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The forced oscillations of a system consisting of two finite liquid columns in a duct separated by a
gas bubble are studied in the linear approximation. It is found that thermal processes in the gas
induce a very significant damping in the system, which can exceed viscous damping even in
capillaries with a submillimeter diameter. The study is motivated by the possibility of using gas
bubbles as actuators in microdevices. ©1998 Acoustical Society of America.
@S0001-4966~98!00608-0#

PACS numbers: 43.35.Ud@HEB#

INTRODUCTION

It is well known that a gas bubble pulsating in a large
liquid mass loses energy by viscosity, acoustic radiation, and
thermal conduction~see, e.g., Apfel, 1981; Prosperetti, 1984,
1991!. The additional dissipation due to gas diffusion is es-
sentially always negligible, while thermal effects due to
phase change are insignificant for a liquid like water at nor-
mal temperature. Over a wide range of bubble radii and fre-
quencies, thermal conduction is by far the most significant
dissipative mechanism. In addition to energy dissipation,
thermal processes also influence the stiffness of the bubble
the behavior of which, in general, will be intermediate be-
tween isothermal and adiabatic. The corresponding processes
for bubbles pulsating in a duct have not been studied, and
they constitute the object of this paper.

The motivation for this work lies in the possibility to use
pulsating bubbles as actuators in small fluid-handling devices
such as those made possible by recent progress in silicon
manufacturing techniques~see e.g., Fujita and Gabriel, 1991;
Lin and Pisano, 1991; Gravesenet al., 1993!. Of course, en-
ergy dissipation is important as it determines the width of the
resonance and the magnitude of the response under forced
oscillation. The stiffness of the bubble determines the reso-
nance frequency.

I. FORMULATION

Since this is the first study devoted to the problem, we
feel justified in introducing some approximations that will,
on the one hand, simplify the analysis and, on the other,
facilitate a comparison with the established results for a
spherical bubble.

In the first place, and just as in the case of a spherical
bubble, we assume the wavelength in the gas to be much
larger than both the lateral dimensions of the channel and the
axial length of the bubble, so that the gas pressure can be
considered spatially uniform and only a function of time
~see, e.g., Prosperetti, 1991!. Another approximation in com-
mon with the standard analyses for spherical bubbles is the
neglect of the vapor contribution to the bubble internal pres-
sure and of phase change processes, both approximations
being motivated by the consideration of only relatively
‘‘cold’’ liquids ~see, e.g., Plesset and Prosperetti, 1977!.

In the case of bubbles in large liquid masses a substan-
tial simplification arises from the assumption of spherical
shape. Here we introduce a parallel assumption on the shape
of the bubble: since our interest lies in channels with a di-
ameter of the order of 1 mm or less, we take the bubble to
occupy an entire section of the channel, ignoring the prob-
lems associated with contact angles and the detailed shape of
the gas-liquid interface~Fig. 1!. The gas volume is therefore
assumed to be bounded by two flat liquid surfaces orthogonal
to the axis of the channel, and by the surface of the channel
comprised between these two surfaces. The amplitude of the
oscillations is taken to be so small that the problem can be
linearized, and the liquid surfaces bounding the gas volume
are supposed to move remaining flat and orthogonal to the
channel walls; the complexities associated with the motion
of the gas–liquid–solid contact line are therefore ignored.
This approximation has the consequence of rendering it im-
possible to account for a velocity profile in the liquid. Energy
dissipation due to liquid viscosity will be reintroduced in an
approximate way later~Sec. V!. In spite of the relative crude-
ness of this model, one may expect the results to be a valid
first estimate of the quantitative effects of the physical pro-
cesses involved.

Let x1(t) andx2(t) denote the time-dependent positions
of the two gas–liquid interfaces, both measured from the
midpoint of the undisturbed bubble, and define

x22x152LB@11X~ t !#, ~1!

where 2LB is the undisturbed length of the bubble. We shall
only consider the steady-state problem in which the time
dependence of all disturbances is proportional to expivt.

Due to the translational invariance of the channel and to
the fact that, in a linear problem, the perturbation of any
quantity is proportional to that of any other, one may write
without loss of generality the gas pressure in the form

p~ t !5p0@12FX~ t !#, ~2!

wherep0 is the equilibrium value andF is a complex con-
stant. It will be noted that this relation may be considered as
the linearization of a relation of the typepVF5const~where
V is the bubble volume!, so thatF may be regarded as a
~complex, frequency dependent! polytropic index.
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If the length of the liquid columns bounded by the sur-
facexj , j 51,2, is denoted byL j , and if the pressure acting
on the free end of each column is

pj~ t !5p0@11Pj~ t !#, ~3!

the equations of motion for the columns are

L1r ẍ15p0@P11FX#, ~4!

L2r ẍ252p0@P21FX#, ~5!

wherer is the liquid density. Define the abscissa of the cen-
ter of mass of the liquid by

j5
L1x11L2x2

L11L2
1

1

2
~L22L1!. ~6!

Then the two equations can be combined to give equations of
motion for j andX:

r~L11L2!j̈5p0~P12P2!, ~7!

Ẍ52
p0

2LBr F 1

L2
~P21FX!1

1

L1
~P11FX!G . ~8!

Upon noting thatiX5Ẋ/v, the second equation may be re-
written as

Ẍ1
p0

2LBrv
~ Im F!F 1

L1
1

1

L2
G Ẋ1

p0

2LBr
~ReF!F 1

L1
1

1

L2
GX

52
p0

2LBr FP1

L1
1

P2

L2
G . ~9!

The equation forj describes the overall motion of the sys-
tem. In particular, ifP15P2 and the initial velocity vanishes,
j is independent of time irrespective of the behavior of the
bubble. Thermal effects only affect the second equation~8!
throughF, and it is on this quantity that we now focus. It is
obvious from~9! that the real part of this quantity governs
the natural frequency of the system, while the imaginary part
is responsible for thermal dissipation.

The determination ofF requires a consideration of the
energy equation. For a perfect gas with spatially uniform
pressurep, in the linear approximation, this is

rGcp

]T

]t
2 ṗ5k¹2T, ~10!

whereT is the gas temperature,rG is its density,cp is the
specific heat at constant pressure, andk is the thermal con-
ductivity. By combining with the equation of continuity and
using the relationcprGT05gp0 /(g21) valid for perfect

gases~with g the ratio of specific heats!, this equation be-
comes

ṗ2gp“•u5k¹2T, ~11!

whereu is the gas velocity. When this equation is integrated
over the surface of the gas volumeV one finds an equation
for the gas pressure in the form

Vṗ52gpV̇2~g21!Q, ~12!

where

Q52 R
A
k

]T

]n
dA ~13!

is the total heat flow rate out of the surfaceA bounding the
bubble. The calculation of the gas pressure presupposes a
knowledge ofQ, and hence of the gas temperature field, to
which we now turn.

II. THE THERMAL PROBLEM

By virtue of the assumed exponential time dependence,
the energy equation~10! may be written

S ¹'
2 1

]2

]x2DT2 i
v

D
~T2T0!5 i

g21

g

v

D
T0FX, ~14!

where D5k/rGcp is the gas thermal diffusivity,T0 is the
undisturbed temperature of the system, and¹'

2 denotes the
two-dimensional Laplacian over the cross section of the
channel, the shape of which for the moment we do not need
to specify. At this point we introduce another assumption
which is also standard for a gas bubble in a large mass of
liquid, namely that the surface delimiting the gas remains at
the undisturbed temperatureT0 . The justification for this as-
sumption lies in the large heat capacityper unit volumeof
most solids and liquids, which far exceeds that of gases.
Amounts of heat sufficient to cause significant temperature
changes in the gas are therefore too small to cause any ap-
preciable temperature disturbance in the materials surround-
ing the bubble. On this basis, we seek a solution of~14!
subject to the conditionT5T0 on the boundary of the gas
volume.

We determine this solution by expandingT over a set of
eigenfunctions of¹'

2 . Specifically, consider the eigenfunc-
tion, eigenvalue pairs (vn ,ln) satisfying

¹'
2 vn52

ln
2

l 2 vn , ~15!

over the cross section of the channel, subject to the boundary
condition vn50 on the perimeter of the cross section. De-
pending on the shape of the cross section, the indexn may
actually stand for a pair of indices, as in one of the examples
of Sec. IV below. In~15! we have made the eigenvalues
dimensionless in terms of a characteristic lengthl defined as
the ratio of the bubble volume to its surface:

l 5
LBS

S1P LB
, ~16!

whereS is the area of the cross section andP is its perim-
eter. The reason for this definition is the fact that, when one

FIG. 1. The physical model simulated in this study: a duct contains two
liquid columns separated by a gas bubble.
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of the lengths characterizing the geometry of the bubble
~e.g., its extension in the axial direction, or the size of the
channel cross section! is much smaller than the others,l is
close to this length. Thus,l is a measure of the shortest
distance between the bubble ‘‘core’’ and the fixed-
temperature boundaries that enclose the gas. The physical
relevance of this distance will be apparent shortly.

It is easy to see, by use of Green’s identity, that the
eigenfunctions satisfying~15! are orthogonal to each other
~see the Appendix!. We thus write

T5T0F11(
n

An~x,t !vn~y,z!G , ~17!

substitute into~14!, and exploit the orthogonality of the
eigenfunctions to find

]2An

]x2 2
kn

2

l 2 An5 i
g21

g

vAS

D
snFX, ~18!

where

kn5Aln
21 iV, V5

v l 2

D
, ~19!

sn5
1

AS
E

S
vn dS. ~20!

Due to linearization, the boundary conditions areAn50 at
the undisturbed positionsxi057LB , i 51,2, of the liquid
surfaces bounding the bubble. The solution is readily found
to be

An5 i
g21

g

v l 2AS

D

sn

kn
2 F coshknx/ l

coshknLB / l
21GFX, ~21!

where it will be recalled that the coordinatex is measured
from the midpoint of the undisturbed bubble.

With this result the heat flow rateQ can be calculated
from ~13!. We break up the integral into the contributionQs

of the liquid surface and the contributionQw of the tube
wall, Q5Qs1Qw . For the former we have

Qs522kE
S

]T

]x U
x5LB

dS

5 iv~p2p0!V(
n

sn
2 tanhknA

knA
, ~22!

whereA is theaspect ratioof the bubble defined by

A[
LB

l
511

4LB

D
, ~23!

with D54S/P the hydraulic diameter of the tube. For the
second component we have, noting thatn–“5n–“' ,

Qw522kT0(
n
E

0

LB
An dxE

P

dP n–“'vn

522kT0(
n
E

0

LB
An dxE

S
dS ¹'

2 vn

522kT0(
n
E

0

LB
An dxE

S
dS S 2

ln
2

l 2 D vn

5 iv~p2p0!V(
n

sn
2ln

2

kn
2 S 12

tanhknA

knA
D , ~24!

where in the first step we have used the divergence theorem
to convert the line integral over the perimeter of the cross
section into a surface integral over the cross section, and in
the following steps the eigenvalue equation~15! and the defi-
nition ~20! of sn . Upon combining the two contributions
~22! and ~24! we then find

Q5 iv~p2p0!VG, ~25!

where

G5(
n

sn
2

kn
2 Fln

21 iV
tanhknA

knA
G . ~26!

Upon substitution of~25! into the pressure equation~12!
we find, comparing with~2!,

F5
g

11~g21!G
. ~27!

In the framework of the present model, the functionG
describes the effect of the thermal processes occurring in the
bubble on the gas pressure. An alternative form for this
quantity may be derived by using the identity

(
n

sn
251, ~28!

proven in the Appendix, to obtain

G511 iV(
n

S sn

kn
D 2F tanhknA

knA
21G . ~29!

SinceG is complex, Eq.~25! shows that the heat trans-
fer rate has components in phase and in quadrature with the
pressure disturbance. The former one is proportional to
Im G, and is responsible for the thermal losses of the system.
Although it might seem thatG depends explicitly only onV
and A, there may be an additional dependence on other
dimensionless parameters characterizing the shape of the
tube cross section through the eigenvaluesln .

III. ASYMPTOTIC BEHAVIOR

Before looking at numerical results for some specific
examples, it is useful to consider two limit cases of the pre-
vious results~26! and~27! that are applicable to channels of
arbitrary cross section.

We start with the low-frequency limit or, more pre-
cisely, with frequencies such that the corresponding thermal
penetration length is much larger than the smallest bubble
dimension:
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AD

v
@ l . ~30!

In these conditions the parameterV, defined in~19!, is small,
and one would expect nearly isothermal behavior to prevail.
To confirm this expectation we approximate the expression
~19! for kn and the hyperbolic tangent in~29! by a Taylor
series and find

G511V2(
n

sn
2

ln
4 F3

2

tanhlnA

lnA
2

1

2 cosh2 lnA
21G

1 iV(
n

sn
2

ln
2 S tanhlnA

lnA
21D , ~31!

from which

Re F511
g21

g
V2(

n

sn
2

ln
4 F3

2

tanhlnA

lnA

2
1

2 cosh2 lnA
211¯ G , ~32!

Im F5
g21

g
V(

n

sn
2

ln
2 F12

tanhlnA

lnA
1¯ G . ~33!

These formulas simplify ifA5LB / l @1, i.e., for a relatively
long bubble. In this case they become

Re F.11
g21

g
V2(

n

sn
2

ln
4 F3

2

1

lnA
21G , ~34!

Im F.
g21

g
V(

n

sn
2

ln
2 F12

1

lnA
G . ~35!

A parallel analysis of the opposite limit of largeV is
complicated mathematically although, of course, one expects
an adiabatic behavior for whichF→g. Rather than starting
from the explicit representations~26! or ~29!, it is simpler to
proceed as follows. Consider a one-dimensional problem in
which a constant-temperature plane surface is exposed to a
gas environment of infinite extent, the pressure of which
fluctuates in time. One readily finds the following result for
the heat flux out of the gas volume:

q52~p2p0!AivD. ~36!

In the high-frequency limit, when the thermal penetration
layer in the gas is much smaller than the geometric dimen-
sions of the bubble, each point at the bubble surface is sub-
ject to this heat flux, so that the total heat transfer rate out of
the gas volume must become, forv→`,

Q.2~LBP 1S!~p2p0!AivD. ~37!

Upon equating to the previous general result~25! for Q, we
find

G→
12 i

A2V
for V→`, ~38!

from which we have the following asymptotic limits:

Re F→gF11
g21

A2V
G , Im F→

g~g21!

A2V
. ~39!

It will be observed that these results are independent of the
aspect ratioA, a result that it would be quite difficult to
establish directly from~26! or ~29!.

By following a similar line of approach we can deduce
approximate results valid for very short bubbles,A21!1,
and very long bubbles,A@1. In the former case most of the
heat exchange occurs with the liquid and one can ignore the
directions orthogonal to the duct axis. Upon dropping the
operator¹'

2 in the energy equation~14! we find

T2T05
D

k
~p2p0!S 12

coshAiv/Dx

coshAiv/DLB
D , ~40!

from which the total heat flow rate into the liquid is readily
found as

Q52S~p2p0!AivD tanh~AiVA!. ~41!

Upon comparison with~25! we thus have

G.
tanh~AAiV!

AAiV
, A→1. ~42!

It is readily checked that this result agrees with~31! for small
V and, noting thatA.1, with ~38! for largeV. The real and
imaginary parts ofF evaluated usingG given by ~42! are
plotted in Fig. 2~a! and ~b! as functions ofVA2. These
results are valid whatever the shape of the cross section of
the duct.

For the opposite limit of a long bubble, heat exchange
occurs mostly with the wall of the tube and thex derivative
in ~14! can be dropped. The temperature field can be solved
by using the same expansion~17! as before in which, how-
ever, the coefficientsAn are constants. Other than this
change, the calculation is therefore the same as the general
one outlined in the previous section and one finds

G.(
n

sn
2ln

2

ln
21 iV

. ~43!

It will be observed that this is just the first summation in
~26!. For V small we recover~31! to first order.

IV. SPECIFIC EXAMPLES

The limits considered in the previous section appear to
be the only ones for which results valid for arbitrary cross
sections can be derived. For intermediate values of the fre-
quency, we need to consider specific geometries. As noted
before, for each specific shape of the cross section of the
tube, the result~26! depends on the dimensionless frequency
V defined by~19!, the aspect ratioA defined by~23!, and
possibly other dimensionless parameters characterizing the
shape of the cross section.

A. Circular tube

For a circular tube of radiusR, the characteristic length
l defined by~16! is given by
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l 5
RLB

R12LB
, ~44!

so that the aspect ratio is

A511
2LB

R
. ~45!

The eigenfunctions, normalized according to~A4! of the Ap-
pendix, are given by

vn5
1

ApR

J0~anr /R!

J1~an!
, ~46!

wherer is the radial distance from the tube axis, theJ’s are
Bessel functions, and thean’s are the zeros ofJ0852J1 .
The eigenvaluesln are given by

ln5an

l

R
5an

A21

2A
, ~47!

which shows that, for this geometry, the functionG only
depends onA andV. The constantssn defined in~20! are
readily calculated and they are

sn5
2

an
. ~48!

With these results, the functionF can be calculated ex-
plicitly as a function of the parameters of the problem. We
show in Fig. 3 the real and imaginary parts ofF as functions
of the dimensionless frequencyV for g57/5. The three lines
correspond toA51.1 ~dotted!, 2 ~solid!, and 11~dashed!,
i.e., to 2LB /R50.1, 1, and 10, respectively. The asymptotic
trends for small and large frequencies are in precise agree-
ment with the deductions of the previous section. The lines
for A51.1 are nearly identical to the approximation shown
in Fig. 2.

The figures also show that the results are close to each
other, and their variation with the parameterA is not sys-
tematic. Both features indicate that the characteristic lengthl

FIG. 2. The real~a! and imaginary~b! parts of F evaluated using the
approximate result~42! valid for short bubbles as functions of theVA2,
whereV is the dimensionless frequency given by~19! andA is the aspect
ratio ~23!. These results are valid for any shape of the cross section of the
duct.

FIG. 3. The real~a! and imaginary~b! parts ofF as functions of the dimen-
sionless frequencyV defined in~19! for g57/5 for a cylindrical cross sec-
tion. The three lines correspond toA51.1 ~dotted!, 2 ~solid!, and 11
~dashes!, i.e., to 2LB /R50.1, 1, and 10, respectively. The interrupted line
marked with long dashes is the asymptotic approximation~39! valid at high
frequencies.
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defined in~16! is effective in achieving an approximate scal-
ing for F.

B. Rectangular channel

For a rectangular cross section of sidesa and b the
eigenfunctions are labelled by a pair of indices and are given
by

vnm5
2

Aab
sin

mpy

a
sin

npz

b
. ~49!

The characteristic lengthl of ~16! and aspect ratioA of ~23!
are

l 5
abLB

ab12~a1b!LB
, A511

2LB~a1b!

ab
, ~50!

the eigenvalues are

lnm

l
5pF S m

a D 2

1S n

bD 2G1/2

, ~51!

and

snm5
8

mnp2 , ~52!

when m and n are both odd, whilesnm50 otherwise. In
addition toA, the result~51! for the eigenvalues depends on
the ratioa/b. This is an example of a feature of the result
anticipated at the end of Sec. II.

Results for ReF and ImF for this geometry are shown
in Figs. 4–7 forg57/5 and for A51.1, 2, and 11 and
a/b50.1 and 1. The results forA close to 1 coincide with
those given in Fig. 2. Notice also that the formulas are in-
variant under an interchange ofa and b, so that it is suffi-
cient to considera<b.

The graphs are similar to those of the previous case and
the same comments apply.

V. VISCOUS DISSIPATION

For a spherical bubble in an unbounded liquid, viscosity
only affects the condition of balance of normal stresses and
is usually of little importance unless the bubble radius is
small. The present situation is different due to the viscous
dissipation of energy in the course of the motion of the two
liquid columns bounding the bubble. The effect can be esti-
mated as follows~Og̃uz and Prosperetti, 1998!.

With the approximation of parallel flow, the viscous en-
ergy dissipation per period for thej th liquid column (j
51,2) is

E j5
nmj

S E
0

2p/v

dtE
S
dSS ]u

]r D 2

, ~53!

wheren is the kinematic viscosity coefficient,mj5rSLj is
the mass of liquid constituting the column, andu is the axial
velocity. For a harmonic oscillator with velocityẋ j and
damping parameterbv j , the energy dissipated in a cycle is

Ed j52bv jE
0

2p/v

ẋ j
2 dt. ~54!

Upon equating~53! and ~54! one can define an equivalent
viscous damping parameter by

bv j5
vnmj

2pS E
0

2p/v

dtE
S
dSF ]

]r S u

ẋj
D G2

. ~55!

A relation betweenu and ẋ j can be established by equating
the volume flow rates:

Sẋj5E
S
u dS. ~56!

From the linearity of this relation it is clear that the integral
in ~55! will be independent ofẋ j . Note that, from~55!, we
see that

bv5
bv1

m1
5

bv2

m2
. ~57!

An exact solution of the Navier–Stokes equation for
parallel oscillatory flow in an infinitely long circular tube is
available~see, e.g., Leal, 1992!, but it is expressed in terms
of Bessel functions and the integral in~55! cannot be evalu-

FIG. 4. The real~a! and imaginary~b! parts ofF as functions of the dimen-
sionless frequencyV defined in ~19! for g57/5 for a rectangular cross
section. The bubble aspect ratioA is 2 and the lines are fora/b51 ~solid!
and 0.1 ~dashes!. The interrupted line marked with long dashes is the
asymptotic approximation~39! valid at high frequencies.
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ated in closed form. By using the well-known result for Poi-
seuille flow one has the approximation

bv54
n

R2 , ~58!

as also follows from the exact result~55! in the limit An/v
@R. In the opposite limit,An/v!R, viscosity is only sig-
nificant in a thin boundary layer at the tube wall and the
corresponding result is

bv5Apnv

2S
. ~59!

The result has been written in this way to stress its applica-
bility to tubes of arbitrary cross section, provided the viscous
boundary layer thicknessAn/v is small compared with the
shortest dimension of the cross section. In Fig. 8 we show
the dimensionless viscous damping

b̃v5
R2bv

4n
~60!

as a function of the Womersley number Wo5vR2/n evalu-
ated by numerical integration of the exact result~55!, and we
compare it with the two asymptotic limits~58! and ~59!
~dashed lines!.

Upon introducing an equivalent damping in the equa-
tions of motion~4! and ~5! along the lines outlined before,
and again separating the real and imaginary parts ofF as
done in connection with Eq.~9!, we have

m1ẍ112bv1ẋ12Sp0FX5Sp0P1 , ~61!

m2ẍ212bv2ẋ21Sp0FX52Sp0P2 . ~62!

The steady solution of this system is given by

x12x10

2LB
5

p0

2LBrD

3FP1

L1
2

P12P2

L11L2

v0
2

v2

11 i Im F/Re F

122ibv /v G ,
~63!

FIG. 5. The real~a! and imaginary~b! parts ofF as functions of the dimen-
sionless frequencyV defined in ~19! for g57/5 for a rectangular cross
section. The bubble aspect ratioA is 11 and the lines are fora/b51 ~solid!
and 0.1 ~dashes!. The interrupted line marked with long dashes is the
asymptotic approximation~39! valid at high frequencies.

FIG. 6. The real~a! and imaginary~b! parts ofF as functions of the dimen-
sionless frequencyV defined in ~19! for g57/5 for a rectangular cross
section witha/b50.1. The bubble aspect ratioA is 1.1 ~dotted!, 2 ~solid!,
and 11~short dashes!. The interrupted line marked with long dashes is the
asymptotic approximation~39! valid at high frequencies.
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x22x20

2LB
5

p0

2LBrD F2
P2

L2

2
P12P2

L11L2

v0
2

v2

11 i Im F/Re F

122ibv /v G , ~64!

from which, according to~1!,

X5
x22x20

2LB
2

x12x10

2LB
52

p0

2LBrD S P1

L1
1

P2

L2
D . ~65!

In these equationsbv is defined in~57!,

FIG. 9. Viscous and total damping~left scale! and resonance frequencyf 0

~right scale! for an air bubble in a cylindrical tube withR51 mm andL1

5L255 mm as functions of the driving frequencyf . The solid line is the
viscous contribution to the damping. The dotted lines are for 2LB510 mm
(A511), the lines marked with long dashes for 2LB51 mm (A52), and
those with short dashes for 2LB50.1 mm (A51.1). The liquid is water,
the temperature 20 °C, and the undisturbed pressure atmospheric.

FIG. 10. Viscous and total damping~left scale! and resonance frequencyf 0

~right scale! for an air bubble in a cylindrical tube withR50.1 mm and
L15L250.5 mm as functions of the driving frequencyf . The solid line is
the viscous contribution to the damping. The dotted lines are for 2LB

51 mm (A511), the lines marked with long dashes for 2LB50.1 mm
(A52), and those with short dashes lines for 2LB50.01 mm (A51.1).
The liquid is water, the temperature 20 °C, and the undisturbed pressure
atmospheric.

FIG. 7. The real~a! and imaginary~b! parts ofF as functions of the dimen-
sionless frequencyV defined in~19! for g57/5 for a square cross section,
a/b51. The bubble aspect ratioA is 1.1 ~dotted!, 2 ~solid!, and 11~short
dashes!. The interrupted line marked with long dashes is the asymptotic
approximation~39! valid at high frequencies.

FIG. 8. The dimensionless viscous dampingb̄v defined by~60! for a cylin-
drical tube according to the approximate procedure of Sec. V as a function
of the Womersley number Wo5vR2/n.
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D52v212i S bv1
v0

2

2v

Im F

Re F Dv1v0
2, ~66!

and

v0
25

p0

2LBr S 1

L1
1

1

L2
DRe F. ~67!

Since the present system has two degrees of freedom, we
expect two characteristic frequencies. One corresponds to the
center-of-mass motion which is subject to no restoring force.
Resonance therefore occurs forv50, as shown by the de-
nominators in the last terms of~63! and~64!. The resonance
structure of the other mode is embodied in the quantityD
defined in~66!, from which we see thatv0 is the resonant
frequency while the total dampingb, consisting of a viscous
and a thermal part, is given by

b5bv1
v0

2

2v

Im F

Re F
. ~68!

Figures 9 and 10 show graphs ofb ~left scale! and f 0

5v0/2p ~right scale! as functions of the driving frequency
f 5v/2p for several cases. The solid line is the viscous con-
tribution ~57!. It is seen that thermal dissipation has a marked
effect over a broad frequency range encompassing the reso-
nant frequency.

In order to illustrate the nature of the solutions~63!–
~65! we consider a situation in which the bubble is excited
only on the left by a pressureP1 , while P250. Figures 11
and 12 showu(x12x10)/2LBP1u, u(x22x20)/2LBP1u, and
uX/P1u, for several cases of Figs. 9 and 10. At very low
frequencies the displacements of the two liquid columns are
large, corresponding to the resonance at zero frequency men-
tioned before. The amplitude of oscillation of the bubble
length, on the other hand, remains relatively small. As the

FIG. 11. Dimensionless amplitudes of oscillation of the left liquid surface
u(x12x10)/2LBP1u @dotted line, Eq. ~63!#, of the right surface u(x2

2x20)/2LBP1u @dashes, Eq.~64!#, and of the bubble lengthuX/P1u, given by
~65!, as a function of the excitation frequency normalized by the resonance
frequency. The bubble oscillation is driven by a pressure disturbance applied
to the left liquid column. The tube radius isR51 mm and the common
length of the liquid columns 5 mm. Part~a! is for 2LB50.1 mm (A
51.1); this is the case shown by the line marked with short dashes in Fig.
9. Part~b! is for 2LB510 mm (A511), which is the dotted line in Fig. 9.
The gas is air, the liquid water, the temperature 20 °C, and the undisturbed
pressure atmospheric.

FIG. 12. Dimensionless amplitudes of oscillation of the left liquid surfaces
u(x12x10)/2LBP1u @dotted line, Eq. ~63!#, of the right surface u(x2

2x20)/2LBP1u @dashes, Eq.~64!#, and of the bubble lengthuX/P1u, given by
~65!, as a function of the excitation frequency normalized by the resonance
frequency. The bubble oscillation is driven by a pressure disturbance applied
to the left liquid column. The tube radius isR50.1 mm and the common
length of the liquid columns 0.5 mm. Part~a! is for 2LB50.01 mm (A
51.1); this is the case shown by the line marked with short dashes in Fig.
10. Part~b! is for 2LB51 mm (A511), which is the dotted line in Fig. 10.
The gas is air, the liquid water, the temperature 20 °C, and the undisturbed
pressure atmospheric.
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true resonance frequency is approached, the relative phase of
the motion of the two liquid surfaces changes sign and, at
resonance, the bubble elongation equals approximately twice
the amplitude of oscillation of each surface. The sharpness of
the resonance peak depends in a complex way on the values
of the parameters. In general, it is found that, for a fixed
bubble length and liquid columns of equal length, the peak
becomes sharper the shorter the liquid column. When the left
column is taken progressively longer than the right one, the
peak decreases while the opposite trend is observed when the
right column becomes progressively longer than the left one.

VI. SUMMARY AND CONCLUSIONS

We have studied the forced oscillations of a system
composed of a gas bubble bounded by two liquid columns in
a duct. It has been found that, while the natural frequency of
the system is only weakly dependent on the thermal pro-
cesses occurring in the gas, the damping parameter is very
sensitive to the energy exchange between the gas and the
surrounding surfaces. Even for tubes with a radius as small
as 1 mm or less, thermal damping can be more significant
than viscous damping over a broad frequency range.

The situation considered here is that of a bubble large
enough to fill the cross section of the duct. Results for the
resonance frequencies of smaller bubbles~without consider-
ation, however, of thermal effects! are given in Og˜uz and
Prosperetti~1998!.
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APPENDIX

Consider two eigenfunctionsvm , vn satisfying~15! and
homogeneous Dirichlet boundary conditions:

¹'
2 vm52

lm
2

l 2 vm , ¹'
2 vn52

ln
2

l 2 vn . ~A1!

Without loss of generality we take the eigenfunctions to be
real. Multiply the first equation byvn and the second one by
vm , subtract, and integrate over the cross section of the
channel. The result is

E ~vn¹'
2 vm2vm¹'

2 vn! dS52
lm

2 2ln
2

l 2 E vmvn dS.

~A2!

By use of Green’s identity and Stokes’ theorem, it is readily
shown that the left-hand side vanishes due to the vanishing
of vm,n on the boundary. If the eigenvalues are distinct, this
relation then implies that the integral on the right-hand side
vanishes formÞn, i.e., that the eigenfunctions are orthogo-
nal. If the eigenvalue is degenerate, the eigenfunctions span-
ning the corresponding eigenspace can be rendered orthogo-
nal, e.g., by the Gram–Schmidt procedure. Hence we can
assume that the eigenfunctions constitute an orthogonal sys-
tem.

In order to prove~28!, note that, as is readily verified,
the sn’s are exactly the coefficients of the expansion of the
constant 1/AS over the basis of thevn’s:

1

AS
5(

n
snvn , ~A3!

provided the eigenfunctions are normalized to 1:

E vn
2 dS51. ~A4!

Squaring~A3! and integrating over the cross section, by the
orthogonality and normalization of thevn’s, we have

15E
S
S 1

AS
D 2

dS5(
n

(
m

snsmE
S
vnvm dS5(

n
sn

2.

~A5!
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