]T/]x50 at the end points. Since the con-
stantkn will be taken to be very small and, away from the
stack region,H is also very small, this relation then essen-
tially implies the adiabatic pressure–temperature relation of
perfect gases.

The velocity boundary condition~13! at x50 will be
modified for the simulation of a piston-driven tube described
later in Sec. IV.

II. THE LINEAR SPECTRUM

As shown in Part I if, in the expressions~5!–~7! for the
momentum and energy transfer termsD , H, and Q , v is
chosen as the exact eigenfrequency of any one mode, the
linear version of the present model withkn50 gives the
pressure equation of the exact Rott theory for that mode@see
Eq. ~6! in Rott ~1976! or Eq. ~60! in Part I#. In a time-
dependent nonlinear calculation as the one of present con-
cern the separation of modes, although not impossible, is a
nontrivial task that we have not attempted. For the purposes
of this study we shall use a single value ofv that we denote
by v0 . While this will be treated as an adjustable parameter,
it will always be close to the~real part of the! fundamental
mode of the system for which an approximation can be given
as

v̄5
AgRT̄w

L
, ~16!

whereT̄w is the average wall temperature:
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The need to fix the parameterv has a strong effect on the
linear spectrum of the problem, that is reflected in the non-
linear calculations.

To illustrate this point, we show in Fig. 1 the imaginary
part Imvn of the exact linear eigenvalues as a function of the
mode numbern, with 1<n<20. The circles are connected
by a solid line as an aid to the eye. The conditions here are as
specified in Sec. IV below in connection with Fig. 7, but the
general behavior is typical. The eigenvalue problem was
solved by the inverse iteration method~Presset al., 1992!. It
is seen that only the first mode is unstable (Imv1,0). The
second one has a relatively small damping~with a Q value of
approximately 170!, and all the other ones are heavily
damped. If one calculates the linear eigenvalues keepingv0

equal to v̄53327.7 s21, instead, the results shown by the
triangles and the dashed line are found. Although the first
few eigenvalues are not very different, the approximation
renders several of the higher-order modes unstable as well.
The consequence of this is that, while a numerical calcula-
tion with a coarse discretization~and a consequently large
numerical damping! would superficially look acceptable, an
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attempt to refine the grid would lead to the rapid growth of
short-wavelength instabilities that destroy the calculation.
The thermoacoustic effect requires a very delicate balance
and does not easily survive approximations.

This is the reason why we have introduced a second-
derivative in the exchange termH. With a suitable adjust-
ment of v0 and of the ‘‘pseudo-thermal conductivity’’kn ,
we can approximate the important first few linear modes and
dampen the higher ones. As an example we show~dotted
line, squares! the effect of choosingv052762.0 s21 andkn

50.25 m2/s. It is seen that the only large differences be-
tween the exact and the approximate results are relegated to
the high-order modes that are heavily damped anyway and
should therefore not have a large effect on the results. It
might appear that treating bothv0 andkn as adjustable pa-
rameters makes the formulation of the model nonunique. In
practice, however, we find that the two requirements of
matching the growth rate of the unstable mode and requiring
the higher modes to be all damped leaves little room to ad-
just the values of these two quantities. In particular, as will
be seen in Sec. IV, the nonlinear steady-state amplitudes are
not greatly affected.

Figure 2 is similar to Fig. 1 and shows some examples
for the case of Fig. 8 below. The circles and the solid line are
again the exact spectrum, for which Imv1524.73 s21. The
other lines, in descending order, correspond tov0

52658.6 s21, kn50.42 m2/s (Im v1524.71 s21), v0

52791.5 s21, kn50.31 m2/s (Im v1524.73 s21), v0

52858.0 s21, kn50.26 m2/s (Im v1524.72 s21), v0

52924.4 s21, kn50.21 m2/s (Im v1524.72 s21). All these
curves differ by very little for the first few modes which
carry most of the energy. The main differences are in the
higher modes, which have a minor effect on the waveform of
the steady-state solution as will be seen in Sec. IV.

In principle, one can avoid the approximations just de-

scribed by calculating the exchange terms by means of con-
volutions in time with kernels given by the inverse Fourier
transforms of~8!–~10!. This procedure would, however, add
further complexity to the calculation. Another approximate
scheme, possibly better than the one used here, could be to
specify the exchange terms by means of differential equa-
tions rather than explicitly as done above. This approach has
been advocated by Achard and Lespinard~1981! for the
similar problem of the time-dependent flow in a tube.

We plan to pursue this idea in future work. For the time
being we proceed in the manner described. Even though this
is an approximation, it enables us to gain some insight into
the time-dependent problem, nonlinear growth, and eventual
saturation, for which no theoretical framework is currently
available.

III. NUMERICAL METHOD

With the expressions~5!–~7!, and the definitions
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2
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for the momentum fluxm and total energye it is easy to
verify that the continuity, momentum, and energy equations
~1!, ~2!, and~3! may equivalently be written as
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FIG. 1. Imaginary part of the first 20 eigenvalues for the system and con-
ditions of Fig. 7 below. The circles connected by the solid line are the exact
results of the linear theory. Note that only the first mode is unstable
(Im v1,0). The results shown by the triangles and the dashed line corre-
spond to setting the parameterv in Eqs.~5!–~7! equal tov̄ defined in~16!
that here has the value 3327.7 s21. The higher modes become unstable with
this approximation. The squares and the dotted line are the linear spectrum
for v5v052762.0 s21 andkn50.25 m2/s.

FIG. 2. ~a! Imaginary part of the first 20 eigenvalues for the system and
conditions of Fig. 8 below. The circles connected by the solid line are the
exact results of the linear theory. The other lines, in descending order, cor-
respond tov052658.6 s21, kn50.42 m2/s, v052791.5 s21, kn50.31 m2/s,
v052858.0 s21, kn50.26 m2/s, v052924.4 s21, kn50.21 m2/s.
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We rewrite this system of equations in vector form as
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wherew is given by
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the flux vectorF by
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the vectors accounting for the effect of changes in the cross-
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Our first attempt at solving Eq.~22! was based on a
straightforward centered-difference spatial discretization
with a predictor–corrector time stepping procedure~Prosper-
etti and Watanabe, 1994!. We found that, whenever condi-
tions were such that quasi-shocks developed, a series of spu-
rious grid-dependent oscillations also appeared. Such
oscillations are a well-known numerical artifact affecting
computations in the presence of steep gradients~see, e.g.,
Roe, 1986; Fletcher, 1988!, and their elimination has moti-
vated a large amount of research. While a complete bibliog-
raphy would be out of place here, it may be useful to cite the
review by Roe~1986! and a few other papers~Sod, 1978;
Harten, 1983; Osher, 1984; Osher and Chakravarthy, 1984;
Sweby, 1984; Hartenet al., 1986; Harten and Osher, 1987!.
This effort has led to a new family of schemes for hyperbolic
equations known as total variation diminishing~TVD!
schemes. The name is a consequence of the definition of the
total variation TV(un) of a grid function $ui

n%, i 51,2,...,
N11 at timetn:
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N

uui 11
n 2ui

nu, ~28!

and of the fact that these schemes have the property that
TV(un) is a nonincreasing function of time:

TV~un!>TV~un11!. ~29!

Evidently, a TVD scheme cannot produce an oscillatory so-
lution starting from monotonic initial data. We have found
that the scheme proposed by Harten~1983! proved suitable
for our problem.

The system~22! is first discretized explicitly in time as
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where superscripts indicate time levels and subscripts spatial
nodes. The spatial derivatives appearing inB ands are dis-
cretized by central differences. The essential aspect of the
numerical method is the manner in which the modified fluxes
F̂ are specified in terms of some auxiliary quantities that we
now define.

Let
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a~1!5u2c, a~2!5u, a~3!5u1c. ~32!

Furthermore, let
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where the quantities carrying a half-integer subscript are cal-
culated as arithmetic averages, e.g.,ui 11/251/2(ui 111ui).
Then

F̂i 11/25
1

2
~Fi 111Fi !1

Dt

2Dx (
l 51

3

@gi
~ l !1gi 11

~ l ! 2Q~n i 11/2
~ l !

1g i
~ l !!a i

~ l !#Ri 11/2
~ l ! , ~36!

where

n~ l !5
Dt

Dx
a~ l !, g i

~ l !5
gi 11

~ l ! 2gi
~ l !

a i
~ l ! . ~37!

The quantitiesgi
( l ) appearing in these definitions are a cor-

rection to the components of the fluxF along the character-
istic directions and are the smaller one in modulus between

@Q~n i 11/2
~ l ! !2n i 11/2
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This flux correction is introduced to account for the discreti-
zation error and guarantees second-order accuracy in space.

The last quantity to be defined is the functionQ(x) that
may be considered as a modifieduxu. Specifically, following
Harten~1983!, we take

Q~x!5
x2

4e
1e, for uxu,2e,

5uxu, for uxu>2e, ~39!

with e50.1. This quantity plays the role of an artificial vis-
cosity.

Since the integration is explicit in time, the preceding
formulas are sufficient to construct the solution at all the
interior nodes at time leveltn11 starting from the known
values attn. The solution at the two boundary nodes is cal-
culated from the boundary conditions~13!–~15!.

IV. RESULTS

As a first test of the numerical method, we consider the
thermoviscous damping of the lowest linear acoustic mode in
a rigid-walled, empty, isothermal tube. Since an exact solu-

tion to this problem is available, this simulation is a useful
test of the numerical method. Theoretically the solution con-
sists of exponentially damped oscillations with a decay rateb
given by ~see, e.g., Pierce, 1989, p. 534; the spatial decay
rate given in this text can be converted to a temporal one by
dividing by the sound speedc5AgRTw!:

b5
c

2ag F ~g21!
v0sk

2p0RG1/2S 11
g21

As
D , ~40!

wherea is the tube radius,k the gas thermal conductivity,p0

the undisturbed pressure, andv05pc/L the natural fre-
quency of the eigenmode.

The pressure at one of the tube’s rigid terminations
given by the numerical method described in the previous
section is shown in Fig. 3 as a function of time. The tube has
a length of 99.9 cm and a diameter of 3.82 cm. The gas is
helium at a static pressurep05170 kPa and temperatureTw

5293 K. For this case there are no unstable modes and we
setkn50 in Eqs.~8! and ~9! and fix v as in Eq.~16!.

At time 0 the system is at rest with an initial pressure
disturbance consisting of the lowest eigenmode with an am-
plitude of 17 Pa. The dashed lines in Fig. 3 are the exponen-
tial envelope}exp(2bt) with b given by ~40!. The agree-
ment between the analytical and numerical results is
remarkably good, which gives some confidence on our com-
puter code. For these calculation 500 nodes proved sufficient
for a good resolution and the time step was adjusted so that
the maximum Courant numberDtua( i )u/Dx, with thea( i ) de-
fined in Eq.~32!, remained below 0.8.

As another test, we consider the nonlinearly driven tube
studied by Gaitan and Atchley~1993!. The tube contained air
at ambient pressure and temperature and was 82.55 cm long
with a diameter of 5.82 cm. For this simulation we excite the
tube by prescribing a sinusoidal gas velocity atx50. The
boundary conditions on pressure and temperature are still
given by ~14! and ~15!. Again there are no unstable modes
and we setkn50.

In the experiment the driving frequency was chosen so
as to match the pipe’s frequency. We found that by using the

FIG. 3. Decay of pressure oscillations in a rigid isothermal tube for the
conditions described in the text. The solid line is the result of the numerical
computation. The dashed lines are the exponential envelope proportional to
6exp(2bt) with b given by ~40!.
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reported valuef 5209 Hz, our ‘‘numerical pipe’’ was not in
exact resonance conditions. To match the resonance it was
necessary to usef 5207 Hz. This sensitivity is not surprising
in view of the rather largeQ value of this system that, on the
basis of our numerical results, is approximately 134. Gaitan
and Atchley~1994! show in their Fig. 4 the dependence of
the higher harmonic pressure amplitudes on the strength pa-
rameter, i.e., the amplitudeP1 of the fundamental normal-
ized by

P1* 5
bQ

gp0
P1 , ~41!

whereb is the nonlinearity parameter equal to 1.2 for air.
They do not report a value forQ and we used the one de-
duced from our computations quoted above. A comparison
of the calculated~lines! and measured~circles! results is
shown in Fig. 4. The comparison is very good especially for
the lower harmonics that have a higher level and are there-
fore less sensitive to noise and parasitic damping. For these
calculations we used 500 nodes and a maximum Courant
number of 0.4.

We now turn to thermoacoustic prime movers, specifi-
cally the helium system used in the experiments of Atchley
et al. ~1992! and Atchley~1994!. As described in these ref-
erences, the tube length was 99.89 cm and the diameter 3.82
cm. The cold portion of the tube was 87.5 cm long. At the
end of this section was the cold heat exchanger consisting of
two identical structures separated by 1.5 mm. Each structure
consisted of 25 nickel plates 0.45-mm thick, spaced by 1.04
mm and 1.02 cm long. Attached to the second part of the
cold heat exchanger was the stack consisting of 3.5-cm-long
stainless-steel plates spaced by 0.77 mm, with a thickness of
0.28 mm. The hot heat exchanger was attached to the other
end of the stack. This heat exchanger was equal to the cold
one except that it consisted of only one section 7.62 mm
long. The hot section of the tube was 5.5 cm long. The area
blockage fraction was approximately 30% in the heat ex-
changers and 27% in the stack.

We have pointed out in Part I the effect on the linear
growth rate of the instability of using discontinuous versus
smoothed prescriptions for the axial variation of the cross-
sectional area and of the wall temperature. The discontinui-
ties in area and axial derivative of the wall temperature are
certainly not a realistic approximation to the actual spatial
distribution of these parameters and their presence depends
on features~such as natural convection, microstreaming, etc.!
that are not included in the model. In Part I we have used a
smoothing prescription

Tw~xi !→ 1
4@Tw~xi 21!12Tw~xi !1Tw~xi 11!# ~42!

~wherexi is the i th spatial node! iterated a number of times
so as to have results in agreement with reported data, and we
follow the same approach here. From the data reported by
Atchley ~1994! for a mean pressure of 376 kPa and a tem-
perature difference of 379 K along the stack~and, presum-
ably, an ambient temperature of 293 K!, one finds that the
temporal growth rate of the perturbation is 5.0 s21. Upon
assuming discontinuous distributions forS(x) andTw(x) we
find from the exact linear theory 11.7 s21. By repeating the
smoothing operation 310 times, the calculated linear growth
rate becomes 5.13 s21. The cross-sectional area and wall
temperature distributions resulting from smoothing 100 and
310 times are shown in Figs. 5 and 6. The corresponding
initial unsmoothed distributions are shown by the solid lines.
The difference is not large, which gives an indication of the
sensitivity of the thermoacoustic energy conversion process.
In all the calculations shown in this section we have used
area and temperature distributions smoothed 310 times.

After matching the linear growth rate with the exact lin-
ear theory, in order to proceed with the time-dependent non-
linear calculation, we must select values of the parameterv0

and pseudoconductivitykn . By a process of trial and error
we find that, withkn50.25 ms/s and v052762.0 s21, the
linear growth rate becomes 5.01 s21 to be compared with the
measured one of 5.0 s21. On the basis of a convergence

FIG. 4. Level of the harmonics of order 2–8 of a tube driven at resonance
by a piston as a function of the level of the fundamental normalized accord-
ing to ~41!. The lines are the present computational results. The data the
experimental points of Gaitan and Atchley~1993!.

FIG. 5. The solid line is the cross-sectional area of the thermoacoustic prime
mover of Atchleyet al. ~1992! and Atchley~1994! according to the geo-
metrical specifications given in the papers. The dotted and dashed lines are
the cross-sectional area after applying the smoothing operation of Part I 100
and 310 times, respectively.
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study we found that 2000 spatial nodes are sufficient for a
grid-independent solution. The maximum Courant number
allowed was 0.4.

Figure 7 shows the numerically computed pressure at
the cold end of the tube versus time for these conditions. The
initial disturbance is taken to be the fundamental linear
eigenmode, with an amplitude of 100 Pa. The dashed lines
are graphs of an exponential growth with the growth rate of
5.13 s21 of the exact linear theory. Figure 7~a! shows the
initial buildup of the oscillations. The initial growth rate as
deduced from these results is exponential, but at a rate of
5.25 s21, just slightly higher than the exact linear result of
5.13 s21. We consider this 2.3% difference as an acceptable
consequence of the numerical error affecting the time-
dependent calculation. At first the numerical results track
with great precision the exponential growth. Soon thereafter,
however, nonlinear effects set in as evidenced by the grow-
ing asymmetry between positive and negative pressure
peaks. Figure 7~b! ~note the change in the vertical scale!
shows the same results over a longer time interval. Here one
sees the eventual divergence of the linear result as opposed
to the finite-amplitude stabilization of the nonlinear one.

Figure 7~b! shows that the system saturates at a positive
pressure amplitude of approximately 25.0 kPa, i.e., about
6.6% of the static pressure. If the same calculation is re-
peated with cross-sectional area and wall temperature distri-
butions smoothed only eight times instead of 301~i.e., very
nearly discontinuous!, the saturation value for the positive
pressure amplitude is approximately 41.0 kPa. Again, this is
an indication of the sensitivity of the process.

We have found two papers in the literature where data
are presented for nonlinear steady oscillations. One is by
Atchley et al. ~1990!, and the other by Swift~1992!. The
stack used by the latter was of the honeycomb, rather than
parallel plate, type and therefore cannot be simulated in the
framework of the present model. Hence we focus on the
results of Atchleyet al., and in particular on those corre-
sponding to a nominal temperature difference along the stack
of 368 °C that are documented in good detail in their paper.

The experimental setup used in this work was the same de-
scribed before in connection with Fig. 7.

Figure 8 shows the computed steady-state pressure dis-
turbance at the cold end of the tube for a mean pressure of
307 kPa and a temperature difference along the stackDT
5368 K. The solid line is for v052658.6 s21, kn

50.42 m2/s and the dashed line forv052924.4 s21, kn

50.21 m2/s. The corresponding linear spectra are shown by
the curves marked with stars and diamonds, respectively, in
Fig. 2. The two waveforms are very similar to each other, in
particular for what concerns the period and the amplitudes of
the positive and negative portions. The main difference is the
greater amount of fine structure present in the dashed curve
that reflects the weaker attenuation of the higher modes evi-
dent from Fig. 2. The corresponding spectra are shown in
Fig. 9, where also one observes mainly differences in the
high-frequency components.

These results should be compared with those shown in
Figs. 4 and 5 of Atchleyet al. ~1990!. Qualitatively, the nu-
merical results are close to the experimental ones. The pe-
riod, 1.95 ms, is identical within the precision with which it
can be read from the figure. The waveform exhibits a strong

FIG. 6. Unsmoothed~solid line! and smoothed temperature distributions for
the simulation of the case studied by Atchley~1994! and shown in Fig. 7.
The dotted and dashed lines are the distributions after applying the smooth-
ing operation of Part I 100 and 310 times, respectively.

FIG. 7. Pressure versus time at the cold end of the prime mover for the case
studied by Atchley~1994! described in the text.~a! shows the initial buildup
of the oscillations,~b! shows the long-term evolution of the system to steady
state. The dashed lines portray an exponential growth with the growth rate
of 5.13 s21 of the exact linear theory.
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asymmetry, with the negative amplitude much smaller than
the positive one. The general spectral shapes also compare
favorably with the spectrum flattening out 35–40 dB below
the fundamental around the 6th to 7th harmonic. The major
difference between calculations and experiment is the ampli-
tude, that is about 24.7 kPa according to Fig. 8, but 13.5 kPa
in the data.

Atchley ~private communication! has pointed out to us
that his temperature data were obtained from a thermocouple
near the outer wall of the tube and, at such high power, a
substantial temperature nonuniformity across the hot stack
could be expected, as large as 50 K, with a likely value of
20–30 K. The present model is below the instability thresh-
old if DT is reduced by 50 K. The result for a reduction of 25
K is shown in Fig. 10. Now the maximum pressure distur-
bance is 14.6 kPa, with the period~1.97 ms! hardly affected.
However, the waveform shown in Fig. 10 exhibits a front
less steep than the experimental one.

Other features of the results that can be compared with
experiment are the ratio of the positive and negative ampli-
tude, and the time interval between the zero crossings, e.g.,
of the positive part of the wave. The data for these quantities
are 1.53 and 0.77 ms.~The latter quantity may, however, be
affected by the fact that the experimental waveform exhibits
some dc bias as the net area under the curve does not seem to
vanish.! For the two computations of Fig. 8 the positive/
negative ratio is 2.29 and 2.37, while the interval between
zero crossings is 0.82 ms. For the smallerDT case of Fig. 10,
the corresponding values are 1.97 and 0.90 ms.

Clearly, there are discrepancies between data and theory.
Unfortunately, on the basis of the available information it is
not clear whether the origin of the observed differences re-
sides in the approximations of the present model or in the
data. More detailed experiments would be highly desirable to
help resolve the matter.

Atchley et al. ~1990! also report results for a smaller

temperature gradient, withDT5325 K. In our model this is
just below threshold, with Imv150.44 s21. In view of the
extreme sensitivity of a system so close to threshold to even
minute adjustments of parameters or operating conditions,
we do not feel that a comparison with these data would be
meaningful.

As a last topic we give two examples that illustrate the
effect of the tube’s cross-sectional area distribution. The con-
ditions and the system simulated are the same as in Fig. 8
except that the cross-sectional area of the midsection of the
tube, for 1

2L,x, 3
4L, is given by

S~x!5S0F11C cos2 pS 2x

L
21D G2

,

for 1
4 L<x< 3

4 L. ~43!

while S5S05 1
4p(3.82)2 cm2 elsewhere~except for the stack

region!. Figure 11 shows the steady-state pressure distribu-
tion at the cold end of the tube forC50.2. The pressure
amplitude is now about five times that found for the
constant-area case. The formation of a shock is also evident
from the figure. If the tube is narrower in its central region,

FIG. 8. Steady pressure waveform for a temperature difference between the
hot and cold ends of the stackDT5368 K and the conditions of the experi-
ment of Atchleyet al. ~1990! described in the text. The solid line is for
v052658.6 s21, kn50.42 m2/s, the dashed line forv052924.4 s21, kn

50.21 m2/s. The corresponding linear spectra are shown, respectively, by
the stars and the diamonds in Fig. 2.

FIG. 9. Spectra of the pressure waveforms of the previous figure;~a! is for
v052658.6 s21, kn50.42 m2/s, ~b! for v052924.4 s21, kn50.21 m2/s. The
corresponding linear spectra are shown, respectively, by the stars and the
diamonds in Fig. 2.
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on the other hand, we have the result shown in Fig. 12 for
C520.2. The amplitude of the wave is now reduced by
about 3% to approximately 24.4 kPa with respect to the con-
stant area case. While the amplitude is not much different,
the waveform is strongly affected with a markedly smaller
steepening. These results are consistent with the correspond-
ing linear ones presented in Part I.

V. CONCLUSIONS

In this paper we have adapted the model introduced in
Part I to the nonlinear regime and we have described a reli-
able numerical method for its integration. The numerical re-
sults agree very well with experiment for the case of a reso-
nantly driven tube. For a thermoacoustic prime mover, the
model has been shown to describe the growth and eventual
saturation of the oscillations. While the qualitative predic-
tions match observation, the computed wave amplitude for a
case studied by Atchleyet al. ~1990! exceeds the experimen-
tally reported one. It does not seem possible to reach definite

conclusions on the reason for this discrepancy at this time. It
is possible that in the experiment the actual temperature dif-
ference along the stack was less than the nominal value. It
would also appear from the reported experimental waveform
~Fig. 4 of Atchleyet al.! that the mean of the pressure over
the wave is not zero. We have also found that the simulation
of this case is very sensitive to details of the temperature and
cross-sectional area distribution. Lastly, the model requires
the introduction of a certain number of approximations con-
cerning critical terms that govern the energy exchange be-
tween the stack and the wave, and it is possible that the
results are negatively affected by these approximations.

A more detailed characterization of future experiments
would be desirable to resolve some of these points. Hope-
fully, this paper will stimulate such further experimental
work. On the theoretical side, better approximations of the
energy exchange terms of the model should be sought. To
this end we are currently pursuing the idea mentioned at the
end of Sec. II.

Even with the limitations and uncertainties that affect it,
the simplified mathematical model that we have developed is
of some interest. In the first place, it is the only model to date
capable of describing the time-dependent behavior of ther-
moacoustic prime movers. Second, it can be used to compare
design options. For example we have found that, under iden-
tical conditions in the stack, a device with a thicker cross
section in the central part will develop a much stronger wave
than one with a constant cross section.

Clearly, the present formulation can be extended in sev-
eral directions. In the first place, we can account for heat
conduction in the stack. Second, we can extend the model to
the refrigerator case. Third, we can pursue the nonlinear as-
pects at the analytical level by using the techniques of
weakly nonlinear stability theory. Efforts in all these direc-
tions are currently under way.
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