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The crevice model for heterogeneous nucleation of bubbles in water in response to a decreasing 
liquid pressure is studied. The model neglects gas-diffusion effects and is therefore more suited 
for acoustic than for flow cavitation. It is argued that previous work has overlooked the 
essential requirement of unstable growth of the interface in the crevice. As a consequence, the 
available results are incorrect in some cases. Another feature of the model which is considered 

is the process by which the interface moves out of the crevice. It is concluded that, depending 
on circumstances, the conditions for this step may be more stringent than those for the initial 
expansion of the nucleus inside the crevice. Some numerical examples are given to illustrate the 
complex behavior of nuclei, depending of geometrical parameters, gas saturation, contact 
angles, and other quantities. 

PACS numbers: 43.35.Ei, 43.30.Nb 

INTRODUCTION 

The nature of nucleation and cavitation processes in wa- 
ter has been investigated in the literature since the midnine- 
teenth century. 1-3ø A basic conclusion drawn from these 
studies is that only in rare instances, if at all, does nucleation 
occur within the bulk of the homogeneous liquid. In order to 
explain the results of the experiments, it has been necessary 
to postulate the existence of inhomogeneities in the liquid on 
which the observed nucleation originated. These inhomo- 
geneities, be they free bubbles, dirt particles, clusters of or- 
ganic or ionic molecules, or due to a cosmic ray or other form 
of radiation, have been given the generic name of cavitation 
nuclei. In general (excluding radiation-induced cavitation), 
cavitation nuclei are long lived and are comprised at least in 
part by a volume of gas. 16 The first of these characteristics 
excludes free bubbles from the list of nucleation candidates 

for cavitation in undisturbed liquids which have been left 
standing for some time. Free bubbles will quickly dissolve in 
liquids that are not supersaturated with gas, 3• and bubbles 
having radii of less than a critical value will dissolve even in a 
supersaturated liquid. 9'3• Bubbles of larger than critical radi- 
us will grow in a supersaturated liquid. In either case, free 
bubbles are unstable and the liquid will soon be free of them. 
This instability must be eliminated by any plausible nuclea- 
tion model. Of the many proposed nucleation models, the 
two most successful ones are the varying-permeability mod- 
el 26'27'29 and the crevice model. 6'16'2ø'25 

The varying-permeability model, which employs a skin 
of surface-active molecules to stabilize the nucleus, has been 
applied mainly to bubble formation in supersaturated li- 
quids. 26 The model is plausible and in fact the proposed nu- 
clei have been observed microscopically. 29 The crevice mod- 
el postulates that small pockets of gas are stabilized at the 
bottom of cracks or crevices found on hydrophobic solid 
impurities in the liquid. This model has been applied to var- 
ious types of cavitation, but its greatest success appears to be 

in the explanation of acoustic cavitation processes. 16'2ø'25 It 
is fair to say that, in the light of present knowledge, there are 
insufficient elements to decide between these two models, 
which, in fact, are not mutually exclusive. Both kinds of 
nuclei may exist in nature with a prevalence of one form or 
the other, depending on the situation. 

The first quantitative application of the crevice model 
was made by Harvey 6 in a study of bubble formation in ani- 
mals. Strasberg •6 was the first to apply it to acoustic cavita- 
tion and was able to explain the dependence of the acoustic 
cavitation threshold on the gas content and prepressuriza- 
tion of the liquid. The acoustic cavitation threshold is the 
pressure amplitude which must be applied to a liquid in or- 
der to cause the onset of cavitation. Apfel 2ø extended Stras- 
berg's results to include the threshold's dependence on vapor 
pressure, temperature, and crevice size. Crum 25 further ex- 
tended the crevice model to include the effect of surface ten- 

sion on contact angles. 
In this paper we reexamine the crevice model and show 

that the nucleation criterion used by previous investigators is 
incomplete in that it does not include the essential require- 
ment of mechanically unstable growth of the nucleus as the 
pressure falls. This condition can lead to substantial differ- 
ences in some cases, particularly at the higher gas concentra- 
tions. We also consider the model in parameter ranges in 
which it has never been studied before. Finally, we include 
an analysis of the fate of the nucleus when its surface reaches 
the crevice mouth. In some cases, the growth past this point 
may require lower absolute pressures than those necessary 
for the initial growth. In these cases too the cavitation 
threshold that we calculate is at variance with that predicted 
by the previous versions of the crevice model. 

From our study it appears that, depending on the pa- 
rameter values associated with each nucleus, the crevice 
model can exhibit a bewildering variety of behaviors, which 
does not seem to have been appreciated before. We believe 
that many of the earlier conclusions on its physical implica- 
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tions and predictions must be revised, and that the current 
understanding of the model is superficial, and possibly mis- 
leading. 

This paper is planned as follows. In Sec. I the mecha- 
nism of nucleus stabilization in a solid crevice is reviewed. 

The essential idea on which the entire study is based, namely, 
the loss of mechanical stability, is described and justified in 
Sec. II, which also contains some considerations on the ex- 
pected range of applicability of the model. In Sec. IH the 
concepts of mechanical stability and unstable growth are 
illustrated in the simplest context, that of the free spherical 
bubble. Section IV summarizes some geometrical formulas, 
and Secs. V and VI are devoted to the investigation of the 
crevice model, in the parameter range considered by other 
authors, and in other ranges. Section VII studies the mecha- 
nism by which the interface can get out of the crevice. Sec- 
tion VIII contains the results of a preliminary parametric 
study, while our conclusions are drawn in Sec. IX. 

I. STABILIZATION OF THE NUCLEUS 

The amount of gas dissolved in the neighborhood of a 
liquid surface in contact with a gas at a partial pressure pg is 
determined by Henry's law: 

c = K( T)pg, ( 1 ) 
which c is the concentration and K(T) is a function of tem- 

perature only. This relation can be used to convert concen- 
trations into pressures, and we define the gas tension G corre- 
sponding to a given concentration c as 

G = c/K(T). (2) 

Referring to Fig. 1, consider a closed container partially 
filled with liquid. The space above the liquid contains vapor 
and another gas at a partial pressure pg. Neglecting hydro- 
static effects, the total pressure in this space, pg --[- Do, must 
evidently equal the pressure in the liquid PL so that, by ( 1 ), 

c.• = K(T) (PL -- Pv ). (3) 

p + p 
G v 

FIG. 1. Diagram of a closed container partially filled with a liquid. The 
pressure in the space above the liquid is equal to the sum of the vapor pres- 
sure p,, and the partial pressure of the gas dissolved in the liquid ion. Within 
the liquid is a spherical bubble of radius R. 

At equilibrium, the liquid is uniformly saturated with gas at 
this saturation concentration cs. 

Consider now a free bubble in the liquid, and let PG be 
the partial pressure of the gas inside it. The balance of nor- 
mal stresses across the bubble interface is expressed by La- 
place's equation: 

Po +Pv =PL + trC, (4) 
where tr is the surface-tension coefficient and C is the curva- 

ture, equal to 2/R for a sphere of radius R. In the sequel we 
shall refer to trC as the Laplace pressure. 

We consider C positive when the radius of curvature lies 
on the gas side of the interface. Since trC > 0 for a spherical 
bubble, po > p• -pv, and therefore, by ( 1 ), the concentra- 
tion of gas dissolved near the bubble surface exceeds the con- 
centration in the liquid given by (3). A concentration gradi- 
ent therefore exists in the system, which leads to the 
dissolution of the bubble by diffusion. While other models 
need the effect of surface tension to be counterbalanced to 

achieve stability of the nucleus, it is characteristic of the cre- 
vice model that stabilization is attained because of it, as we 
now show. 

Water normally contains a large number of suspended 
solid impurities which, examined by means of a scanning 
electron microscope, reveal a very irregular surface deeply 
marked by grooves and pits. 25 The surface of these impuri- 
ties is frequently hydrophobic either because the material 
itself is, or because hydrophobic organic contaminants have 
been adsorbed on it. As a consequence, when the impurity 
comes into contact with the liquid, some gas remains en- 
trapped at the bottom of the narrowest surface crevices. The 
difference with the free-bubble case is that, due to the pres- 
ence of the solid, the free surface of the liquid trapping the 
gas need not be convex towards the liquid; that is, C need not 
be positive. The gas concentration in the neighborhood of 
the surface can therefore be equal to cs as everywhere else in 
the liquid, and the nucleus can last indefinitely. More inter- 
estingly, stability of the nucleus can also be achieved in an 
undersaturated liquid, for which c < G- For this purpose it is 
sufficient that the liquid surface be convex towards the gas, 
so that the curvature C in (4) becomes negative (Fig. 2). In 
fact, if the crevice is so narrow as to allow a sufficiently large 
and negative curvature, equilibrium can be attained with no 
gas at all, the difference between p• and pobeing completely 
balanced by the surface tension effect. 

For simplicity, following previous treatments of the cre- 
vice model, we shall assume that the crevice is conical in 
shape with a half-angle aperture/3 (Fig. 2). Idealizing some- 
what the initial filling of the crevice (Fig. 3), we conclude 
that only crevices such that 

aA > const X/3, ( 5 ) 

where aA is the advancing contact angle, can entrap air. The 
constant equals 2 for a wedge-shaped crevice, and can be 
expected to be of order 1 for the more complicated conical 
shape. At equilibrium, the free surface forms with the solid 
an angle a (measured through the liquid, Fig. 2) which can- 
not exceed a• nor be smaller than aR, the receding contact 
angle: 

ale •<a•<a• . (6) 
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FIG. 2. The idealized model of a nucleus considered in this paper consists of 
a conical crevice of half-angle/3 in a hydrophobic solid. The contact angle a 
is the angle, measured in the liquid, which the liquid-gas interface makes 
with the solid. It must satisfy the relationship ct R <a<aA, where aR is the 
receding contant angle and aA is the advancing contact angle. 

This relation has already some consequences for the stability 
of nuclei. For example, in the case of a saturated liquid, the 
interface must be flat so that a =/3 + •r, and/3 must be 
such that (6) is satisfied. In a saturated or undersaturated 

liquid, ifaA </3 + -•z', the interface will spontaneously move 
towards the bottom of the crevice, causing the complete dis- 
solution of the gas. In a supersaturated liquid, on the other 
hand, such nuclei can be stable. In this case, however, if the 
other inequality is violated and aR >/3 + «z', the interface 
will spontaneously recede drawing gas from the solution into 
the nucleus, which will then slowly evolve into a gas bubble. 
It may be noted that, if the contact angle did not exhibit any 
hysteresis (i.e., if aA --aR ), only nuclei with the sharply 

FIG. 3. Illustration of the initial filling of a crevice. The liquid surface ad- 
vances at the advancing contact angle a, , 

defined aperture/3 -- a• -- •r/2 = a• -- •r/2could be stable 
in a saturated liquid. In this case, since presumably there is 
only a limited number of such nuclei, cavitation would be a 
rather infrequent event, in contrast with experience. This 
remark seems to indicate that the mechansim responsible for 
contact angle hysteresis works also on the submicrometer 
scale of the nuclei. 

In general, the value of a and the penetration of the 
liquid into the crevice depend on the past history of the sys- 
tem. If, for example, the liquid is initially saturated and then 
progressively degassed, the liquid surface starts out as a 
plane (a =/3 + z-/2) and becomes more and more convex 
towards the gas. With continued degassing, the gas tension 
in the liquid G reaches a value G• such that a = a•. When G 
falls below G•, the whole interface starts moving deeper 
towards the apex of the crevice so as to make the curvature 
more negative, but always maintaining a -- aA. An entirely 
similar process takes place when the liquid pressure PL is 
increased, as in the deactivation of nuclei by prepressuriza- 
tion. This can be seen by noting that, for a fixed gas content 
of the liquid, an increase in the static pressure is equivalent to 
a-decrease of the gas content with respect to the saturation 
level, as is evident from (3). Upon restoring the pressure to 
normal level, or increasing the gas content of the liquid, equi- 
librium is attained with a <a•. 

II. THE NUCLEATION EVENT 

In acoustic cavitation a nucleation event consists of the 

formation of a detectable cavity from a nucleus during the 
expansion phase of the sound field. Although the detection 
of the cavity depends to some extent upon the sophistication 
of the means by which it is effected, for it to be possible, in 
most circumstances the volume of the nucleus must increase 

by one or more orders of magnitude. This remark shows that 
the nucleation event cannot be a volume increase caused, 
according to the gas law, by the fall of the liquid pressure 
during the expansion phase of the acoustic wave. Indeed, if 
this were the case, the inverse proportionality of volume to 
pressure would lead one to expect, in marked contrast with 
experience, cavitation thresholds of the order of tens of bars. 
Rather, as was first recognized by Blake, 8'9 and as will be 
seen below, another mode of cavity growth exists which is 
caused by the loss of mechanical stability of the balance of 
forces which determines the instantaneous volume of the 

nucleus. The cavity that forms in these circumstances is very 
much larger than the original nucleus and would, in fact, 
grow indefinitely if other effects (latent heat, phase reversal 
of the acoustic pressure, buoyancy, boundaries, and others) 
did not interfere. 

It is in the explicit recognition of this fact that our study 
departs significantly from that of previous authors. Indeed, 
in earlier treatments of the crevice model, the cavitation 
threshold was taken to be the value-of the liquid pressure at 
which the contact angle a at the liquid-solid-gas line 
reaches the receding value a•. The justification given for 
this criterion was that, once the interface has reached a•, 
any subsequent interfacial motion would decrease the curva- 
ture, resulting in a smaller Laplace pressure. This decrease in 
the Laplace pressure would reduce opposition to growth 
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even further and make it possible for the nucleus to expand 
under the action of the internal pressure PG + Po. This con- 
ceptual model, however, overlooks the fact that the motion 
of the interface causes both the Laplace pressure trC and the 
gas pressure pG to decrease. If the gas pressure decreases 
faster than the Laplace pressure, the interface will recede 
relatively slow. ly and this motion will be arrested as soon as 
the liquid pressure stops falling. In other words, the system 
evolves quasistatically through a sequence of equilibrium 
configurations. On the contrary, if the Laplace pressure de- 
creases faster than the gas pressure, it is evident that the 
situation is mechanically unstable and a rapid growth will 
take place. 

It is clear from these considerations that the diffusion of 

gas in or out of the nucleus will have an important effect. If 
the diffusion is rapid enough to cause the partial gas pressure 
to fall slower than the Laplace pressure, the earlier treat- 
ments of this problem would be substantially adequate. In 
the opposite case, which is the one that we consider in this 
paper, where the gas content of the cavity is taken to remain 
constant, the differences between the two approaches can be 
important. Unfortunately, the diffusion of gas into a nucleus 
is a very complex problem about which very little is known. 
For instance, in view of the large differences in geometry and 
fluid dynamics, it is by no means clear that the available 
treatments of rectified diffusion for a free cavity bear much 
relevance to the case of a cavity trapped in a crevice. Per- 
haps, it is safe to say that our conclusions have a greater 
relevance at the higher frequencies of acoustic cavitation 
(hundreds of kHz-MHz range) where gas diffusion is ex- 
pected to be less effective. Their relevance at lower frequen- 
cies and for flow cavitation remains to be established. The 

same argument leads one to expect that in the case of boiling, 
where the internal pressure in the nucleus is contributed 
mainly by the vapor with only a small effect of permanent 
gases, the earlier approaches would adequately capture the 
essence of the physical process of nucleation. 

Mathematically, the situation that we describe is char- 
acterized by the instability of the equilibrium solution. 
When this solution is slightly perturbed, the collapsing 
forces, i.e., surface tension and liquid pressure, are insuffi- 
ciently strong to balance the expanding forces, i.e., vapor 
and gas pressures. Therefore, in the following, we take the 
point of view that the (first) cavitation threshold is the abso- 
lute liquid pressure at which the interface loses mechanical 
stability and a = a•. For those cases in which mechanical 
stability is lost before a = a• (i.e., the interface would move 
out unstably if the line of contact were free), our threshold 
criterion coincides with the one adopted by previous au- 
thors. If, however, when a = a• the configuration is stable, 
our criterion will predict cavitation to occur at a lower abso- 
lute pressure or, equivalently, at a higher value of the acous- 
tic pressure amplitude. It may be said that, according to the 
present model, nucleation is triggered by a pressure decrease 
but, once initiated, would proceed independently of the pres- 
sure, provided the pressure remained below the threshold. 

Another important aspect of the process, which appar- 
ently has been overlooked by previous authors, is the growth 
of the nucleus when its surface reaches the crevice mouth. 

The same requirement of instability applies to this stage 
which, as will be shown, may in fact require lower absolute 
pressures. For this reason we distinguish between the first 
threshold, defined above, which is the pressure necessary to 
cause the initital unstable motion of the contact line in the 

crevice, and the second threshold, which is that required for 
the unstable growth out of the crevice. The actual threshold 
at which a macroscopically detectable cavity is formed will 
correspond to the most stringent of these two criteria. It 
should also be noted that all these considerations refer to a 

single nucleus, and it is therefore unclear to what extent they 
can be applied to cavitation prediction in a liquid which 
would normally contain a wide variety of nuclei. Until a 
better feeling can be gained for the characteristics of the pop- 
ulation of these nuclei, our results do not seem to be able to 
be turned into quantitative predictions of experimental cavi- 
tation thresholds. 

In the preceding considerations we have only mentioned 
acoustic cavitation. However, with a suitable adjustment of 
the interpretation of the equations, the analysis of the follow- 
ing sections should also be valid for flow cavitation as well as 
boiling and gas supersaturation of the liquid, although, as 
already remarked, our results may not be as relevant in these 
cases. 

III. FREE BUBBLE 

In the following we shall make use repeatedly of an ar- 
gument which is best illustrated with reference to a free 
spherical gas bubble. Hence, we introduce the notion of criti- 
cal radius and mechanical instability in this context, al- 
though, as was remarked earlier, a free bubble cannot repre- 
sent a viable model of cavitation nuclei. 

By use of the perfect gas law, the equilibrum equation 
(4) becomes, for the case of a sphere of radius R, 

3nBT/4rrR 3 .q_ Dv = DL 'q- 2rr/R, (7) 

where B is the universal gas constant, T is the absolute tem- 
perature of the gas, and n is the number of moles of gas in the 
bubble. This relation may be interpreted by saying that, at 
equilibrium, the expanding forces on the left-hand side (gas 
and vapor pressure) are balanced by the collapsing forces on 
the right-hand side (liquid and Laplace pressure). The char- 
acter of the equilibrium described by (7) can be examined 
with reference to Fig. 4 in which, here as in the following, the 
thick line represents the left-hand side (expanding forces), 
while the thin lines show the right-hand side for three differ- 
ent values ofpL. For the largest value of pL shown (line a) 
the thick and thin line cross for one value of R, which is thus 
the only solution of (7). If the radius undergoes a slight 
increase beyond this value, it is seen from the figure that the 
collapsing forces (thin line) are larger than the expanding 
forces, so that the radius will return to the original value. 
Conversely, a small decrease leads to a preponderance of the 
expanding forces and to a radius increase. This equilibrium 
configuration is therefore stable, and it is easy to see that this 
is the case as long as p• >Po. The argument given can be 
expressed formally by stating that the equilibrium is stable 
when, at the equilibrium point, the (negative) rate of change 
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Pv 

Radius 

FIG. 4. Graph of the left-hand side (thick line) and the right-hand side 
(thin lines) of Eq. (7) versus radius for three values of pt: line a--greater 
thanpo; line b--pt slightly less thanpo; line c--pt much less thanpo. Equa- 
tion (7) can have one stable solution (line a), one stable and one unstable 
solution (line b), or no solutions (line c). 
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FIG. 5. Graph of the radius (normalized to Rc ) vs Pt -- P,, (normalized to 
P,, - PLc ) showing the equilibrium solutions of Eq. (7). The solid line rep- 
resents the stable branch of solutions, while the dashed line represents the 
unstable branch. 

of the collapsing forces is larger than that of the expanding 
forces: 

d (p 3nBT• •R( p 2•) dR "q- 4rrR3J < L q-• ß (8) 
When pL is somewhat below Po (line b), there are two 

roots of (7). The same argument used above shows the root 
with the smaller radius to be stable, while the larger one is 
unstable. Indeed, if the radius is slightly increased beyond 
this value, the expanding forces dominate and cause an un- 
stable growth of the bubble. Conversely, if the radius is 
slightly decreased, the bubble shrinks under the action of the 
collapsing forces until its radius takes on the smaller, stable 
equilibrum value. The same conclusion can be reached by 
use of the stability criterion (8). Finally, when the liquid 
pressure is much lower than po (line c), no solutions of (7) 
exist, the expanding forces always dominate, and the bubble 
grows without bound. The transition between these two re- 
gimes occurs when the two roots merge into one, at which 
point the curves are therefore tangent and (8) holds with an 
equal sign. Carrying out the differentiation indicated in this 
equation and solving for R, we find 

Re = (9nBT/8rrcr) •/2, (9) 

or using (7), 

Rc = -•cr/ (po--P•,c ). (lO) 

This critical radius R c represents the largest possible radius 
that a bubble containing n moles of gas at a temperature T 
can have at equilibrium. It should be noted that the second 
expression (10) given for this quantity, although frequently 
quoted, is really an equation for the critical pressure P,..c 
rather than for the critical radius, the proper expression of 
which is (9). The results of this analysis are summarized in 
Fig. 5 in which the stable (continuous line) and the unstable 
( dashed line) solutions of ( 7 ) ( i.e., the intersection points of 
the curves in Fig. 4), nondimensionalized by Rc, are plotted 
against P,.--Po, nondimensionalized with respect to 
Po -P,•,c. 

To avoid confusion, it may be noted that the critical 
pressure is the pressure required for a bubble starting with a 
radius R < Rc to expand to the value Rc. This remark ex- 
plains why PL, c -• o• as n-•O, i.e., for a pure vapor bubble. 

This fact is at first sight perplexing since one does not expect 
that an infinite tension would be needed to promote the 
growth of a vapor bubble. Such a conclusion would, how- 
ever, be false. A bubble containing little or no gas would have 
a radius close to 

R = 2rr/(Po -- PL ). 

It is seen from (8) that this value corresponds to the unstable 
solution of (7), and in agreement with the previous analysis, 
the bubble would therefore spontaneously expand or col- 
lapse as is well known. For small n the stable branch of the 
solutions of (7) is 

R = 3-'/2Rc( I + pø --p• ) 3•/24-• •- Rc + O(n) , 
with R c given by (9) and therefore very small. What the 
results (9) and (10) imply in this case is only that a very 
large tension would be needed to expand such a small bubble 
from a radius smaller than the critical radius up to the criti- 
cal radius. This very large tension is essentially that needed 
for homogeneous nucleation. 

IV. CREVICE GEOMETRY 

We collect in this section some geometrical formulas 
which will be referred to repeatedly in the following. 

As already stated, we shall make use of an idealized 
nucleus having a conical shape of semiaperture/3 (Fig. 2). 
The radius of the crevice mouth is denoted by a m , and the 
radius of the generic ring of contact by a. In this idealized 
geometry the liquid surface is a spherical segment of radius 
R making an angle of contact a (measured in the liquid, Fig. 
2) with the cone wall. The relation between the radius of the 
ring of contact and R is given by 

a = R ]cos(a --/3) l, ( 11 ) 

The volume of the portion of the cone of base a is 

Vc = •rra 3 cot/3. (12) 
By combining this with the volume of a spherical segment, 
we can write down the volume occupied by the gas in each 
one of the possible configurations shown in Fig. 6. When the 
interface is concave towards the apex and either/3 < a [Fig. 
6(a) ] or a </3 [Fig. 6(b) ], this volume is 
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(a) 

(b) 

i 

(c) 

FIG. 6. Diagram showing the three possible configurations for the contact 
line CC' inside the crevice: (a) /3<a<•r/2 +/3; (b) 0<a•/3; (c) •r/ 
2 +/3<a<•-. 

(a) 

(b) 

FIG. 7. Diagram showing the two possible configurations for the contact 
line outside the crevice: (a) •r/2•?'<•r; (b) 0•?'•r/2. 

V= •ra3(cot/3 -t- •/) -- f+ (a,/3) R 3, (13) 
where 

[COS3(a --/•) 17/-- [ 1 - sin(a --/3)]2[2 + sin(a --/3)] 
= 2- 3 sin(a-/3) + sin3(a-/3) 

-- 2 -- [2 -F cos2(a --/3) ]sin(a --/3), 

and 

f+ (a,/3)= •r(cot/3 + •/) Icos(a--/3)l 3. 

When the interface is convex towards the apex [ Fig. 6 (c) ], 
we have 

V= •ra3(cot/3- •/) = f- (a,/3) R 3, (16) 

with the same definition of •/, and f- given by (15) with •/ 
preceded by a minus sign. 

(14) 

(15) 

We shall also consider the interface outside the crevice 

(Fig. 7). In this case the radius of curvature is given by 

a -- R sin ?,, (17) 

if a denotes, as before, the radius of the ring of contact and 7' 
the contact angle with the plane. This relation is valid both 
for •r/2 < 7' [ Fig. 7 (a) ] and for 7' < •r/2 [ Fig. 7 (b) ]. The 
volume occupied by the gas is now 

V__ 1 3 3•ra,• cot /3 + •rR 3[ 2 + (2 + sin 2 ?')cos y], 
(18) 

again valid in both cases. 
Finally, we shall have to refer to these formulas when a 

equals the receding contact angle a R or the advancing con- 
tact angle a A. In these cases we shall simply append indices 
R or A to V, •/, orfas appropriate. 
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V. ANALYSIS OF THE "STANDARD" CREVICE MODEL A. Motion of the interface 

As was mentioned earlier, past analyses of the crevice 
model have only been concerned with the motion of the line 
of contact [CC' in Fig. 6(a) ], without distinction between 
the stable and unstable cases. A receding contact angle was 
also assumed such that 

/3< an </3 q- rr/2, (19) 

so that the interface takes the shape of a spherical segment 
subtending a solid angle less than 2rr [ Fig. 6 (a) ]. Although 
Apfel 2ø does include the case aR </3 in his work, he does so in 
what appears to be an incorrect way as will be noted in Sec. 
VII. Furthermore, with the exception of a passing comment 
by Apfel, the fate of the interface as it moves out of the 
mouth of the crevice has never been addressed. For the lack 

of better terminology, we refer to the crevice model subject 
to the limitations (19) as to the "standard" crevice model, 
and we shall study it in this section in the light of the consid- 
erations set forward in Sec. II. In the following sections we 
shall extend the analysis to features and parameter ranges 
not previously considered in the literature. 

In all of the following we assume that, as the liquid pres- 
sure falls, dynamic effects are unimportant and isothermal 
behavior holds. These assumptions are motivated by the rel- 
ative rapidity of thermal diffusion and the very high natural 
frequency of a small gas volume. As already stated, we shall 
also assume that gas diffusion plays a negligible role so that 
the gas content of the nucleus remains constant. Therefore, if 
the index 0 denotes initial conditions, the prefect gas relation 
Po V = PooVo remains valid throughout the nucleation pro- 
cess to be considered. Since initially the gas pressure in the 
nucleus Poo equals the gas tension G in the liquid, we have 

Po V= VoG, (20) 

with Vo given by ( 16): 

Voml 3 3rrao (cot/3 -- r/o). (21 ) 

Upon setting C = -2/Ro, the equilibrium equation (4) 
gives, for the initial state, 

Ro = 2a/(p•o - p,- G), 

or, using ( 11 ), 

ao = [ 2a/(P•o - P,- G) ] Icos(ao -/3)[. (22) 
In the initial condition the contact angle a is less than, or at 
most equal to, the advancing contact angle aA. The actual 
value of ao depends on the gas tension G through (22), 
which we may rewrite as 

Icos(ao-/S) I - (p,o -p. - G)(ao/2O'). (23) 

As was mentioned at the end of Sec. I, a gas tension GA can 
be defined such that a = a A when G = GA, while a < a A 
when G > GA. By use of (23), GA is given by 

GA = PLo -- P, - (2cr/ao)Icos( (24) 

it is clear from this definition that the value of GA depends 
on the properties of the nucleus. Conceivably, in a "suffi- 
ciently" degassed liquid (in relation to the prevailing distri- 
bution of nuclei), a = aA and G = G• for most nuclei. This 
assumption has usually been made in the previous analyses 
of the standard model. 

Consider an initial state in which the liquid is under- 
saturated so that the interface is convex towards the gas 
[Fig. 6(c) ]. As the liquid pressure falls, the curvature de- 
creases while the contact line maintains its position. By use 
of Eqs. (4), (16), and (20), it is easy to write down the 
equilibrium condition for the interface, namely, 

cot/3- r/o 2rr 
cot/3- r/ ao 

As for the free bubble, Eq. (7), and for the other cases to be 
discussed below, we have grouped on the left-hand side the 
terms which tend to promote the growth of the bubble and 
on the right-hand side those which tend to collapse the cav- 
ity. The two sides of this equation are shown qualitatively by 
the thick (left-hand side) and light (right-hand side) lines in 
Fig. 8 as a function of a for three values ofpL. In drawing 
these curves we have used the fact that, for a >/3 q- rr/2, r/is 
an increasing function of a and vanishes when the interface 
is plane, i.e., a -/3 q- rr/2. Line a corresponds to the initial 
state. The two curves intersect at the initial value of the con- 

tact angle ao. As the liquid pressure is decreased (line b ), the 
intersection shifts to the left and the equilibrium value of the 
contact angle a decreases. It is clear (and it is proven in the 
Appendix) that only one root exists, provided that 

P• >• =Po+ (1 - r/o tan/3) G, (26• 
i.e., that the interface is convex towards the gas. The expres- 
sion in the right-hand side of this equation is obtained by 
setting a -/3 q- rr/2 in Eq. (25) and corresponds to line c in 
Fig. 8. The very existence of a nucleus of the type considered 
here presupposes that (26) is satisfied in the initial state. For 
this configuration an increase in the volume of the nucleus 
corresponds to a decrease of a. The same argument used for 
the case of the free bubble shows therefore that the equilibri- 
um described by (25) is stable. 

When p• =.• the interface is plane and a further de- 
crease of the liquid pressure causes it to become concave 
towards the gas. The sign of the curvature is reversed, and 

Pv+G 

i 

•+5' o 
Contact Angle 

FIG. 8. Graph of the left-hand side (thick line) and the right-hand side 
(thin lines) of Eq. (25) versus contact angle for three values ofpL: line a- 
Pt = Pv + G, the initial state; line b•L <pL <pv + G; line c--pt = •t. 
There is only one equilibrium value of a, and it corresponds to a state of 
stable equilibrium. 
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the appropriate form of the equilibrium equation is, for 
P• <P•, 

Po + cot fi-- r/o G =p• + 2tr icos(a _ fi)I. (27) 
cot fi + •/ ao 

The two sides of (27) are plotted in Fig. 9 as functions a. 
When p• =• (line a), the two curves intersect at 
a--fi + •r/2 and the interface is fiat. As p• is decreased 
(line b), the equilibrium value of a shifts to the left, finally 
reaching a• (line c). At this point Eq. (27) ceases to apply 
and the gas-solid-liquid contact line becomes free to move. 
In this range again there is only one solution which is readily 
seen to be stable (see Appendix). 

When a = a• the radius of curvature takes on the value 

R• = ao/lcos(a• --/3) l, (28) 

which may be called the receding radius. The corresponding 
value of the pressure is 

2•r p2 =p• cos(a• -fi)l + cotfl- Vo G. (29) 
ao cot fi + •/• 

At this point the interface is free to move and the appropriate 
form of the stability equation becomes 

p•+ K/R 3 = p• + 2•r/R, (30) 

where, by ( 13 ), 

_ G Vo _ cot fi -- r/o ag G. K f+ (a•,fi) -- (cot fi + •/• ) cos(a• -- fi)13 
The situation is now very similar to that of a free bubble, and 
a critical radius exists given by 

Rc- (3-••) 1/2 4 •r -- 3 po --p• (31) 
Solving this equation for p•, the liquid pressure correspond- 
ing to Rc, we find 

4 a 2a (cot/3 q- •/• )l½os(a• -/3) 13. 
P• = Pv • ao ' 3aoG cot fi- % ' 

(32) 

Two possibilities now exist. IfRR is less than the critical 
value Rc, the equilibrium is stable and the interface recedes 

from the bottom of the crevice following the continuing de- 
crease ofpL below p2. In this case, if the decline ofpL were 
arrested, the interface motion would stop and no bubble 
would appear. An unstable growth would occur only in a 
crevice sufficiently deep that as PL decreases further the ra- 
dius of the receding interface could reach the value Re. On 
the other hand, if RR > Re, the interface is in unstable equi- 
librium as soon as the line of contact beocomes free to move. 

The ensuing growth of the nucleus is triggered by a mechani- 
cal instability and would persist even if the decline of the 
liquid pressure were to stop. It could only be arrested by 
increasing p• enough to reestablish one of the conditions 
described by Eq. (27) or (25). As explained in Sec. II, we 
believe that only in the case of unstable growth can one speak 
of a true nucleation event and that therefore the nucleation 

criterion used by previous investigators, 

R =R•, (33) 

must be replaced by 

R = max (R a ,R c ). (34) 

For the reason mentioned at the end of Sec. II, we call the 
value of the absolute pressure corresponding to this radius 
the first cavitation threshoM. The criterion previously used in 
connection with the crevice model is correct only when 
R c <Ra or, from (28) and (31 ), 

2af+(a•,fi) ' < I½os(a -fi)l ' (35) 
i.e., at sufficiently low gas tensions. The two sides of (35) are 
equal for G = G *, where 

2a (cot fi + r/R )[cos(a• - fi)[ 
G* - . (36) 

3ao cot fi- % 
For G > G * the critical radius criterion dominates, while for 
G < G * the unstable motion begins as soon as R = R• and 
the instability threshold coincides with the criterion used by 
previous investigators. Our results will therefore differ from 
earlier ones only for G > G *. The quantity 3aoG */2tr is plot- 
ted as a function of a• for different values offi in Fig. 10. To 
give a feeling for the order of magnitude involved, we may 
note that, for water at 20 øC, 2tr/3ao = 1 atm for ao_•0.5/zm. 
If the crevice is not deep enough, it is possible for R• to be 

•L 

I 

I•+•- 
Contact Angle 

FIG. 9. Graph of the left-hand side (thick line) and the right-hand side 
(thin lines) of Eq. (27) versus contact angle for three values ofpL: line a-- 
pL = .•; line b--.• <p• <p2' line c--p• = p•. As in Fig. 8, there is only one 
equilibrium value of a, and it corresponds to a state of stable equilibrium. 

5.0 

4.0 

. 3.0 

1.0 

0.0 
0 20 40 60 80 100 120 140 160 

Receding Contact Angle (deg) 

FIG. 10. Graph of the quantity 3aoG */2or [ see Eq. (36) ] versus the reced- 
ing contact angle for various values of fi from 1 ø to 60 ø. 

, 
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reached, and still be impossible to satisfy R>•Rc. It is clear 
from (28) and ( 31 ) that R R and R c depend on the geometry 
and gas content of the crevice, the initial position of the line 
of contact, and the temperature. In the absence of gas-diffu- 
sion effects, these quantities can be considered fixed in a 
cavitation experiment in which only the liquid pressure p,• 
varies. In this sense we may consider R R and R• as "proper- 
ties" of each nucleus. 

A qualitative insight into how gas diffusion could affect 
the previous considerations can be obtained in the following 
way. Suppose that no denotes the number of gas moles in the 
unperturbed state and n y no the number of gas moles during 
the nucleation process. Then, Eq. (20) must be modified to 

Po V= (n/no)GVo, 

which shows that the "effective" gas concentration during 
nucleation is greater than in the undisturbed state. The value 
of G in Eqs. (29) and (32) should therefore be increased. 
Although this leads to an increase of both thresholds, if n/no 
is large, the increase ofp• is greater than that ofp•, and p• 
will dominate. The earlier condition (33) would then define 
the appropriate threshold. 

B. The first cavitation threshold 

We can now connect the parameters corresponding to 
the initial configuration of the nucleus to the value of the 
liquid pressure at which the nucleus begins its unstable 
growth. We call this value the first nucleation threshold be- 
cause, as already mentioned and as will be seen later on, an 
even lower liquid pressure may be needed to pull the inter- 
face out of the crevice, a fact that does not seem to have been 
appreciated by earlier investigators. 

We indicate by the subscript 1 the conditions prevailing 
at the point where the unstable growth begins. The equilibri- 
um relation (4) is, at this point, 

PG1 =Pœ1 --Po + (2cr/al)lCøs(an (37) 
where again we have used the relation ( 11 ) between a and R 
(recall that now a = an ). Using this relation and Eqs. ( 13 ) 
and (21 ) in the isothermal law (20), and rearranging, we 
find 

(.;1)3 -po q- G - Icos(a -/s) I. 
cot/3 + r/n a• 

(38) 

Note that a• -- ao if the receding radius dominates. How- 
ever, 

al = •[ o'/ (p• -- PL1 ) ] ICOS(C•R -- •)l, (39) 
if the critical radius dominates. We now treat the two cases 
separately. 

(a) R n y R •. This is the case in which our results reduce 
to the earlier ones. Now, ao = a l and (38) reduces to (27), 
with a = aR: 

Po + cot fi - % G = p• + 2or I cos -/s) I, (40) 
cot/3 + r/• ao 

or, using (22) to eliminate ao, 

6• 6• ( cot/3- % + G, p;- 1+-•o •---•o p•o 4-\c-• 4- •/• • 
(41) 

where we have used the notation 

,5= Icos(a - fi) 1. (42) 
This relation is valid for G > GA. For G< GA, ao -- aA and 
Eq. (40) becomes 

( tS• •.6• (cotfi- •/_2 + 
(43) 

(b) R c > R•. In this case our results differ from the 
earlier ones. Now a• is given by (39). Upon substitution into 
(38) and some rearrangement, we find 

4 (2•r6• cotfi+•l•) •/2 --- , , (44) P•=Po •-o' a3o G cotfi-% 
or, using (22), 

32__[(t••o)3COtfl + fir (Pro-P•- G) 3 1/2 P• = Po cot fi - Vo G ' 
(45) 

Again, for su•ciently degassed liquids, G•G•, ao = a•, 
and 

P• -Po • cot fi- W G ' 
(46) 

It may be noted that none of these expressions of the 
threshold equations fully exhibits the dependence on G since 
8o and % depend on this quantity through (22). It may also 
be noted that 

cotfi-•o vol. of cone- vol. of cap with a = ao 
cot • + •n vol. of cone + vol. of cap with a = an 

(47) 

For limited hysteresis or deep crevices, this ratio will be close 
to 1, and Eqs. (40) and (44) simplify to 

P2 =Po + G - A, (48) 

P• •Po -- •(A 3/2/G •/2), (49) 
where A = 2a8•/ao, while Eqs. (43) and (46), valid for 
G< G•, become 

P2-- l+ 6•? --•P•o+ l+ G, (50) 

2 [((•R •3 (PLo --Do- G) 3 ]1/2 P• = Po 7 t k,'• ,! 3 G . ( 51 ) 
With this approximation we therefore see that the results for 
G > GA depend on the single parameter A, while those for 
G<GA depend on the single parameter 6•/6A. Equation 
(50) coincides with Apfel's result, Eq. (13) of Ref. 20. 

Since nucleation is, ultimately, a form of boiling, it is 
intuitively obvious that it can only occur at absolute liquid 
pressures smaller than Po. That this is indeed the case when 
the critical radius criterion dominates is clear from Eqs. 
(44)-(46). When the receding angle criterion used by pre- 
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vious investigators dominates, it is easy to show from (40)- 
(43) that the condition p• <Po is satisfied provided that 
G<3G *, with G * defined by (36). Since, according to the 
previous considerations, this criterion only dominates for 
G < G *, this inequality is satisfied. However if, rather than 
(34), the nucleation criterion is taken to be (33 ) in all cases 
as was done by previous investigators, the condition p• <po 
may fail to be satisfied at high gas concentrations. 

As another point we note that, for a saturated liquid for 
which G = Pt,o -Po from the old criterion Eq. (41), we 
find 

p• = P• + cot/3 - % (p,•o - • )- 
cot/3 + 

In view of the smallness ofp• and the comments made after 
Eq. (47), it is evident that this value is very close to Pt,o. In 
acoustic cavitation, this circumstance reflects in a very small 
value of the acoustic pressure amplitude. This conclusion is 
at variance with experiment, •6.25 which unambiguously indi- 
cates that the threshold at saturation is not much smaller 

than, but of the same order as, pt, o. We shall return to this 
point near the end of Sec. VIII. 

These weaknesses of the older theory give further indi- 
cations of its only partial correctness. 

Vl. INTERFACE BEHAVIOR IN OTHER CASES 

One of the limitations of the "standard" model consid- 

ered in the past is the assumption (19) on the relationship 
between the receding contact angle an and the crevice aper- 
ture/3. In the present section we shall investigate the motion 
of the interface in other cases much in the spirit of Sec. V. 
This analysis is not purely academic since both an and/3 can 
be expected to vary over a wide range. 

A. Wide crevice 

We begin by considering the case in which the first in- 
equality of (19) is violated, i.e., 

an </3. (52) 

This situation may arise in a wide crevice or in the presence 
of a small receding contact angle. In either case, the interface 
must exceed a hemisphere before the line of contact can 
move away from the apex of the crevice [Fig. 6(b)]. As 
already mentioned, Apfel 2ø considers this case but takes as 
the condition for nucleation that the radius of the spherical 
cap becomes identical to that of the contact line, so that the 
interface is a hemisphere. He does not discuss this condition, 
but it appears to be erroneous since the contact line cannot 
move until a -- an. 

If the liquid is undersaturated, the initial shape of the 
interface is convex towards the gas as in the previous section 
and Eq. (25) applies until the liquid pressure has fallen 
enough that the interface is flat. From this point on, Eq. (27) 
applies, since the interface is less than hemispherical and 
convex towards the liquid. As discussed in Sec. V A, both 
situations are stable. The interface becomes a hemisphere 
when its radius of curvature equals ao, and the pressure is 

cot/3 -- % 2a 
Pt, --Po + G-•. (53) 

cot/3 + 2 ao 

A graph of the two sides of Eq. (27) for this value of pt, is 
given qualitatively by line a in Fig. 11. As pt, is decreased 
(line b), another root appears with a </3. It is easy to show 
that this second root is unstable, while the first one is stable 

(see the Appendix). As the pressure falls further, the two 
roots move closer until at some point they coalesce. At still 
smaller pressures (line c) the expanding forces dominate 
and no equilibrium is possible. Two possibilities exist. if an 
is reached before the the two roots coalesce, Eq. (27) is no 
longer applicable from that point on and the existence of the 
unstable solution is irrelevant. If, on the other hand, the 
equilibrium turns unstable at a value a* > an, a spontaneous 
expansion from a* to an will take place. Once that an has 
been reached, the rest of the discussion proceeds as for the 
standard case and the same relations apply. 

B. Narrow crevice 

We next consider the situation which is established 

when the second inequality in (19) is violated, i.e., when 

[3 + rr/2 < an. (54) 

This situation may occur for a narrow crevice or a very large 
receding contact angle. In this case the interface remains 
convex towards the gas as it recedes from the crevice apex 
[Fig. 6(c)]. As long as a > an, the contact line does not 
move, the equilibrium is governed by (25), and is stable. As 
soon as the value a = an is reached, the proper equilibrium 
equation becomes 

Po+ K '/R 3 = PL -- 2o'/R, (55) 
where 

K'= . cot/3- r/o ao3G ' 
(cot/3 V• )lcos(a• -/3) 13 

The minimum value of R for this case (corresponding to an 
= rr) is R -- ao/COS/3, while the maximum is infinite and is 

attained for an =/3 + rr/2. The two sides of (55 ) are shown 
in Fig. 12. Equality can occur at most at one point, and this 
equilibrium position is stable since a slight increase in R 
would decrease the expanding forces (thick line) and in- 

Contact Angle 

FIG. 11. Graph of the left-hand side (thick line) and the right-hand side 
(thin lines) of Eq. (27) versus contact angle for three values ofpL: line a-- 
pL given by Eq. (53); line b•p• slightly less then the value given by Eq. 
(53); line c--p• much less than the value given by Eq. (53). Equation (27) 
can have one stable solution (line a), one stable and one unstable solution 
(line b), or no solutions (line c). 
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Radius 

FIG. 12. Graph of the left-hand side (thick line) and the right-hand side 
(thin line) ofEq. (55) versus radius. The single interaction corresponds to 
a state of stable equilibrium. 

crease the collapsing ones (thin line). Hence, as the pressure 
falls, the interface starts receding stably as soon as a = aR. 
The crevice mouth is reached for 

P• -Pv + cot/5'- % ao3G + 2a icos(a R _/5') l, 3 cot/3 -- r/• a m a m 
(56) 

where am is the radius of the mouth. Since all of the terms in 
the right-hand side of (56) are positive, it may happen that 
the sum be greater than the initial ambient pressure. This 
only means that in this case the initial position of the inter- 
face is at the crevice's mouth with a value of the contact 
angle ao > a•. 

VII. MOTION OUTSIDE THE CREVICE 

Another important point never previously discussed in 
connection with the crevice model is the process by which 
the interface gets out of the crevice mouth. This is clearly an 
essential step for the formation of a bubble, and it will be seen 
in the following that its effect on the nucleation process can 
be significant. 

As for the crevice itself, one needs a geometric model for 
the crevice mouth, and again as before, there is the risk that 
the conclusions to be drawn reflect too much of the specific 
geometrical features of the model and too little of the general 
aspects of the nucleation process. While we are fully aware of 
this danger, we do not feel that enough information is avail- 
able to set up a model free of this problem. Hence, we pro- 
ceed by postulating the simplest geometrical configuration, 
that of a conical crevice in an infinite plane surface [Fig. 
13 (a) ]. A simple redefinition of a variable, to be noted be- 
low, renders the results obtained in this case also applicable 
to the situations shown in Fig. 13 (b) and (c). 

Before we discuss the evolution of the interface when the 
line of contact reaches the crevice mouth, we note that the 
following considerations apply only to the case of rapid bub- 
ble growth characteristic of flow and acoustic cavitation, 
and of subcooled boiling. For growth rates so slow that grav- 
ity effects are important, as in the case of saturated boiling, a 
bubble may be pulled by buoyancy out of the crevice mouth. 

(a) 

-. 

(b) 

(c) 

FIG. 13. Diagram showing three possible idealized configurations for the 
region outside the crevice. 

As before, we find two important pressure values, one 
needed to reach the receding contact angle on the surface 
outside the crevice and the other one needed to reach condi- 

tions of mechanical instability. We call the smaller one of 
these two (absolute) pressures the second cavitation thresh- 
old. 

The details of the processes to be described are some- 
what complicated and are given in full in the Appendix. In 
this section we shall make use of some approximations. 

A. The crevice mouth 

The interface starts out at the crevice mouth or reaches 

it following the dynamics discussed in Secs. V and VI and 
maintaining an angle a• with the crevice wall. In the second 
case, if equilibrium is possible at the mouth, it occurs for a 
liquid pressure given by 

3 

P•=Po+ cot/5'-% ao G- 
3 

cot/3 + r/• a m 

20- 
Icos(a• -/3) I, 

am 

(57) 
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whereas in the first case this relation holds with a in place of 
an. This expression holds for "standard" and "wide" crev- 
ices. The form applicable to "narrow" crevices has already 
been given in (56). It can be shown that, depending on the 
values of the parameters, the value (57) of the liquid pres- 
sure can be either larger or smaller than that corresponding 
to the reaching of the receding radius at the initial position 
given by (40). In any case, as is shown in the Appendix, ( 57 ) 
is greater than the (aboslute) liquid pressure corresponding 
to the first nucleation threshold. It can be concluded that 

(57) does not impose more stringent requirements than 
those that must already be met for a nucleation event, and is 
not therefore a particularly significant value of the pressure. 

Before the interface can move out of the crevice and 

onto the plane, the angle •/with the plane (see Fig. 7 ), which 
has the value an -/3 + rr/2 when the interface first reaches 
the crevice mouth, must decrease to an. During this phase, 
the equilibrium equation is 

Po+ Vo sin3• / G = pt` + 2or sin y, 
Vc sin 3 ?' + (a•/Vc )g( y) am 

(58) 

since the radius of curvature is given by R = a,•/sin •/and 
the contact line is fixed at the crevice mouth. Here, we have 
used the definition 

g(T') = (rr/3)[2 + (2 + sin 2 T')cos T'], (59) 
and Vc is the crevice volume given by (12) with a = a m . Let 
us first simplify (58) by neglecting the gas contribution (last 
term in the left-hand side). This is a good approximation 
provided that the initial volume of the gas is small compared 
with the total volume of the crevice, However, its introduc- 
tion does not lead to qualitative differences even in other 
cases. Hence, instead of (58), we consider 

Pv = Pt` + (2or/am) sin •/. (60) 

The two sides of this equation are shown in Fig. 14 for sever- 
al values of pL as a function of •/. Note that, in this case, an 
increase of the nucleus volume corresponds to a decrease of 
T'. For pt` >pv -- 2or/am (line a) the root corresponding to 

the larger value of •/is stable, while the other one is unstable. 
For Pt, <Po -- 2or/a,,, (line c), the expanding forces domi- 
nate, the volume tends to increase unstably, and no equilibri- 
um is possible. 

Consider now the case of the "standard" model of Sec. 

V. Here, when the interface gets to the crevice mouth, it is 
less than a hemisphere, and therefore 7/> rr/2 and the equi- 
librium is stable. If an > rr/2, the nucleus grows stably as pt` 
decreases until, for 

p•C _ Po - (2cr/a m ) sin an, ( 61 ) 

7/= an and the contact line is free to move on the plane. If, 
however, an < rr/2, the growth takes place stably only until 

Pt` = Po - 2or/am, (62) 

(line b in Fig. 14) after which y passes from rr/2 toan in an 
unstable manner. For the case of a "wide" crevice, on the 
other hand, the interface starts out with 7/< rr/2 and grows 
to 7/= an unstably as soon as it reaches the crevice mouth. 
In this case this stage of the growth does not introduce any 
new threshold value for the liquid pressure. 

Finally, in the "narrow" crevice case, when the interface 
reaches the crevice mouth, the appropriate equilibrium 
equation is (60) with the opposite sign of the surface tension 
term. It is readily seen that this situation is stable. When 
Pt` = Po the interface is flat, and as pt` falls below Po the 
situation is identical to that of the "standard" case. 

Consideration of the gas contribution in the full Eq. 
(58) has the effect of slightly tilting the thick line counter- 
clockwise. The point of tangency in case (b) is therefore 
displaced somewhat to the left of rr/2, but the effect is not 
large for realistic values of the parameters. Taking again this 
point to be rr/2, we can then replace Eq. (62) by the approxi- 
mate relation 

2or Vo G p•C _•po - • -•- • . (63) 
a m V c 1 +2tan/3 

It is obvious that the preceding results can be extended 
to the geometries of Fig. 13 (b) and (c) by replacing T' by 
•/-T-•, respectively, in the preceding equations. 

0 
Gamma 

FIG. 14. Graph of the left-hand side (thick line) and the right-hand side 
(thin lines) of Eq. (60) versus y for three values of pt: line a-- 
Pt• > Po -- 2a/a,•' line b•pL = Po -- 2a/a,,' line c--pt <Po -- 2a/a,,. 
Equation (60) can have one stable and one unstable solution (line a) or no 
solutions (line c). The two solutions merge at rr/2 in line b. 

B. Motion outside the crevice 

The next and final stage of the nucleation process con- 
sists in the motion of the line of contact on the plane away 
from the crevice mouth. Now, the angle of contact is fixed at 
the value a R and the equilibrium equation is 

Po + Vo G = pt` + 2or, (64) 
Vc + g(an )R 3 R 

with the same definition ofg previously given in (59). To see 
what possibilities may arise, we start by considering the case 
of a deep crevice (or large an ) for which Vc >>g(aR )R 3. 
Then the equation simplifies to 

Po + ( Vo/ Vc ) G •pt` + 2cr/R. (65) 

This equation is very similar to that applicable to a pure 
vapor bubble, and one expects therefore an unstable behav- 
ior. Indeed, the lines shown in Fig. 15 indicate that this equi- 
librium is unstable, so that the unstable growth begins as 
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Radius 

FIG. 15. Graph of the left-hand side (thick line) and the right-hand side 
(thin line) ofEq. ( 65 ) versus radius. The single intersection corresponds to 
a state of unstable equilibrium. 

soon as 7/= aR at the crevice mouth. In the opposite case of 
Vc ,•R 3g(aR ), Eq. (64) simplifies to 

Po + Vo G = p• + 2or (66) 
g(a• )R 3 R 

which has the same form as for the free bubble. Hence, in this 
case a critical radius exists given by 

R =(3VøG) •/2 4 cr (67) • 2trg(a• ) 3 Pv --P• 
This value can be bigger or smaller than a m/sin a•, which is 
the receding radius for motion on the plane. Equality 
between the two holds for 

_2+(2+sin 2aa)cosaR am 2or 
(cot/3 -- %) sin 2 otR \-•-0 / 3ao' 

For G > G **, the critical radius exceeds the receding results. 
These considerations are sufficient to indicate that the 

situation described by the complete Eq. (64) is complex. It is 
shown in the Appendix that it can have one or three real 
positive roots. In the first case the equilibrium is unstable, 
while in the second one the middle root is stable and the 

other two are unstable. 

VIII. SOME NUMERICAL RESULTS 

The picture that emerges from the previous consider- 
ations is unfortunately quite complex. The nucleation pro- 
cess can be dominated by the requirement of unstable 
growth inside or outside the crevice. In its turn, the thresh- 
old thus defined may be determined by the need to reach the 
receding contact angle or to lose mechanical stability. De- 
pending on the values of the contact angles and of the geo- 
metrical parameters, any one of these cases can arise. A giv- 
en sample of water usually will contain a wide variety of 
nuclei and general predictions are difficult to make a priori. 
For this reason we have found useful to carry out some nu- 
merical studies which will now be illustrated. 

According to results obtained in the previous sections, 
we can identify several "special" values of the liquid pressure 
PL of particular importance in the nucleation process, name- 
ly the following. 

(A) The value p• at which the receding radius is 
reached in the crevice, given by Eqs. (29) or (40), 

P• = Po + cot fi - % G • 2or i cos(aR - fi) I. (68) 
cot/3 + r/• ao 

The upper signs apply to the "standard" case (Sec. V), and 
the lower signs to the "narrow" crevice case (Sec. VI B). 
For the "wide" crevice case this relation holds with the up- 
per signs if cr• > a* (Sec. VIA). In the opposite case, a* 
should be substituted for a•, again with the upper signs. 
Alternative forms are given in Eqs. (41 ) and (43), and ap- 
proximate expressions in Eqs. (48) and (50). 

(B) The value p• at which the critical radius is reached 
inside the crevice. This situation never occurs for the "nar- 

row" crevice case, while for the other two, from Eq. (45), it 
occurs for 

4•ffo( 2or (cot]• q- rlR )[COS(OtR --]•)I3 ) 1/2 P• = Pv -- 3aoG cot fi -- % ' ' 
(69) 

Other expressions for this quantity are given in (46), (49), 
and ( 51 ), the last two being approximations. The smaller of 
p• and p• was indicated earlier as the first cavitation thresh- 
old. 

(C) The value p• at which the interface forms an angle 
a• with the plane. This value is unstable for the "wide cre- 
vice" case, while common expressions apply in the other two 
cases. If a• > •r/2, it is given approximately by 

p•C •_po _ (2or/am)sin a•, (70) 

while if a R < rr/2, it is sufficient to reach 

2or cot fi- r/o a• p•C =Po -- • -t- • G, (71) 3 
am 2 + cot/3 am 

approximately. Exact relations are used in the calculations 
to be described. 

(D) The value ofp• necessary to reach the critical radi- 
us on the plane. When the crevice volume is smaller than the 
volume of the spherical segment, Eq. (67) leads to the ap- 
proximate expression 

42( 2or 2 + (2 + sin 2 aa )cos aR.)l/2 ß P• •--Po -- 3aoG cot fi- r/o 
(72) 

In the opposite (and much more frequent) case in which the 
volume of the crevice is much larger than that of the spheri- 
cal segment, the interface is already unstable when p•C is 
reached and the value ofp• ø is irrelevant. In the intermediate 
case in which the two volumes are comparable, the complete 
Eq. (64) must be used. In the calculations that follow, the 
exact values obtained from this complete equation have been 
usedß The smaller value between p•C and p•O was called in the 
previous section the second nucleation threshold. 

For a nucleation event to occur, the liquid pressure must 
fall below the lowest one of these pressure values p• o ,...,PL. 

Unfortunately, it is not possible to establish an ordering 
among them valid in all circumstances, and therefore it is not 
possible to arrive at a unique criterion for nucleation. These 
considerations motivated the parametric study that will now 
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be described. A more detailed numerical study will form the 
object of a separate publication. 

The numerical results to be shown are of two different 

types. The first series of figures is a plot of the volume Vo 
occupied by the gas versus Pv - Pc. We show the evolution 
of the bubble volume as the liquid pressure falls until the 
interface is on the plane outside the crevice and the radius of 
the contact ring equals 3am. The critical pressures p•,...,p•ø 
are indicated in the graphs. (For brevity, the symbol p•X is 
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FIG. 16. Graph of the volume of the nucleus versus p,, - Pc for a "stan- 
dard" crevice case [/3•aR•r/2 d-/3; see Fig. 6(a) ] and different values of 
the gas concentration G. In this set of figures, a,, = 0.35/zm, aA = 106 ø, aR 
=94 ø,/3= 15 ø, tr = 0.072 Nm -•, PLo =0.975 bar, and p,,=0.025 bar. 
(a) G = 0.975 bar, (b) G = 0.88 bar and (c) G = 0.5 bar. The notationp•, 
p•, and p• at the top of the graph is shorthand for p,, - p•, p,, -- p•, and 
p,,-p•. 

used in the figures in place ofpv - p•X, with X = A,B, C,D. ) 
The second set of figures shows the dependence of the pres- 
sures p•X on G, all other parameters being constant. Though 
certainly not exhaustive, these examples demonstrate a 
number of important points. 

The figures of the first set refer respectively to examples 
of a "standard" crevice (Fig. 16), a wide crevice (Fig. 17), 
and a narrow crevice (Fig. 18). In each case we present 
results for different values of the gas tension G. The largest 
value is 1 bar and corresponds to saturation since the liquid 
pressure is taken to equal 1 bar initially (p•-Pc •-- 1 
bar). For this value of G the interface is assumed to be flat 

and located at the crevice's mouth when the liquid pressure 
starts to fall so that ao = am. As the gas tension G is de- 
creased, the initial position of the interface is assumed to be 
at the crevice's mouth and to form a progressively increasing 
angle a with the crevice wall until the value a• is reached. 
For lower values of G, the initial contact angle is taken to 
remain fixed at a•, but the initial interface position is as- 
sumed to be deeper and deeper into the crevice. In other 
words, for any value of G, the starting configuration of the 
interface is taken to be such that the value of G in question 
coincides with the quantity G• defined in Eq. (24). The 
choice of these initial conditions is motivated by the descrip- 
tion given in the last paragraph of Sec. I. Ideally, this proce- 
dure corresponds to an experiment in which the threshold is 
measured for progressively decreasing dissolved gas con- 
tents. Other procedures are possible. For example, for each 
value of G, one might assume an initial configuration consis- 
tent with a prepressurization of the liquid. 

The "standard" crevice example is considered first in 
Fig. 16. The parameters are given in the figure caption and, 
with the exception of G, are the same in each case. The case 
corresponding to saturation is shown in Fig. 16 (a) for which 
G * = 0.27 bar. As the liquid pressure is decreased from 1 
bar, the radius of curvature decreases from infinity, the in- 
terface bows outward, and reaches the receding contact an- 
gle. The value of the pressure at which this happens corre- 
sponds to p• given by Eq. (68). [Recall that the pressure 
value marked as p• in Fig. 16 (a) actually indicates p• - p•. 
The same is true for all such pressures indicated at the top of 
Figs. 16-18. ] According to the previous versions of the cre- 
vice model, nucleation would occur at this point. However, 
before nucleation can occur according to the present theory, 
three other conditions must be checked, namely, p] c ,Pc, and 
pc ø. In this case p,-p• is greater than Po -P]•, indicating 
that the critical radius has not yet been exceeded, and so the 
nucleus is not unstable. Strictly speaking, though, p• will 
never be reached because the interface starts out at the 

mouth. Hence, the evolution of the nucleus from a = aR at 
p• onward involves "rounding" the mouth and, therefore 
attention must be shifted to pc c and p•O. During this process, 
the interface must go from forming an angle a R with the 
crevice wall to forming an angle a• with the plane, contin- 
ually decreasing R along the way. Hence, the path fromp]• to 
p•C is a continuous increase in Po --Pc. The contact angle 
reaches a• with the plane at p•C. From this point on the 
interface spreads out over the plane away from the crevice. 
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This spreading out causes an increase in R, a decrease in the 
Laplace pressure, and so a decrease in Po --PL as indicated 
in Fig. 16(a). In this example, Vc>>g(aR )R 3. Therefore, 
Eq. (65) is a good approximation to Eq. (64) and, as shown 
in Fig. 15, unstable growth begins as soon as y - aR atp• c. In 
such a case p• is irrelevant. In conclusion, for this example, 
the threshold for unstable growth is p•C. This result is in 
marked contrast to that of previous versions of the crevice 
model which would predict the threshold to be p•. 

The gas tension G has been reduced to 0.88 bar in Fig. 
16(b). This reduction in G causes the interface in the initial 
configuration to have advanced toward the apex of the cre- 
vice and ao - 0.25 rim so that ao/a m _•0.71, with G * -- 0.38 
bar. The initial volume Vo (at po-pL •_- 1 bar) is there- 
fore smaller. As p• is decreased, the interface begins to bow 
outward and the volume increases. At p•, a equals a•. The 
difference Po --P• is larger in this case than in the first one 
due to the reduction in ao. Hence, R [ -- ao/ICos(a• --/3) I] 
is smaller and the Laplace pressure is larger [see Eq. (29) ]. 
Again, the previous versions of the crevice model would 
have predicted nucleation at this point, but as can be seen in 
Fig. 16(b),p• has not been reached and so the nucleus is still 
in a state of stable equilibrium and nucleation cannot occur. 
Any further increase in the volume of the nucleus can only 
take place in response to a reduction in p,•. This increase in 
volume occurs as the interface recedes away from the crevice 
apex maintaining a equal to a•. Eventually, the liquid pres- 
sure would equal p• and the nucleus becomes unstable. 
However, in this example, whenp• is reached the interface is 
at the mouth of the crevice and any further growth involves 
rounding the mouth. Upon a further decrease in p,•, the in- 
terface bows outward until y =a• at p•C. The value of 
po _p•C in Fig. 16(b) is larger than that in Fig. 16(a) be- 
cause the gas partial pressure, and hence the net expanding 
force, is less in the second case owing to the smaller initial 
volume. The evolution of the nucleus from p•c is the same as 
in Fig. 16(a). Again, the nucleation threshold is given byp• c, 
in contrast to previous predictions. 

Finally, in Fig. 16(c), G has been reduced to 0.5 bar, 
ao -- 0.053 rim, ao/a m _•0.15, and G * -- 1.8 bars. As in the 
second case, the interface starts from within the crevice and 
the evolution is similar. The differencepo -- p• is much larg- 
er owing to the much smaller value of ao. Also, because G is 
smaller, the receding radius is reached at a pressure p• 
greater than the pressure p• _• -- 6.5 bars at which the mo- 
tion inside the crevice becomes unstable. Atp•, the interface 
starts receding stably from the apex and reaches the crevice's 
mouth before p• has fallen to the level p•. This quantity, 
therefore, plays no role in this example. The evolution from 
p• is essentially the same as before, but po -- p•C is less than 
po -- p• in this case. Therefore, the cavitation threshold cor- 
responds to p• in agreement with previous versions of the 
crevice model. 

An example of a wide crevice case, for which aR </3, is 
shown in Fig. 17. The gas tension G is equal to 1 bar in Fig. 
17 (a) and the interface starts from the mouth as in Fig. 
16(a). Here G * = 2.29 bars. As pL is decreased, the inter- 
face bows outward and R decreases. Again, as in the pre- 
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FIG. 17. Graph of the volume of the nucleus versus p,, --PL for a wide 
crevice case [0<aR </3; see Fig. 6(b) ] and different values of the gas con- 
centration G. In this set of figures, a,, = 0.35/•m, aA = 106 ø, aR = 6 ø, 
/3= 15 ø, c= 0.072 N m -•, PLo =0.975 bar, and p•.=0.025 bar. (a) 
G = 0.975 bar and (b) G = 0.8 bar. The notation p• and p•C at the top of the 
graph is shorthand for Po - P• and p,, - p•C. 

vious example, Vc >>g(a• )R 3 and therefore Eq. (65) is a 
good approximation to Eq. (64). Unstable growth begins as 
soon as y = a• at po -p•C = 0.43 bar. [For this case, the 
surface would be hemispherical for Po --PL = 3.46 bars and 
the value p• would be reached for po -p• = 3.47 bars. ] 

In Fig. 17 (b), G has been reduced to 0.8 bar and the 
interface starts from within' the crevice with ao = 0.14 rim, 
ao/a m = 0.41, and G * = 5.58 bars. The interface becomes 
hemispherical at Po - P• = 9.51 bars and Po - P• = 9.43 
bars. Therefore, in contrast to the first case, the nucleus be- 
comes unstable somewhere along the evolution between 
a =/3 and a = a•. Once at a = a•, the nucleus is still un- 
stable and growth continues. In this case the threshold for 
unstable growth is essentially, but not exactly, equal to p•. 
Though not in this example, there may be some set of param- 
eters for which the difference in the true threshold and p• is 
significant. 

Finally, a narrow crevice example, for which rr/ 
2 +/3<aR<a•, is considered in Fig. 18. In Fig. 18(a), 
G = 1 bar. The reader will notice that the value ofp• is not 
indicated in the graph. The reason is that in a narrow crevice, 
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with this value of G, the interface must be bowed inward in 
order for a to equal a R. Therefore, it would be necessary to 
overpressurize the liquid (Pv --PL < -- 1 bar) in order to 
force the interface to start at aR. The entire evolution for the 
case shown in Fig. 18 (a) consists of rounding the mouth. 
The lowest liquid pressure occurs at p•C and evolution be- 
yond that point is unstable. 

In Fig. 18(b), G = 0.5 bar, ao = 0.35 ttm, and ao/a m 
= 1. In this case, the interface starts at a contact angle 
greater than a• and therefore p• is meaningful. However, 
the reduction in (7 is not sufficient to cause the interface to 

reach aA and so the initital position is at the mouth of the 
crevice as in the previous case. The evolution is essentially 
the same as in Fig. 18 (a). It should be further recalled that 
p• is not defined for narrow crevices. 

In Fig. 18 (c), G has been reduced to 0.1 bar, which is 
sufficient to cause the interface to start from a position inside 
the crevice. In this case, ao- 0.31 ktm, and ao/am --0.90. 
WhenpL is reduced top•, a = a• and the interface starts to 
recede stably to the crevice mouth. This leads to a nearly 
stepwise behavior of the curve because the rate of volume 
increase when the interface is free to move is much greater 
than when the contact line is fixed and only the radius of 
curvature can change. From this point on the evolution con- 
sists of rounding the mouth and spreading out over the plane 
and follows the now familiar pattern. 

Conspicuously absent from these examples is a case 
where the threshold for unstable growth is governed by p•, 
which is the value necessary to reach the critical radius on 
the plane. There are two reasons for this. First, the concept 
of p• is meaningful only when Eq. (64) has three real roots, 
because in the opposite case the equilibrium is unstable as 
soon as the receding angle a• is reached. Three real roots 
occur when Vc <g(aR )R 3, a condition which in the pre- 
vious examples is only verified for the case of Fig. 17 (due to 
the extremely small value of a• ) and which may indeed be 
rare in nature. Second, when Eq. (64) does have three real 
roots, p• dominates only provided that G > G ** defined in 
( 67 ). For the cases of Fig. 17 (a) and (b), we find such large 
values of G ** (equal to 135 and 1951 bars, respectively) that 
this condition is evidently not met. We have verified numeri- 
cally the dominance ofpf for cases in which G > G **, but we 
do not present any such example here. For completeness we 
give the values of G ** for the examples of Figs. 16 and 18, 
although, for the reasons just stated, they are not needed to 
reach the conclusions presented above. For Fig. 16(a), (b), 
and (c), G ** = 0.66, 1.79, and 1.92 bars, respectively, while 
for Fig. 18(a), (b), and (c), G ** = 0.45, 0.46, and 0.65 bar. 

The dependence of the cavitation thresholds on gas ten- 
sion is shown in Fig. 19 for the three cases presented here. 
The quantities plotted are pv -- p•, p• - p•, and Pv -- p•C. 
The last threshold, p• - p•, is of no interest for these exam- 
ples, as explained before. Figure 19(a) refers to the case of 
Fig. 16, namely, a standard crevice. The pressure p• neces- 
sary to reach the critical radius in the crevice dominates only 
for G greater than G *, which here is approximately 0.77 bar. 
For this value the two curves p• andp• are tangent. Since in 
this example the curve labeled p•C lies above the others for G 
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FIG. 18. Graph of the volume of the nucleus versus p,, - PL for a narrow 
crevice case [re/2 +/3•<aR •<aA; see Fig. 6(c) ] and different values of the 
gas concentration G. In this set of figures, a,, = 0.35 •tm, aA = 116 ø, aR 
= 108ø,/3 = 15 ø, c = 0.072 N m -•, PLo =0.975 bar, and p,, = 0.025 bar. 
(a) G= 0.975 bar, (b) G= 0.5 bar, and (c) G=0.1 bar. The notationp]• 
and p•C at the top of the graph is shorthand for p,, - p] and p•, - p•C. 

greater than about 0.55 bar, it is concluded that p• plays no 
role. Hence, the receding radius criterion inside the crevice, 
p,-- p•, dominates for G less than 0.55 bar, while at greater 
saturations the receding radius criterion outside the crevice, 
p,_p•c, dominates. The previous versions of the crevice 
model are consistent with the first result (i.e., at low gas 
concentration), but not with the second one. It is interesting 
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FIG. 19. Thresholds versus gas concentration for the examples of the pre- 
vious three figures. (a) refers to the case of Fig. 16, (b) to that of Fig. 17, 
and (c) to that of Fig. 18. 

to note that, whereaspo -- P• goes to a value close to -- 1 bar 
at G = 1 bar (see the end of Sec. V), Po -P• approaches 
approximately 3.5 bars. Thus the older version of the crevice 
model predicts an acoustic pressure amplitude close to 0 as 
the threshold for a cavitation in a saturated liquid at 1 bar, 
while the present model gives a nonzero value equal, for the 
parameters of this example, to 4.5 bars. As already men- 
tioned, experiments show beyond doubt that the acoustic 
threshold is not zero in saturated liquids. 16,25 Therefore, the 
present model matches experimental results better than pre- 
vious versions of the crevice model. A more detailed com- 

parison of the predictions of this model with experimental 
results will be the topic of a future paper. 

Figure 19 (b) refers to the wide crevice example shown 
in Fig. 17. In this case G < G * in the entire range. Again, 

therefore, although the line Po- P• appears to lie above 
A Po -- Pz•, this threshold value plays no role andp• dominates 

for all values of G. The change in slope at G•_0.9 bar is the 
result of the fact that, for lower values of G, the interface 
reaches the advancing contact angle and moves toward the 
apex as G is decreased, while for greater values of G the 
interface remains at the crevice mouth. 

Finally, the narrow crevice example of Fig. 18 is consid- 
ered in Fig. 19(c). It is seen in the figure that Po --P• is 
negative, so that the pressure required to reach the receding 
contact angle is positive, or, at any rate, greater thanpo. This 
feature is readily explainable in terms of the peculiarities of 
this case. Here, it is seen that p• dominates over the entire 
range of concentrations shown. 

IX. CONCLUSIONS 

In this paper we have developed the crevice model of 
nucleation in two directions. In the first place (Sec. II) we 
have argued that a true nucleation event must be the result of 
the loss of mechanical stability of the nucleus. Second, we 
have considered the question of the motion of the interface 
outside the crevice and investigated parameter ranges differ- 
ent from those considered thus far in the literature. Our anal- 

ysis has shown the crevice model to exhibit a much richer 
behavior than previously realized. While this can account 
for the variability of the cavitation threshold measured on 
the same liquid sample, it is also true that this variability is 
usually limited. 16 This feature may be either a consequence 
of the fact that the nuclei present in a given sample are fairly 
similar, or of the relative insensitivity of the threshold to the 
parameter values in some regions of the parameter space. 
Some indications that this may be the case were obtained by 
the limited numerical study of Sec. VIII. However, more 
data, both experimental and numerical, will be needed to 
reach firmer conclusions. 

Our results seem to indicate that the nucleation thresh- 

olds calculated from the earlier v•ersions of the crevice model 
coincide with ours only at low gas concentrations. At larger 
gas concentrations our results lead to more stringent nuclea- 
tion criteria, i.e., more negative absolute pressures. This fea- 
ture appears consistent with the available data. 

When the nucleus is first wetted, whether gas is trapped 
in the crevice or not may have an important effect on the 
final positon of the liquid surface and, through this, on its 
ultimate strength. Other than this mechanism, which is not 
considered in the present study, it is intuitively clear that, for 
a given initial configuration, the effect of the gas can at most 
introduce a difference with the pure-vapor thresholds, given 
by conditions (68) or (71 ) with G -- 0, of the order of G. 
Therefore, the results of our analysis would be quantitatively 
significant only in cases in which the threshold is at most a 
few times G, rather than many times G. For G- 1 bar, this 
would be the case for nuclei greater than, say, 0.1 •m. On the 
other hand, for large nuclei (bigger than, say, a few microm- 
eters), the threshold is not much different from Pv and our 
results introduce but a small correction to this value. Hence, 

the mechanisms described above are of significance only in 
the range between tenths of micrometers and a few microme- 
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ters, which is the crucial decade for nucleation in water in 
normal conditions. 

An interesting experiment which might be carried out to 
further explore the nucleation process consists in the genera- 
tion of cavitation events one at a time by the use of very small 
water samples. In this way spectra of the nuclei distribution 
in different water samples could be generated. Another use- 
ful approach appears to be the simultaneous use of different 
techniques of bubble generation on different samples drawn 
from the same water batch. Side by side with acoustic and 
flow cavitation, boiling could be employed. For high-fre- 
quency acoustic cavitation, gas-diffusion effects are unim- 
portant and the present theory should apply. At lower fre- 
quencies or in flow cavitation, gas diffusion should be 
important and a different nucleation behavior would be ex- 
pected. Finally, in boiling, permanent gas must have a negli- 
gible effect and a still different behavior should be observed. 

r] -- 6-312 - (2 762)(1 --62)1/2], 

dr/ = 3 2 -- •2 _ 2( 1 -- 62) 1/2 . 
d6 64( 1 - 62) 1/2 

(A1) 

Hence, r/, as a function of 8, is monotonically increasing 
from •7 (0) = 0 to r/( 1 ) = 2. In the range of present concern, 
a >/3 + rr/2 so that, as the volume increases and a de- 
creases, r/also decreases. The left-hand side of (25), there- 
fore, decreases with decreasing a from the value Pv + (7 it 
has initially. The right-hand side, on the other hand, equals 
PL for a =/3 + rr/2, and decreases as a increases. Hence, 
the two lines, if they cross (as they must for the'situation 
envisaged to exist), can only cross once at a stable point 
(Fig. 8 ). This point moves towards the direction of decreas- 
ing a as pL decreases, so that the interface tends to become 
more flat. 
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APPENDIX 

The conclusions reached in this paper depend upon the 
number of roots of each equilibrium equation and their sta- 
bility. Here, we give some details on the manner by which the 
results stated in the main text have been obtained. 

1. Equation (25) 

In terms of 8- I cos(a-/3) I, we have from (14), for 

I 

2. Equation (27), "standard" case 

Now, the range is/3 < aR<a</3 + rr/2 so that r/de- 
creases as a increases. Since, however, r/appears with the 
opposite sign in (27) as compared with (25), we again con- 
clude that the left-hand side of (27) is an increasing function 
of a, while the right-hand side is a decreasing function of a. 
The situation is therefore qualitatively the same as before 
(Fig. 9). 

3. Equation (27), "wide crevice" case 

The range is now 04aR 4a4/3. Let 

p = Pv -- P• A = VoG 
2rr/ao (2rr/ao) (rr/3)a3o 

and rewrite Eq. (27) in the form 

P+ A83 =8, (A2) 
83 cot/3 + 2 + (2 + 82)(1 --82) I/2 

where 8 - cos(a -/3). The derivative of the left-hand side 

•[lhs of (A2) ] -- 3A82 
2(1 -- 82)•/2 + 2-- 82 

(1 -- 82)!/2183 cot/3 + 2 + (2 + 82)(1 -- 82)1/2] 2' 

is always non-negative, and vanishes for 6 = 0, while it tends 
to infinity as 6-• 1. This case starts to exist when the interface 
becomes hemispherical, i.e., a =/3, and therefore, from 
(A2), 6 = 1 and P - P with 

P + A/(2 + cot/3) = 1, 

which is the same as ( 53 ). The two sides of (A2) are plotted 
for this value of P in Fig. A 1 where, in addition to the inter- 
section for 8 = 1, another root is seen to exist (Fig. A 1, line 
a). 

To examine the stability of these solutions we note that, 

for the present case, an increase of the volume corresponds to 
a decrease of a below/3, and therefore to a decrease of 8 
below 1. The curves in Fig. A 1 show that, for such a decrease 
of 8, the right-hand side of (A2), which arises from surface 
tension, dominates. We therefore conclude that the equilib- 
rium at 8 = 1 is stable, while the same argument proves the 
other root (which is, however, irrelevant for the present) to 
be unstable. - 

As the liquid pressure falls further, P increases (recall 
that_PL < 0 ), and the curve representing the left-hand side of 
(A2) translates upward as shown in Fig. A 1, line b. 
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FIG. A 1. Graph of the left-hand side (thick lines) and the right-side hand 
side (thin line) ofEq. (A2) versus t5 for two values of P: line a--P -- 1 -- A / 
(2 + cot/3) and line b--P < 1 = A / (2 + cot/3). 

FIG. A3. Regions of the (C,B) plane where Eq (64), or (A4), has one or 
three equilibrium solutions. On the lines two roots coalesce and the equa- 
tion has only two distinct solutions. 

4. Equation (64) 

Let 

x - [ - 
(P• --pz,)3Vc 

8cr3g(aR ) 

Then, Eq. (64) becomes 

1 q- C/(B q- x 3) -- l/x, 
or 

x 4-x 3 + (B + C)x--B-- O. 

(p• -- pL ) 2 Vo G 
8o-3g(aR ) 

(A3) 

(A4) 

(a) 

(b) 

FIG. A2. Graph of the left-hand side (thick line) and the right-hand side 
(thin line) of Eq. (A3) versus x showing that there can be either (a) three 
roots or (b) one root. 

The two sides of (A3) are plotted qualitatively in Fig. A2. It 
is evident (and can also be proven otherwise) that at most 
three acceptable roots exist. If there is only one root, the 
usual argument proves it to be unstable. If there are three 
roots, the middle one is stable and the other two are unstable. 
To find the condition for which all these roots coincide, we 

note that, in this case, Eq. (A4) must have the form 
(x - r)3(x + s). Expanding and comparing with (A4), we 
find r = s and r = 1/2, B = 1/16, and C = 3/16. To find the 
condition for which two roots coincide, we compare (A4) 
with (x 2q-pxq-q)(x-r)2. This leads to p=2r--1, 
q = r(2p- r), and 

B=r 3(2--3r), C=3r 2(1--r)2. 

These relations can be considered as the parametric form of 
the two-root lines in the (B,C) plane (Fig. A3). The range 
0<r•< 1/2 gives the upper line where the two smaller roots 
coincide; the range 1/2•<r•<2/3 gives the lower boundary 
where the two larger roots coincide. The point where the two 
lines meet corresponds to the three coincident roots found 
before. Inside the triangular region there are three distinct 
roots [ Fig. A2 (b) ], while outside only one root exists [ Fig. 
A2 (a) ]. The approximation Vc >>g(a• ) R 3 used in the main 
text corresponds to approximating (A4) by 

(B+ C)x--B=O, 

while the opposite approximation leads to 

x(x 3 -- x 2 + C) = O. 

In the first case B is large and in the second one small. 

5. Pressure to reach the crevice mouth 

Some statements have been made in Sec. VII after Eq. 
(57) concerning the ordering of the absolute liquid pressure 
p• necessary for the interface to reach the crevice's mouth in 
the "standard" and "wide" crevice cases, andp• andp•. We 
now give proofs of these statements. 

In terms of the quantity G * defined in (36), Eq. ( 68 ) for 
p• may be written 

p• = p, + (2cr/3ao) (G/G * - 3) [cos(a• -/3) I, 
while p• is 

1083 J. Acoust. Soc. Am., Vol. 86, No. 3, September 1989 A.A. Atchley and A. Prosperetti: Crevice model of nucleation 1083 



The condition p• <p• is equivalent to 

1-- ao 3--•-• 1• • >0. 
Since ao < am, the first factor is positive while the second one, 
in general, can be positive or negative. However, the first 
nucleation threshold is given byp• only ifG < G *, and in this 
case the second factor is readily seen to be positive also so 
that the inequality is satisfied. 

Similarly, the expression (69) for p• may be written 

p• --po -- (4a/3ao)(3G*/G) 1/2 cos(a• --•)1. 
Now, the conditionp• <p• can be shown to be equivalent to 

y3_ y4 •>0, 
where 

Y = (3G/G *) l/2ao/a •, 
which is satisfied because the cubic is positive for Y> 0. 

IM. Gernez, Philos. Mag. 33, 479-481 (1867). 
2C. Tomlinson, Philos. Mag. 34, 136-143 (1867). 
•C. Tomlinson, Philos. Mag. 34, 229-230 (1867). 
4R. B. Dean, J. Appl. Phys. 15, 446-451 (1944). 
5M. Kornfeld and L. Suvorov, J. Appl. Phys. 15, 495-506 (1944). 

6E. N. Harvey, D. K. Barnes, W. D. McElroy, A. H. Whiteley, D.C. Pease, 
and K. W. Cooper, J. Cell. Comp. Physiol. 24, 1-22 (1944). 

7H. B. Briggs, J. B. Johnson, and W. P. Mason, J. Acoust. Soc. Am. 19, 
664-677 (1947). 

8F. G. Blake, Technical Memorandum No. 9, Acoustic Research Labora- 
tory, Harvard University, Cambridge, MA (1949). 

9F. G. Blake, Technical Memorandum No. 12, Acoustic Research Labora- 
tory, Harvard University, Cambridge, MA (1949). 

IøL. J. Briggs, J. Appl. Phys. 21, 721-722 (1950). 
•W. Connolly and F. E. Fox, J. Acoust. Soc. Am. 26, 843-848 (1954). 
•2W. J. Galloway, J. Acoust. Soc. Am. 26, 849-857 (1954). 
•3F. E. Fox and K. F. Herzfeld, J. Acoust. Soc. Am. 26, 984-989 (1954). 
•4F. Seitz, Phys. Fluids 1, 2-13 (1958). 
I-•D. Lieberman, Phys. Fluids 2, 466-468 (1959). 
•6M. Strasberg, J. Acoust. Soc. Am. 31, 163-176 (1959). 
•7D. Sette and F. Wanderlingh, Phys. Rev. 125, 409-417 (1962). 
•sV. A. Akulichev, Sov. Phys. Acoust. 12, 144-149 (1966). 
•9M. Greenspan and C. E. Tschiegg, J. Res. Natl. Bur. Stand. 71C, 299-311 

(1967). 
2øR. E. Apfel, J. Acoust. Soc. Am. 48, 1179-1186 (1970). 
21M. G. Sirotyuk, Sov. Phys. Acoust. 16, 237-240 (1970). 
22A. T. J. Hayward, J. Phys. D 3, 574-579 (1970). 
23R. H. S. Winterton, J. Phys. D 10, 2041-2056 (1977). 
24C. A. Ward, A. Balakrishnan, and F. C. Hooper, J. Basic Eng. 92, 695- 

704 (1970). 
2•L. A. Crum, Nature 278, 148-149 (1979). 
26D. E. Yount, J. Acoust. Soc. Am. 65, 1429-1439 (1979). 
27D. E. Yount, J. Acoust. Soc. Am. 71, 1473-1481 (1982). 
28C. A. Ward, W. R. Johnson, R. D. Venter, S. Ho, T. W. Forest, and W. D. 

Fraser, J. Appl. Phys. 54, 1833-1843 (1983). 
"9D. E. Yount, J. Acoust. Soc. Am. 76, 1511-1521 (1984). 
3øR. A. Roy, A. A. Atchley, L. A. Crum, J. B. Fowlkes, and J. J. Reidy, J. 

Acoust. Soc. Am. 78, 1799-1805 (1985). 
3•p. S. Epstein and M. S. Plesset, J. Chem. Phys. 18, 1505-1509 (1950). 

1084 J. Acoust. Soc. Am., Vol. 86, No. 3, September 1989 A.A. Atchley and A. Prosperetti: Crevice model of nucleation 1084 


