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Thermal processes in the oscillations of gas bubbles in tubes
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Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
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The forced oscillations of a system consisting of two finite liquid columns in a duct separated by a
gas bubble are studied in the linear approximation. It is found that thermal processes in the gas
induce a very significant damping in the system, which can exceed viscous damping even in
capillaries with a submillimeter diameter. The study is motivated by the possibility of using gas
bubbles as actuators in microdevices. 1®98 Acoustical Society of America.
[S0001-49668)00608-0

PACS numbers: 43.35.UdHEB]

INTRODUCTION In the case of bubbles in large liquid masses a substan-
tial simplification arises from the assumption of spherical
hape. Here we introduce a parallel assumption on the shape
f the bubble: since our interest lies in channels with a di-
. S e ameter of the order of 1 mm or less, we take the bubble to
1991). The additional dissipation due to gas diffusion is es'occupy an entire section of the channel, ignoring the prob-

S(re]r;tslzlIzzlh:::lviy;ren?ngs!!gIrl])':‘('ac’anwthflclner ;hl?rmj"l.f;fec;ferd;ten;?_lems associated with contact angles and the detailed shape of
P g Insignin 1quid Tike the gas-liquid interfac@=ig. 1). The gas volume is therefore

mal temperature. Over a W.'de range of bubble radn_ apq fre; ssumed to be bounded by two flat liquid surfaces orthogonal
quencies, thermal conduction is by far the most ygmﬂcanﬁ) the axis of the channel, and by the surface of the channel
dissipative mechanism. In addition to energy dissipation '

thermal processes also influence the stiffness of the bubbFomprIS'EOI between these two surfaces. The amplitude of the

. . . . . . scillations is taken to be so small that the problem can be
the behavior of which, in general, will be intermediate be- X

tween isothermal and adiabatic. The corresponding processléneanzed’ and the liquid surfaces bounding the gas volume

o . Te supposed to move remaining flat and orthogonal to the
for bubble; pulsating na duc.t have not been studied, an hannel walls; the complexities associated with the motion
they constitute the object of this paper.

The motivation for this work lies in the possibility to use of the gas-liquid—solid contact line are therefore ignored.
P Y This approximation has the consequence of rendering it im-

pulsating bubbles as actuatprs in small fde—handImg. dev.'?%%ossible to account for a velocity profile in the liquid. Energy
such as those made possible by recent progress in silicag)

) . " . dissipation due to liquid viscosity will be reintroduced in an
manufacturing techniqudsee e.g., Fujita and Gabriel, 1991; . . : i
Lin and Pisano, 1091: Gravesehal, 1993. Of course, en- approximate way latgfSec. \}. In spite of the relative crude

ness of this model, one may expect the results to be a valid

ergy dissipation is important as it determines the width of thefir t estimate of the quantitative effects of the physical pro-
resonance and the magnitude of the response under forc%gssses involved

oscillation. The stiffness of the bubble determines the reso- Let x,(t) andx,(t) denote the time-dependent positions

hance frequency. of the two gas-liquid interfaces, both measured from the
midpoint of the undisturbed bubble, and define

It is well known that a gas bubble pulsating in a large
liquid mass loses energy by viscosity, acoustic radiation, an
thermal conductioitsee, e.g., Apfel, 1981; Prosperetti, 1984,

I. FORMULATION
Xo—X1=2Lg[1+ X(1)], D
Since this is the first study devoted to the problem, we
feel justified in introducing some approximations that will, where 4_g is the undisturbed length of the bubble. We shalll
on the one hand, simplify the analysis and, on the otheronly consider the steady-state problem in which the time
facilitate a comparison with the established results for adependence of all disturbances is proportional toiexp
spherical bubble. Due to the translational invariance of the channel and to
In the first place, and just as in the case of a sphericaihe fact that, in a linear problem, the perturbation of any
bubble, we assume the wavelength in the gas to be mucdfuantity is proportional to that of any other, one may write
larger than both the lateral dimensions of the channel and thgithout loss of generality the gas pressure in the form
axial length of the bubble, so that the gas pressure can be
considered spatially uniform and only a function of time p(t)=po[1—DX(1)], 2
(see, e.g., Prosperetti, 199Another approximation in com-
mon with the standard analyses for spherical bubbles is thetherepg is the equilibrium value an@ is a complex con-
neglect of the vapor contribution to the bubble internal presstant. It will be noted that this relation may be considered as
sure and of phase change processes, both approximatioti® linearization of a relation of the tygev® = const(where
being motivated by the consideration of only relatively V is the bubble volume so that® may be regarded as a
“cold” liquids (see, e.g., Plesset and Prosperetti, 1977 (complex, frequency dependgmolytropic index.
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gases(with y the ratio of specific heatsthis equation be-
comes
p—ypV-u=KkV?T, (12)

whereu is the gas velocity. When this equation is integrated
over the surface of the gas voluriveone finds an equation
for the gas pressure in the form

FIG. 1. The physical model simulated in this study: a duct contains two ~ Vp=— ypv—(y— 1)Q, 12
liquid columns separated by a gas bubble.
where
If the length of the liquid columns bounded by the sur-  g=— ¢ k al dA (13)
facex;, j=1,2, is denoted by ;, and if the pressure acting A N

on the free end of each column is is the total heat flow rate out of the surfagebounding the

pi(1)=po[1+P;(1)], (3 bubble. The calculation of the gas pressure presupposes a
knowledge ofQ, and hence of the gas temperature field, to

the equations of motion for the columns are which we now turn.

L1pX1=pPo[ P1+ PX], 4
. Il. THE THERMAL PROBLEM
LopXa= —po[ P2+ ®X], 5 _ o
. o ) i ) By virtue of the assumed exponential time dependence,
wherep is the liquid density. Define the abscissa of the cenype energy equatioflL0) may be written

ter of mass of the liquid by 5 L
J y—low
V2+ v ——p To®X, (14

w
L%, + LoX, T-ig5 (T-To)=i

1
§=W+§(L2—L1)- (6) _ o _
where D=k/pgc,, is the gas thermal diffusivityT, is the
Then the two equations can be combined to give equations @fndisturbed temperature of the system, &tfddenotes the
motion for £ and X: two-dimensional Laplacian over the cross section of the
w channel, the shape of which for the moment we do not need
p(LatLa)é=po(P1=P2), D specify. At this point we introduce another assumption
which is also standard for a gas bubble in a large mass of
. tS) liquid, namely that the surface delimiting the gas remains at
. the undisturbed temperatufg. The justification for this as-
Upon noting thaiX =X/w, the second equation may be re- sumption lies in the large heat capacjigr unit volumeof

__Po
2Lgp

1 1
Lo Ly

written as most solids and liquids, which far exceeds that of gases.
Amounts of heat sufficient to cause significant temperature

- Po 1 1]. Po 1 .

X+ (IM®)| —+ —|X+ =— (Red)| — + —|X changes in the gas are therefore too small to cause any ap-
2lgpw Ly Lo 2Lgp L Lo preciable temperature disturbance in the materials surround-

po [Py P, ing the bubble. On this basis, we seek a solution(1af)
=—-0|— —} (9)  subject to the conditiom=T, on the boundary of the gas
2lep Ly L2 volume.
The equation forg describes the overall motion of the sys- We determine this solution by expandimgver a set of

tem. In particular, ifP; = P, and the initial velocity vanishes, eigenfunctions ofv2. Specifically, consider the eigenfunc-

& is independent of time irrespective of the behavior of thetion, eigenvalue pairsu(, ,\,) satisfying

bubble. Thermal effects only affect the second equat®n A2

through®, and it is on this quantity that we now focus. It is Vu,=— _2” Un, (15)

obvious from(9) that the real part of this quantity governs !

the natural frequency of the system, while the imaginary parbver the cross section of the channel, subject to the boundary

is responsible for thermal dissipation. conditionv,=0 on the perimeter of the cross section. De-
The determination ofP requires a consideration of the pending on the shape of the cross section, the indexay

energy equation. For a perfect gas with spatially uniformactually stand for a pair of indices, as in one of the examples

pressurep, in the linear approximation, this is of Sec. IV below. In(15) we have made the eigenvalues
aT dimensionless in terms of a characteristic lenigtiefined as
PaCp o p=kV?2T, (10)  the ratio of the bubble volume to its surface:
. o : . LgS
whereT is the gas temperaturgg is its density,c, is the | = Sty (16

specific heat at constant pressure, &nd the thermal con-
ductivity. By combining with the equation of continuity and whereS is the area of the cross section andis its perim-
using the relationcopcTo=ypo/(y—1) valid for perfect eter. The reason for this definition is the fact that, when one
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of the lengths characterizing the geometry of the bubble
(e.g., its extension in the axial direction, or the size of the

channel cross sectipis much smaller than the otheisjs

close to this length. Thud, is a measure of the shortest
and the fixed-

distance between the bubble ‘“core”

Le
QW=—2kT02f A, dxf d7n-V, v,
n 0 7

L
= 2kT,S f °A, dxfdsvan
n 0 S

temperature boundaries that enclose the gas. The physical

relevance of this distance will be apparent shortly.

It is easy to see, by use of Green's identity, that the
eigenfunctions satisfyingl5) are orthogonal to each other

(see the Appendjx We thus write

T=To| 1+ A(x,.t)un(y,2)], (17)

substitute into(14), and exploit the orthogonality of the

eigenfunctions to find

2A, K2 y—1 wyS
Wzn—l—g n=I TT Un(I)X, (18)
where
— wl?
kn=VA,tiQ, QZF, (19
= ! f ds (20
O'n—\/é SUn .

Due to linearization, the boundary conditions #g=0 at
the undisturbed positiong;g=*Lg, i=1,2, of the liquid

Lg A2
=—2kTo> f A, dxj dS| - 1z|v
n 0 S

kg (

i tanhk,. 72
=io(p=p)VY —7 [1-——
n n

K 7

) . (29

where in the first step we have used the divergence theorem
to convert the line integral over the perimeter of the cross
section into a surface integral over the cross section, and in
the following steps the eigenvalue equat{@b) and the defi-
nition (20) of o,. Upon combining the two contributions
(22) and (24) we then find

Q=iw(p—po)VG, (25
where
2 ’
3 Inl o, tanhk, 7
G—; 7 [Mi+iQ R (26)

Upon substitution of25) into the pressure equatigh?)
we find, comparing with(2),

_r
1+(y—-1)G

In the framework of the present model, the functiGn
describes the effect of the thermal processes occurring in the
bubble on the gas pressure. An alternative form for this

b= (27)

surfaces bounding the bubble. The solution is readily foundyyantity may be derived by using the identity

to be

vy~ 1 w|2\/§0'n

A coshk,x/I
n=! v D ki

coshk,Lg/l

1}@x, (21)

where it will be recalled that the coordinateis measured
from the midpoint of the undisturbed bubble.

With this result the heat flow rat® can be calculated
from (13). We break up the integral into the contributiQ
of the liquid surface and the contributio,, of the tube
wall, Q=Qs+Q,,. For the former we have

Q.= 2kf al ds
° S&X X=Lg
) tanhk,, #
=io(p=poV of ———. (22
n n-"?

where. 7 is the aspect ratioof the bubble defined by

(23

> op=1, (28)
n
proven in the Appendix, to obtain
2 Y
) o, \ ‘| tanhk, 2
G—1+|Q; (k_n A (29)

SinceG is complex, Eq(25) shows that the heat trans-
fer rate has components in phase and in quadrature with the
pressure disturbance. The former one is proportional to
Im G, and is responsible for the thermal losses of the system.
Although it might seem thaB depends explicitly only o)
and .#, there may be an additional dependence on other
dimensionless parameters characterizing the shape of the
tube cross section through the eigenvalgs

. ASYMPTOTIC BEHAVIOR

Before looking at numerical results for some specific
examples, it is useful to consider two limit cases of the pre-
vious result426) and(27) that are applicable to channels of
arbitrary cross section.

We start with the low-frequency limit or, more pre-
cisely, with frequencies such that the corresponding thermal

with =4S/ the hydraulic diameter of the tube. For the penetration length is much larger than the smallest bubble

second component we have, noting thaV=n-V | ,

dimension:
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D -1 y(y—1)
—>1. 30 - — - :
\/; (30 Re®—y| 1+ @1 Im & NI (39

In these conditions the paramefey defined in(19), is small, |t will be observed that these results are independent of the
and one would expect nearly isothermal behavior to prevailaspect ratia #, a result that it would be quite difficult to
To confirm this expectation we approximate the expressiorstablish directly fron(26) or (29).

(19 for k, and the hyperbolic tangent i29) by a Taylor By following a similar line of approach we can deduce
series and find approximate results valid for very short bubbleg—1<1,

and very long bubbles;Z> 1. In the former case most of the

2
G=1+0%5 U_Z 3 tanh)\h./d_ ! - 1} heat exchange occurs with the liquid and one can ignore the
no A2 N” 2 cosf \p,. 7 directions orthogonal to the duct axis. Upon dropping the
oS o2 [tanh\,, 7 ) - operatorV? in the energy equatiofiLl4) we find
e 2T ’ S N coshiw/Dx w0
0 k P—Po th '
from which coshyiw/DLg
2 ) from which the total heat flow rate into the liquid is readily
Red=1+ y-1 02> % gtar;\h)‘;"% found as
Y ooon h e Q=25(p—po)iwD tanh(iQ2. 2). 41)
14 Upon comparison with{25) we thus have
2 cosk \,. 7 T+, (32 Jia
tanh(_7Z/i{}) ,
-1 on tanh\ .. 7 G=———, 7—1 (42)
_r- Inpg o 207 NiQ
Im & ” QZ "2 1 N2 (33

It is readily checked that this result agrees wii) for small
These formulas simplify if Z=Lg/1>1, i.e., for a relatively Q and, noting thatZ=1, with (38) for large(). The real and

long bubble. In this case they become imaginary parts ofp evaluated usings given by (42) are
1 213 1 plotted in Fig. Za) and (b) as functions of(). #2. These
Y 9n results are valid whatever the shape of the cross section of
Red=1+—02%D> —|;——1|, 34
Y 2 Ao 12 Ny ” } 349 the duct.

For the opposite limit of a long bubble, heat exchange
occurs mostly with the wall of the tube and tkelerivative
in (14) can be dropped. The temperature field can be solved
_ o ) by using the same expansiéh?) as before in which, how-
A parallel analysis of the opposite limit of larg@ is  eyer, the coefficientsA, are constants. Other than this

complicated mathematically although, of course, one expecighange, the calculation is therefore the same as the general
an adiabatic behavior for whicl— . Rather than starting gne outlined in the previous section and one finds

from the explicit representatior{&6) or (29), it is simpler to -
proceed as follows. Consider a one-dimensional problem in =3 onhp (43

2
On

N

1
N 7|

(39

-1
mo=2"0>
Y n

which a constant-temperature plane surface is exposed to a n )\§+iQ'
gas environment of infinite extent, the pressure of which
fluctuates in time. One readily finds the following result for
the heat flux out of the gas volume:

=—(p— ViwD. 36
q (P—Po) (36) IV. SPECIFIC EXAMPLES

In the high-frequency limit, when the thermal penetration o ) ) ) )

layer in the gas is much smaller than the geometric dimen- The limits con3|dereq in the previous section appear to
sions of the bubble, each point at the bubble surface is sule the only ones for which results valid for arbitrary cross

ject to this heat flux, so that the total heat transfer rate out of€ctions can be derived. For intermediate values of the fre-

It will be observed that this is just the first summation in
(26). For Q) small we recovel31) to first order.

the gas volume must become, for—x, quency, we need to consider specific geometries. As noted
before, for each specific shape of the cross section of the
Q=2(Lg7+S)(p—po) ViwD. (37)  tube, the resul(26) depends on the dimensionless frequency

Q defined by(19), the aspect ratioZ defined by(23), and

Upon equating to the previous general res2f) for Q, we possibly other dimensionless parameters characterizing the

find shape of the cross section.
1-i
G——= for Q—x, 38 A. Circular tube
V2Q 38 , i .
For a circular tube of radiuR, the characteristic length
from which we have the following asymptotic limits: | defined by(16) is given by

1392 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 X. M. Chen and A. Prosperetti: Thermal processes in gas bubble 1392



(@)

Re &
w &

ey
N
T

00T 107 162 10
QA’

FIG. 2. The real(a) and imaginary(b) parts of ® evaluated using the
approximate result42) valid for short bubbles as functions of tif& #2,
where() is the dimensionless frequency given () and. 7 is the aspect

(3)14 v "'llv T
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1.1

10™

Im @

10'2 L L
-1 10°
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Q

FIG. 3. The reala) and imaginaryb) parts of® as functions of the dimen-
sionless frequency) defined in(19) for y=7/5 for a cylindrical cross sec-
tion. The three lines correspond te#=1.1 (dotted, 2 (solid), and 11

ratio (23). These results are valid for any shape of the cross section of thédashey i.e., to 2 53/R=0.1, 1, and 10, respectively. The interrupted line

duct.

. RLg 44
- R+2Lg’ (44)
so that the aspect ratio is
, 2Lp
A=1+ ? (45)

The eigenfunctions, normalized accordingAa!) of the Ap-
pendix, are given by

1 Jo(anr/R)

vpm=— ———————, 46

"TTAR Jian) (49
wherer is the radial distance from the tube axis, the are
Bessel functions, and the,'s are the zeros oflj=—J;.
The eigenvalues , are given by

(47)

marked with long dashes is the asymptotic approximai8®h valid at high
frequencies.

which shows that, for this geometry, the functi@ only
depends onZ and(). The constantsr,, defined in(20) are
readily calculated and they are

(48)

On=—.
n
an

With these results, the functioh can be calculated ex-
plicitly as a function of the parameters of the problem. We
show in Fig. 3 the real and imaginary partsdfas functions
of the dimensionless frequen€yfor y=7/5. The three lines
correspond toZ=1.1 (dotted, 2 (solid), and 11(dasheg,

i.e.,, to 2 5/R=0.1, 1, and 10, respectively. The asymptotic
trends for small and large frequencies are in precise agree-
ment with the deductions of the previous section. The lines
for .Z=1.1 are nearly identical to the approximation shown
in Fig. 2.

The figures also show that the results are close to each
other, and their variation with the parametef is not sys-
tematic. Both features indicate that the characteristic lehgth
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defined in(16) is effective in achieving an approximate scal- (@ 1.4

ing for ®. ' i
B. Rectangular channel 1.3 - 4
For a rectangular cross section of sidesand b the L 4
eigenfunctions are labelled by a pair of indices and are given o //
by g 1.2 - // T
2 _mmy nmz 49 | /
Vo= o sin—— sin——. (49 11 L / :
The characteristic lengthof (16) and aspect ratioZ of (23) - % /
are 1.0 /,/.,l \ L -
N -1 0 1 2
~ ablg s 2Lg(a+b) " 10 10 10 10
“ab+2(a+tb)Lg’ ab (50 Q
the eigenvalues are (b) 10° T S —
)\nm m 2 n 21172
| =1 g + B , (51)
and
__° 52 p 10”7
o'nm_mn,n_Za (52 g
whenm and n are both odd, whiler,,,=0 otherwise. In
addition to.Z, the result(51) for the eigenvalues depends on
the ratioa/b. This is an example of a feature of the result
anticipated at the end of Sec. Il
Results for Reb and Im® for this geometry are shown 1072 o Lt N
in Figs. 4-7 fory=7/5 and for.#Z=1.1, 2, and 11 and 107 10° 10’ 10° 10°
a/b=0.1 and 1. The results forZ close to 1 coincide with Q

those given in Fig. 2. Notice also that the formulas are in-

variant under an interchange afandb, so that it is suffi- 'C: 4 The reala and imaginaryb) parts of¢ as functions of the dimen-
sionless frequency) defined in(19) for y=7/5 for a rectangular cross

cient to consideasb.' ) . section. The bubble aspect ratig is 2 and the lines are fa/b=1 (solid)
The graphs are similar to those of the previous case anghd 0.1 (dashes The interrupted line marked with long dashes is the

the same comments app|y_ asymptotic approximatioB9) valid at high frequencies.

V. VISCOUS DISSIPATION Upon equating(53) and (54) one can define an equivalent

For a spherical bubble in an unbounded liquid, viscosity//SCOUS damping parameter by

only affects the condition of balance of normal stresses and wvm; (2o J lu

is usually of little importance unless the bubble radius is  B,j= > f dtf ds{— .—>
. . R . . 7S Jo IS ar Xj

small. The present situation is different due to the viscous

dissipation of energy in the course of the motion of the twoA relation betweeru andx; can be established by equating

liquid columns bounding the bubble. The effect can be estithe volume flow rates:

mated as followgOguz and Prosperetti, 1998

2

(59

With the approximation of parallel flow, the viscous en- S}q _ f uds (56)
ergy dissipation per period for thgth liquid column s
=1,2) is . . . S .
) ) From the linearity of this relation it is clear that the integral
vm; (27w ou i i i k.
Pl dt [ ad 2| (59) in (55) will be independent ok; . Note that, from(55), we
s Jo s \ar see that
where v is the kinematic viscosity coefficient; = pSL; is B B2
the mass of liquid constituting the column, amds the axial b, = m, m, (57)
velocity. For a harmonic oscillator with velocity; and . . .
damping parameteB,; , the energy dissipated in a cycle is An exact solution of the Navier—Stokes equation for
parallel oscillatory flow in an infinitely long circular tube is
c—2p . 2o d 54  available(see, e.g., Leal, 1992but it is expressed in terms
~dj ﬁv] X] t. ( ) . ;
0 of Bessel functions and the integral (55) cannot be evalu-
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107 10° 10’ 10°

10" 10
Q

FIG. 6. The reala) and imaginaryb) parts of® as functions of the dimen-
. . . . sionless frequency) defined in(19) for y=7/5 for a rectangular cross
FIG. 5. The reala) and imaginaryb) parts of® as functions of the dimen- section witha/b=0.1. The bubble aspect ratie’ is 1.1 (dotted, 2 (solid),

sion!ess frequency) defined ip(_lg) for 7=7/5_ for a rectangular Cross  and 11(short dashes The interrupted line marked with long dashes is the
section. The bubble aspect ratig is 11 and the lines are fa/b=1 (solid) asymptotic approximatiof89) valid at high frequencies
and 0.1 (dashes The interrupted line marked with long dashes is the '

asymptotic approximatio39) valid at high frequencies.

107 b

3

10

2

10

as a function of the Womersley number WeR?/v evalu-
ated in closed form. By using the well-known result for Poi- ated by numerical integration of the _exgct_re$ﬁﬁ), and we
seuille flow one has the approximation compare _|t with the two asymptotic limit§58) and (59)
(dashed lines

Upon introducing an equivalent damping in the equa-

tions of motion(4) and (5) along the lines outlined before,
and again separating the real and imaginary part® afs
done in connection with Eq9), we have

14

bU:4R2,

(58)

as also follows from the exact resufi5) in the limit Vv/w
>R. In the opposite limit,yv/w<R, viscosity is only sig-
nificant in a thin boundary layer at the tube wall and the
corresponding result is

m5'<+2v5<+S OX=—-SpP,. 62
b, = /77'27180). 59 2Xo+2B8,X2+ Sy P2 (62

] o ) _ The steady solution of this system is given by
The result has been written in this way to stress its applica-

m1k1+2BU15(1_Squ)X:SFbP1, (61)

bility to tubes of arbitrary cross section, provided the viscous X1~ X10 Po
boundary layer thicknesgv/w is small compared with the Le  2LooA
shortest dimension of the cross section. In Fig. 8 we show B BP
the dimensionless viscous damping P, P,—P, w51+iIm ®/Red
_ Reb, G Lt 02 1-2ib/e |
b,= 4y (60) (63
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(b) FIG. 9. Viscous and total dampineft scale and resonance frequenéy
100 (right scale for an air bubble in a cylindrical tube witR=1 mm andL,
R R =L,=5mm as functions of the driving frequendy The solid line is the
viscous contribution to the damping. The dotted lines are fof=210 mm
(.#=11), the lines marked with long dashes fdrgz=1 mm (.7=2), and
those with short dashes fol.g=0.1 mm (#=1.1). The liquid is water,
the temperature 20 °C, and the undisturbed pressure atmospheric.
S
g 10 Xg~X0_ Po | P2
2LB 2LBpA L2
P,—P, ®3 1+i Im ®/Re ® (64
Li+L, 0?2 1-2ib,/0 |
-2 . .
10" H————— e o from which, according tq1),
107 10 10 10 10
Q X27 X0 X177 X10 Po Py P
- . . = - == —+—]. (69
FIG. 7. The reala) and imaginaryb) parts of® as functions of the dimen- 2Lg 2Lg 2LgpA \L; Ly
sionless frequency) defined in(19) for y=7/5 for a square cross section,
a/b=1. The pubble aspegt ratie” is 1.1(_d0tted, 2 (solid), _and 11(short “In these equationbu is defined in(57),
dashes The interrupted line marked with long dashes is the asymptotic
approximation(39) valid at high frequencies.
10° ; ; . 40.0
30.0
°'-h
=
200 %
N
. 10.0
ta
0.0
10_1 . FIG. 10. Viscous and total dampiritgft scalé and resonance frequené€y

(right scale for an air bubble in a cylindrical tube witR=0.1 mm and
2 L,=L,=0.5 mm as functions of the driving frequenty The solid line is
oR v the viscous contribution to the damping. The dotted lines are fog 2
_ =1mm (#=11), the lines marked with long dashes fokg=0.1 mm
FIG. 8. The dimensionless viscous dampmmgdefined by(60) for a cylin- (.#=2), and those with short dashes lines fdrg2=0.01 mm (Z=1.1).
drical tube according to the approximate procedure of Sec. V as a functiomhe liquid is water, the temperature 20 °C, and the undisturbed pressure
of the Womersley number WowR?/ v. atmospheric.
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FIG. 11. Dimensionless amplitudes of oscillation of the left liquid surface ) ) ) o o
(x,—X,0)/2LgPy| [dotted line, Eq.(63)], of the right surface|(x,  FIG- 12. Dimensionless amplitudes of oscillation of the left liquid surfaces

—X,0)/2L P, | [dashes, Eq64)], and of the bubble lengtiX/P,|, given by  |(X1—X10/2LgPy| [dotted line, Eq.(63)], of the right surface|(x,

(65), as a function of the excitation frequency normalized by the resonance” X20/2LsP1| [dashes, Eq64)], and of the bubble lengtX/P,|, given by
frequency. The bubble oscillation is driven by a pressure disturbance applietf9- as a function of the excitation frequency normalized by the resonance
to the left liquid column. The tube radius R=1 mm and the common frequency. The bubble oscillation is driven by a pressure disturbance applied
length of the liquid columns 5 mm. Pate) is for 2Lg=0.1 mm (7 to the left liquid column. The tube radius B=0.1 mm and the common

=1.1): this is the case shown by the line marked with short dashes in Fig€ngth of the liquid columns 0.5 mm. Pa@) is for 2Lg=0.01 mm (7

9. Part(b) is for 2Lg=10 mm (.Z=11), which is the dotted line in Fig. 9. =1.1); this_ is the case shown ’by the Iing ma_rked with sh(_)rt c!ash_es in Fig.

The gas is air, the liquid water, the temperature 20 °C, and the undisturbed0- Part(b) is for 2Lg=1mm (-#=11), which is the dotted line in Fig. 10.

pressure atmospheric. The gas is air, the liquid water, the temperature 20 °C, and the undisturbed
pressure atmospheric.

+wg Im ®
" 20 Red’

Figures 9 and 10 show graphs of (left scalg and f,
=wo/27 (right scale as functions of the driving frequency
f=w/27 for several cases. The solid line is the viscous con-
Red. (67) tribution (57). It is seen that thermal dissipation has a marked
effect over a broad frequency range encompassing the reso-
nant frequency.
Since the present system has two degrees of freedom, we In order to illustrate the nature of the solutiof&3)—
expect two characteristic frequencies. One corresponds to tH{65) we consider a situation in which the bubble is excited
center-of-mass motion which is subject to no restoring forceonly on the left by a pressure;, while P,=0. Figures 11
Resonance therefore occurs fer=0, as shown by the de- and 12 show|(X;—X;0)/2LgP4|, |(Xo—X20)/2LgP4|, and
nominators in the last terms 683) and(64). The resonance |X/P,|, for several cases of Figs. 9 and 10. At very low
structure of the other mode is embodied in the quaniity frequencies the displacements of the two liquid columns are
defined in(66), from which we see thab is the resonant large, corresponding to the resonance at zero frequency men-
frequency while the total dampirg consisting of a viscous tioned before. The amplitude of oscillation of the bubble
and a thermal part, is given by length, on the other hand, remains relatively small. As the

oo ©T 9o (66) b=b (69)

and

2 Po (1

“0 2 | Ly Ly
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true resonance frequency is approached, the relative phase By use of Green'’s identity and Stokes’ theorem, it is readily
the motion of the two liquid surfaces changes sign and, ashown that the left-hand side vanishes due to the vanishing
resonance, the bubble elongation equals approximately twicef v, , on the boundary. If the eigenvalues are distinct, this
the amplitude of oscillation of each surface. The sharpness atlation then implies that the integral on the right-hand side
the resonance peak depends in a complex way on the valuganishes fom#n, i.e., that the eigenfunctions are orthogo-
of the parameters. In general, it is found that, for a fixednal. If the eigenvalue is degenerate, the eigenfunctions span-
bubble length and liquid columns of equal length, the peakning the corresponding eigenspace can be rendered orthogo-
becomes sharper the shorter the liquid column. When the leftal, e.g., by the Gram—Schmidt procedure. Hence we can
column is taken progressively longer than the right one, the@ssume that the eigenfunctions constitute an orthogonal sys-
peak decreases while the opposite trend is observed when them.
right column becomes progressively longer than the left one. In order to prove(28), note that, as is readily verified,
the o,’s are exactly the coefficients of the expansion of the
VI. SUMMARY AND CONCLUSIONS constant 1{'S over the basis of the,'s:

We have studied the forced oscillations of a system
composed of a gas bubble bounded by two liquid columns in 1
a duct. It has been found that, while the natural frequency of TS: zn: Onln (A3)
the system is only weakly dependent on the thermal pro-
cesses occurring in the gas, the damping parameter is ve
sensitive to the energy exchange between the gas and t
surrounding surfaces. Even for tubes with a radius as small
as 1 mm or less, thermal damping can be more significant f
than viscous damping over a broad frequency range.

The situation considered here is that of a bubble large
enough to fill the cross section of the duct. Results for thesquaring(A3) and integrating over the cross section, by the

resonance frequencies of smaller bubldeghout consider-  orthogonality and normalization of the,'s, we have
ation, however, of thermal effegtare given in Ogz and

Prosperett(1998.

r
ﬁéovided the eigenfunctions are normalized to 1:

v2dS=1. (A4)

2
1
1=J (—) dS=2 2 a’na'mJ UnlUm dS=2 a’ﬁ.
S n m S n

ACKNOWLEDGMENTS Vs
(A5)

We wish to thank Dr. He Yuan for some helpful com-
ments. This study has been supported by AFOSR under

Grant No. F49620-96-1-0386. Apfel, R. E. (1981). “Acoustic cativation,” in Methods of Experimental

Physics edited by P. D. Edmond&cademic, New York Vol. 19, pp.
APPENDIX 355-411.
Fujita, H., and Gabriel, K. J1991). “New opportunities for micro actua-
Consider two eigenfunctions,,, v, satisfying(15) and tors,” in Transducers '9XIEEE, New YorR, pp. 14-20.
homogeneous Dirichlet boundary conditions: Graveson, P., Branebjerg, J., and Jensen, @1®3. “Microfluidics—A
review,” J. Micromech. Microeng3, 168—182.
) & ) ‘ Leal, L. G. (199@. Laminar Flow and Convective Transport Processes
Vivm=— Tz Um> Viv,=— 7Z Un- (A1) (Butterworth-Heinemann, Bostiin ‘ o
Lin, L., and Pisano, A. P1991). “Bubble forming on a micro line heater,”

. . . . in Micromechanical Sensors, Actuators, and SysteRVE, New York),
Without loss of generality we take the eigenfunctions to be |, "Hsc 35 op. 147163,

real. Multiply the first equation by, and the second one by Gguz, H. N., and Prosperetti, A1998. “The natural frequency of oscilla-

vm, Subtract, and integrate over the cross section of thetion of gas bubbles in tubes,” J. Acoust. Soc. Ab93 3301-3308.

channel. The result is Plesset, M. S., and Prosperetti, @977. “Bubble dynamics and cavita-
tion,” Annu. Rev. Fluid Mech.9, 145-185.

2 2

f s ) )\rzn— )\% Prosperetti, A(1984). “Bubble phenomena in sound fields: part one,” Ul-
(v Vivm—vnViv,) dS= — ——— J v dS trasonics22, 69-77.
neeTm T I o Prosperetti, A(199]). “The thermal behaviour of oscillating gas bubbles,”
(A2) J. Fluid Mech.222, 587-616.

1398 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 1, September 1998 X. M. Chen and A. Prosperetti: Thermal processes in gas bubble 1398



