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Abstract
HyHEL-8, HyHEL-10 and HyHEL-26 (HH8, HH10 and HH26, respectively) are murine monoclonal
IgG1 antibodies which share over 90% variable-region amino acid sequence identity and recognize
identical structurally-characterized epitopes on hen egg white lysozyme (HEL). Previous
immunochemical and surface plasmon resonance-based studies have shown that these antibodies
differ widely in their tolerance of mutations in the epitope. While HH8 is the most cross-reactive,
HH26 is rigidified by a more-extensive network of intramolecular salt links, and is highly specific,
with both association and dissociation rates strongly affected by epitope mutations. HH10 is of
intermediate specificity, and epitope mutations produce changes primarily in the dissociation rate.
Calorimetric characterization of the association energetics of these three antibodies with the native
antigen HEL and with Japanese quail egg white lysozyme (JQL), a naturally occurring avian variant,
shows that the energetics of interaction correlate with cross-reactivity and specificity. These results
suggest that the greater cross-reactivity of HH8 may be mediated by a combination of conformational
flexibility and less specific intermolecular interactions. Thermodynamic calculations suggest that
upon association HH8 incurs the largest configurational entropic penalty and also the smallest loss
of enthalpic driving force with variant antigen. Much smaller structural perturbations are expected
in the formation of the less flexible HH26 complex, and the large loss of enthalpic driving force
observed with variant antigen reflects its specificity. The observed thermodynamic parameters
correlate well with the observed functional behavior of the antibodies and illustrate fundamental
differences in thermodynamic characteristics between cross-reactive and specific molecular
recognition.
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The association of antibodies with antigens is a critical component of immune function, and
the processes of recognition and association are underlying features of all protein-protein
interactions. The immune system is, however, unique in the occurrence of both highly specific
and non-specific (cross-reactive and poly-reactive) interactions involving different types of
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antibodies. An understanding of antibody-antigen association is of growing importance for
engineering of antibodies for therapeutic and diagnostic applications. Several antibody-antigen
complexes have been extensively characterized not only for their immunological and clinical
interest, but also as model systems to elucidate the general principles of protein-protein
interactions (1–3). Antibodies recognizing hen egg white lysozyme (HEL) have often been
used, with the majority of these studies addressing molecular, thermodynamic and kinetic
features of antibodies with high specificity. There are significantly fewer reports addressing
the molecular basis of recognition by cross- and poly-reactive or heteroclitic antibodies.

In this work we demonstrate for the first time that the associations of cross-reactive and specific
antibodies differ thermodynamically in a systematic way. HyHEL-8 (HH8) and HyHEL-26
(HH26) are high-affinity anti-HEL antibodies which recognize the same structurally
characterized epitope as the HyHEL-10 (HH10) antibody (4–8). While HH26 is highly specific,
HH8 is significantly more cross-reactive and tolerant of epitope mutations that significantly
inhibit or abolish the binding of HH26. The degree of specificity or cross-reactivity of HH10
lies between that of HH8 and HH26. Previous reports on this family of antibodies by Smith-
Gill et al. (4,5,9–12) have led to an understanding of some of the molecular origins of their
functional differences, especially in their kinetics of association and dissociation.

Here we present a thermodynamic comparison of HH10 complex formation with HEL and the
natural epitope variant Japanese quail egg white lysozyme (JQL) containing the hotspot
mutation R21Q, as well as three other mutations in the epitope, with the corresponding
complexes of HH8 and HH26 using isothermal titration calorimetry. The results obtained
advance our understanding of the specificity of antibodies and their cross-reactivity with
mutant antigens.

Materials and Methods
Antibody Production and Purification

Supernatant enriched with HH10 IgG was produced at the National Cancer Institute as
previously described (7). The supernatants of hybridoma cell lines producing the HH8 and
HH26 monoclonal antibodies (7,13,14) were produced by the National Cell Culture Center and
stored at −80°C until purification.

HH10 protein was purified by sequential anion-exchange, hydroxyapatite and hydrophobic
interaction chromatography. Anion exchange chromatography used a Q Sepharose Fast Flow
column (diameter: 2.5 cm; length: 25 cm) (GE Healthcare). The column was equilibrated with
50 mM Tris, 0.1 mM EDTA, pH 8.0 (buffer A). After loading, the column was washed with
buffer A and protein was eluted with a gradient of NaCl in buffer A (0 −400 mM; 25 column
volumes). Peaks containing the antibody were identified by silver-stained 8–25% gradient
SDS-PAGE gels (PhastSystem; GE Healthcare) or dot blot immunoassays, then pooled and
dialyzed in 10 mM sodium phosphate, pH 6.8 in preparation for the hydroxyapatite column.
The dot blot immunoassays were based on the binding of HH10 (pre-incubated for two hours
with and without 1 mg/ml HEL) to HEL adsorbed on nitrocellulose membranes (Pierce). This
HEL competition assay was used to distinguish between specific and nonspecific adsorption.
Membranes were blocked with 3% nonfat dry milk before binding the HH10 samples, and
HH10 was detected with a protein G-alkaline phosphatase conjugate (Pierce) using the BCIP/
NBT (Pierce) chromogenic substrate as described by the manufacturer.

The pooled ion-exchange fractions were further purified by hydroxyapatite chromatography
(Bio-Gel HT; BioRad; diameter: 2.5 cm; length: 60 cm). The HH10 antibody was eluted using
a gradient of sodium phosphate, pH 6.8, (10 −300 mM; 5 column volumes). Fractions
containing HH10 were pooled and concentrated to a final volume of ca. 20 ml using a stirred
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ultrafiltration cell with a YM10 membrane (Spectrum, Gardena, CA) and then dialyzed
overnight in 10 mM Tris, 1 M NaCl, pH 7.0 in preparation for hydrophobic interaction
chromatography.

The hydrophobic interaction adsorbent used was Phenyl Sepharose (GE Healthcare; column
diameter: 2.5 cm; length: 25 cm). The isocratic eluant (10 mM Tris + 1 M NaCl, pH 7.0) was
chosen to prevent HH10 adsorption, while promoting BSA adsorption (the primary
contaminant remaining after the hydroxyapatite chromatography step). Fractions containing
HH10 were concentrated to ≥1 mg/ml using a stirred ultrafiltration cell (Spectrum, Gardena,
CA). SDS-PAGE was used to assess purity of the final HH10 antibody preparation and showed
only bands corresponding to the antibody heavy and light chains. The binding activity of the
final HH10 preparation was assayed by dot-blot as described previously (15).

HH8 and HH26 were purified using the Protein A or Protein A/G columns from the
ImmunoPure IgG purification kit (Pierce). Purified proteins were checked for purity on silver-
stained Phast SDS-PAGE gels (GE Healthcare).

Lysozyme Purification
HEL (2x crystallized) was obtained from Worthington (Freehold, NJ). Size exclusion
chromatography and silver-stained SDS-PAGE were used to establish that the HEL used (lot
number 32C875) was at least 99% pure and free of aggregates. HEL activity was also tested
using the Micrococcus lysodeikticus lysis assay (16).

Japanese quail eggs were obtained from Stevenson Game Bird Farm (Riverside, TX) and from
Truslow Farms, Inc. (Chestertown, MD); Truslow Farms was a supplier used in the earlier
study of Lavoie et al. (4). JQL from both sources exhibited identical calorimetric results, and
the results reported are those obtained using the eggs from Stevenson Game Bird Farm. Upon
receipt the egg white was separated from the yolk and stored at −80°C for later purification of
lysozyme. The egg white was thawed and homogenized briefly in a Waring blender. This
material was filtered through two layers of cheesecloth and then two layers of Kimwipes,
diluted with six times the original egg white volume of 15 mM ammonium acetate, pH 9.2,
and contacted with 10 g CM Sephadex (GE Healthcare) per 100 ml egg white at 4°C with
gentle stirring. After overnight adsorption the supernatant was decanted and replaced with an
equal volume of 15 mM ammonium acetate, pH 9.2 every hour until the liquid was clear
(typically three times). The adsorbent was then packed into an empty 5 cm diameter
chromatography column and the adsorbed proteins (largely JQL) were eluted with 500 mM
ammonium acetate, pH 9.4. This material was concentrated using an ultrafiltration cell with a
YM10 membrane (Spectrum, Gardena, CA) and loaded onto a Sephacryl S-100 HR (GE
Healthcare) column (diameter: 2.5 cm; length: 40 cm). Loading volume was ca. 10 ml and the
running buffer was 15 mM ammonium acetate, pH 9.2. During the purification the Micrococcus
lysodeikticus lysis assay (16) was used to identify fractions containing lysozyme. Final
purification was achieved using a CM Sepharose (GE Healthcare) column (diameter: 5 cm;
length: 8 cm); lysozyme was eluted with a 1.0 L gradient of ammonium acetate, pH 9.2 (15
mM −500 mM). Lysozyme was the main peak eluting during the second half of the gradient
and found to give a single band upon silver-stained SDS-PAGE analysis.

Sample Preparation for Calorimetry
Experiments were carried out in 10 mM sodium phosphate adjusted to pH 8.0 (except where
noted) at the intended experimental temperature in an environmental room (NorLake Scientific,
Hudson, WI). HH10 and HEL samples of ca. 5 ml each were co-dialyzed overnight at 4 °C
against the same 4 L volume of buffer to ensure precise matching of the buffer concentration
and pH. After dialysis, the concentrations of HEL and HH10 solutions were determined by
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absorption measurements at 280 nm using a Beckman DU-64 spectrophotometer. The
extinction coefficient used for HEL was E281.5 = 2.64 (17), and the molecular mass used for
HEL was 14,388 Da (18). The HEL extinction coefficient was also used for JQL since the two
lysozymes differ in only one absorbance-active residue (Phe 3 to Tyr), which would produce
a difference in the molar extinction coefficient of less than four percent (19). The molecular
mass of HH10 was taken as 150,000 Da, and the extinction coefficient was estimated as
E280 = 1.43 (K.A. Xavier, unpublished results) by the method of Gill and von Hippel (19) using
the known HH10 Fv sequence and the constant region sequences of the murine (Balb/c)
plasmacytoma MOPC-21 (20). HEL concentration was adjusted by the addition of dialysis
buffer to a concentration that (after centrifugation as described below) would saturate all
antibody binding sites near the midpoint of the calorimetric titration. All samples were
centrifuged at 100,000 xg in a Beckman TL-100 ultracentrifuge for 30 minutes immediately
before use. After centrifugation the final concentrations of antibody and lysozyme samples
were determined spectrophotometrically. The A280 of protein samples was reduced by up to
25% after centrifugation, and they were free of any detectable scattering at wavelengths above
350 nm.

Isothermal Titration Calorimetry
An OMEGA isothermal titration calorimeter (Microcal, Northampton, MA) was used for all
experiments as described previously (15,21). The design and operation of the instrument have
been previously described by Wiseman, et al. (22). A voltage conditioner (Tripp Lite) and a
ferroresonant transformer (General Signal) were connected in series for power stabilization,
and a circulating water bath (Haake model A81) was used to stabilize the experimental
temperature.

Data analysis was carried out as described previously (15,21) using ORIGIN, the data analysis
software provided with the calorimeter. Manual peak-by-peak integration yielded better
representations of the data than did the automatic baseline determination provided by the
software. The integrated areas for injections prior to saturation typically varied by less than
four percent and were averaged to obtain the apparent binding enthalpy. To obtain the reported
enthalpies, the apparent binding enthalpy values were corrected for the small dilution enthalpy
resulting from titrating HEL into HH10/HEL complex solution. This was determined by
averaging the integrated areas obtained for injections after saturation. All calorimetric titrations
were repeated at least twice.

SPR measurements
Pre-equilibrium rate constants for binding were determined using a Biacore 2000 (GE
Healthcare Bio-Sciences, Uppsala, Sweden) instrument. Fabs refolded from E. coliinclusion
bodies (6,9), were always used in order to study monovalent inherent affinities. Fab samples
in HBS buffer (10 mM HEPES, 150 mM NaCl, 0.005% P20, pH 7.4) were injected over a
CM5-dextran chip immobilized with different levels of amine-coupled HEL to provide surfaces
that ranged from 60 response units (RUs) to 150 RUs. Previous SPR and fluorescence
anisotropy studies have demonstrated that the interaction of these antibodies with HEL results
in complex time dependant two-step binding kinetics (Equation 1) that are best evaluated using
a series of different injection times (10,23).

(1)

The SPR experimental protocol consisted of four analyte-inject (association) times of 10, 25,
60 and 120 min, followed by a two-hour dissociation phase with HBS buffer. Sensorgrams
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were corrected using a blank flow cell from the same chip that had been exposed to the same
amine-coupling protocol without protein. These corrected sensorgrams were then pooled for
global analysis using the two-step model in the BiaEvaluation 3.0 (Equation 1). Representative
SPR data and associated fits are given in the Supporting Information. ΔG° was calculated from
the net binding affinity, KA. Experiments with HH10 were performed at 10°C, 25°C, and 37°
C. Calculations using SPR measurements of ΔG and ITC estimates of ΔHand ΔCp, with their
experimental errors propagated for all calculations, showed that small differences among
temperatures did not produce significant differences among the calculated entropy values.
Reliable estimates of some rate constants at the highest and lowest temperatures are extremely
difficult to obtain for HH26 and HH8 associations. This is because at 37°C very little HH26
binds to the surface, especially to JQL, k−1 is very high and k2 is very low, making estimates
unreliable. Similarly, at low temperatures, such as 10°C, rates are very slow, and in the case
of HH8 observed off rates may be as low as only 1 or 2 RU during a 4-hour dissociation period.
Even in the case of HH10 binding to JQL, some rate constants were difficult to measure, thus
accounting for relatively high error rates in the ΔGestimates for these complexes. The
empirically determined values of ΔGat all 3 temperatures were used for HH10 complexes (the
variation with temperature is very small; see Table 2). To estimate ΔG values for HH26 and
HH8 complexes at 10 and 37°C the non-linear van’t Hoff equation (2) was used, using
experimentally measured ΔG0 at 25°C and experimental values of ΔCp from ITC:

(2)

where T0 is the standard temperature, 25°C. This approach is supported by the observation that
estimating ΔGT values for HH10 at 10 and 37°C by the same method gave values that all were
within the standard error of the observed 10 and 37°C data (data not shown).

Results
Association energetics of HH10 with HEL and JQL

Figure 1 shows the results of the calorimetric titration of HH8 with HEL; these results are
representative of the high-affinity HEL titration of all three antibodies. The top panel shows
the raw titration data and the bottom panel shows the integrated area for each injection, as a
function of the molar ratio of HEL to total antibody binding sites. The high affinity of antibody/
HEL association precludes the determination of affinity by calorimetric titration, as described
by Wiseman et al. (22). Experiments were designed, therefore, to facilitate accurate
measurement of the enthalpy and stoichiometry of antibody/HEL binding, and the small
apparent HEL heat of dilution. Dilution-corrected heats of association for HH10/HEL
association are shown in Table 1, along with the standard deviation associated with each value
of ΔH.

Table 1 also presents the experimental equivalence ratio (typically 0.80), determined by
dividing the number of moles of lysozyme present in the cell at the calorimetrically indicated
stoichiometric equivalence by the number of moles of antibody combining sites present (15,
21). Deviation from unity can be attributed to the presence of inactive antibody molecules or
impurities and/or inaccuracies in the antibody molecular mass or extinction coefficient used.
Injection of lysozyme, for which the mass and extinction coefficients are better known,
increases the precision of the energetic measurements. Table 1 lists values of HH10/HEL
association enthalpies in 10 mM sodium phosphate, pH 8.0 at temperatures ranging from 10°
C to 37°C. As a control for proton liberation or uptake upon binding, experiments were also
performed in 10 mM Tris, pH 8.0 at 25°C. The values of ΔH measured in Tris buffer (enthalpy
of ionization, 11.51 kcal mol−1 at 25°C) did not differ significantly from those measured in
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phosphate buffer (enthalpy of ionization, 1.22 kcal mol−1 at 25°C (24)) showing that the
contribution of buffer titration to the observed ΔH is negligible. As shown in Table 1, ΔH also
does not vary significantly upon addition of 100 mM NaCl, or upon changing the pH from 8.0
to 7.0.

The enthalpy of HH10/HEL association declines linearly from −17.4 kcal mol−1 at 10°C to
−24.1 kcal mol−1 at 37°C, giving a constant value of ΔCp of −248.1 ± 1.0 cal mol−1 K−1 (Table
2). The SPR-derived ΔG values for each temperature (Table 2) and the experimentally
determined values of ΔH as a function of temperature were used to calculate ΔS values as a
function of temperature. HH10/HEL association is accompanied by a favorable enthalpy
change and unfavorable entropy change at all temperatures studied.

The energetics of titration of HH10, as well as HH8 and HH26, with JQL are presented in Table
3. Buffer controls for proton liberation or uptake as described above indicated that no
significant proton liberation/uptake occurs upon JQL/HH10 association.

The SPR-derived ΔG values and the ITC- determined values of ΔH as a function of temperature
were used to calculate values of ΔS over the temperature range of interest (Table 3). The
enthalpy of HH10/JQL association declines linearly from −5.8 kcal mol−1 at 10.0°C to −14.2
kcal mol−1 at 37.0°C, yielding a constant ΔCp of −310.7 ± 8.5 cal mol−1 K−1.

Association energetics of HH8 and HH26 with HEL and JQL
These systems were studied by the same methods as described above for HH10, though in less
detail (Table 2). Stoichiometric equivalence ratios were as close or closer to unity as observed
for HH10, and experimental errors were similar to those for the HH10 system (average standard
error 2.5%). The affinity of HH26 for JQL was low enough to be determined calorimetrically
(Figure 2); all ΔG values used to calculate the derived thermodynamic parameters in Table 2–
Table 4 were SPR-derived/estimated. It is noteworthy that the calorimetrically-determined
affinity for HH26/JQL association at 25 °C is 1.32 × 10−7 M, giving a total change in free
energy upon binding ΔG = −9.58 kcal mol−1 which compares well with the value of −8.5 kcal
mol−1 obtained using the very different method of SPR.

Discussion
Antibody association with HEL

Association of all three antibodies with HEL is enthalpically driven with an entropic penalty
at all temperatures from 10 to 37°C with the sole exception of H8 at 10°C with a small favorable
entropy. ΔH declines linearly with temperature, i.e. it becomes more favorable at higher
temperatures. The values of ΔCp observed are comparable to those obtained in previous studies
of protein-protein associations. Calculated values of TΔS become much less favorable as
temperature increases, changing on average by 7.6 kcal mol−1 over the temperature range
studied, while the values of experimental and estimated SPR-derived ΔG on average change
by less than 1 kcal mol−1 over this range of temperatures; thus, a nearly complete enthalpy-
entropy compensation occurs in this system. In all three complexes, unfavorable changes in
enthalpy are compensated by reductions in unfavorable entropy as temperature decreases,
typical of other antibody-antigen interactions (25–27).

We have shown elsewhere that the association kinetics of these complexes are best described
by a two-step model corresponding to rapid formation of an intermediate/encounter complex,
followed by a slower annealing or docking to a more stable complex (9–11,23). We have also
demonstrated that the first step of the HEL association is usually entropically driven, while the
docking step is enthalpically driven with a large entropic penalty (C.A. Lipschultz et al.,
unpublished data).
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Association of the more-specific HH26-HEL complex is characterized by a higher favorable
enthalpy change than HH8-HEL at all temperatures studied here, with the difference becoming
more apparent at lower temperatures. The HH26-HEL interface has more hydrogen bonds,
both inter-and intra-molecular, and stronger electrostatic interactions than the other two
complexes (6,28). Among the HEL complexes, at each temperature studied the HH8-HEL
complex has the lowest enthalpy of association, consistent with this complex having the
smallest number of stabilizing hydrogen bonds and electrostatic interactions.

The entropy changes of association of the three antibodies with HEL are generally negative
(unfavorable). Of the three antibody complexes with HEL, that of HH8 shows the smallest
unfavorable ΔS at every temperature (Table 2). The HH8-HEL entropic change is in fact
positive (favorable) at 10°C. The change in specific heat capacity, which in part reflects the
extent of burial of hydrophobic interfacial residues upon association, is larger for the HH8-
HEL complex (−363.9 cal mol−1 K−1) than for HH26-HEL complex (−238.8 cal mol−1 K−1).
This is consistent with the results of structural and computational studies showing that the
binding site of HH8 involves more hydrophobic residues compared to the other two antibodies
(6,28–30).

It is unusual for the interaction of an antibody with a large protein antigen to have a favorable
(positive) entropy change, although associations of smaller proteins with (relatively
hydrophobic) drug molecules are frequently entropically driven (31). Favorable entropy
changes of association could arise in part from the contributions of the mobility of water
molecules and backbone and side chain atoms in the interface, implying a lack of “tight fit” or
alternatively, an association accompanied by water exclusion and an interaction dominated by
hydrophobic interactions. A fully affinity-matured antibody would be expected to show close
shape complementary to its antigen, and a lack of fit would indicate either that the antibody is
incompletely matured, or that it has a certain degree of intrinsic cross-reactivity. A structural
comparison revealed that the combining site of the chimeric HH H8L10 (heavy chain of HH8
refolded with the light chain of HH10) showed higher surface complementarity to HEL than
either HH26 or HH10 (6). HH8, which is a high-affinity (higher than HH10 or HH26) antibody
obtained from the hyperimmune (memory) response (7,32), belongs to the latter category.
Structural studies have shown that during affinity maturation, somatic mutation increases the
number of hydrophobic residues in the combining site at the expense of polar residues (6). In
addition, detailed analyses of site-directed mutants of the anti-HEL antibody D1.3 supported
the hypothesis that the entropic changes in the complex were most likely related to hydrophobic
interactions (33).

Antibody association with JQL
The HH26-JQL complex was the only complex with affinity low enough to be reliably
measured by ITC (Figure 2), the association constant calculated from ITC data agrees with that
obtained by measuring the kinetics by SPR techniques. Compared to association with HEL,
association of all three antibodies with JQL involves much smaller enthalpic contributions,
compensated by corresponding larger favorable entropy changes. Entropic changes of
association for all three complexes at 25°C and 10°C are positive. Among the three antibodies,
the HH26-JQL complex has both the smallest favorable enthalpy and the largest favorable
entropy of association at 37 and 25°C, respectively. Despite this compensation, the affinity of
HH26 for JQL is about 39 times lower than its affinity for HEL. HH8 shows less specificity,
with an affinity for JQL only about 7 times lower than that for HEL (5). As in the antibody-
HEL complexes, ΔCp of the HH8-JQL complex is the largest among the three JQL complexes
while that of the HH26-JQL complex is the smallest, suggesting that in the HH8-JQL complex
more hydrophobic residues are involved in mediating the interaction. An overlay of the x-ray
crystallographic structure of JQL (34), PDB code: 2IHL with HEL (in the HH10-HEL complex)
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reveals that the conformation of the backbone of JQL around positions 101, 102 and 103 differs
substantially from that of uncomplexed HEL. The Cα atoms of JQL, at positions 102 and 103,
are shifted by 5.6 and 4.1 Å respectively, relative to their corresponding positions in HEL
(29). JQL has the residues Val and His at positions 102 and 103 instead of the Gly and Asn
respectively present in HEL. In order to accommodate the structural differences of JQL (e.g.
to avoid steric clashes) the paratope of any of the antibodies would necessarily undergo some
conformational changes compared to their conformations in the structures with HEL (28).
Molecular modeling studies suggest that more-extensive intramolecular salt and hydrogen
bond networks would render HH10 and HH26 less likely to undergo such rearrangements than
HH8 (28,29).

The amino acid sequence of JQL differs from HEL in six positions, the most notable epitope
change being the R21Q mutation. HEL residue Arg21 is an epitope “hot spot”, and is among
the largest contributors of free energy to these complexes (9,13,35,36). HH10 makes three
hydrogen bonds with this residue and several non-bonded contacts (8,29,35–38). Mutating this
arginine to glutamine, as in JQL, would lead to the loss of at least two hydrogen bonds and
several non-bonded contacts. The loss of these contacts would result in a corresponding
decrease in the favorable enthalpic driving force.

Enthalpic contributions dominate antibody specificity
Previous SPR-based studies have demonstrated that epitope mutations affect the kinetics of
cross-reactive and specific antibodies to varying degrees; however, the thermodynamic
mechanisms that actually mediate cross-reactive or specific behavior are not understood. To
investigate this issue, the mutational differences of the energetic components, (ΔΔHJQL-HEL,
(Δ-TΔS)JQL-HEL and ΔΔGJQL-HEL) were calculated for the three antibodies (Table 4). The
association of the highly-specific HH26 with JQL compared to HEL involves both a large loss
of favorable enthalpy change and a gain in favorable entropy change. The values of the
corresponding changes for the association of HH8 are the smallest, and those for HH10 are
intermediate.

In protein-protein associations, enthalpic change largely represents the structural composition
of hydrogen bonds, electrostatic interactions and water-mediated interactions (31). The
specificity of an antibody is the selective recognition of its ligand through specific interactions
between a select set of residues in the interacting surfaces, and hydrogen bonds and electrostatic
interactions are the predominant mediators of this specificity (31,39,40). While HH10 has the
largest net change in enthalpy in its association with both HEL and JQL, the mutational loss
of association enthalpy, ΔΔHJQL-HEL is generally the largest for HH26 at 37°C, and those for
both HH10 and HH26 are greater than for HH8 at all temperatures (Table 4; note the similar
values for HH26 and HH10 at 25°C and 10°C; also note that the values for HH26 are within
the standard error of the values for HH10 at both temperatures, Table S1). Though these losses
of enthalpic driving force are partly compensated by more-favorable entropy changes of
association in both antibodies, there is a net reduction in affinity of HH26 for JQL of
approximately 39-fold. This probably reflects the loss of some important stabilizing
interactions found in both complexes and suggests that the specificity of the antibodies is
mediated by interactions that are predominantly enthalpic in nature. Structure-based
comparison of the numbers of geometry-sensitive hydrogen bonds, salt links and electrostatic
interactions with antigen shows that among the three complexes, that of HH26 has the largest
number of each (6,28,29), and that the contribution of intermolecular electrostatic forces is
greatest in the HH26 complex (6,12,28,29). In the modeled complexes of the three antibodies
with HEL, HH26 forms 18 hydrogen bonds with HEL in comparison to the 11 hydrogen bonds
formed by HH8, which correlates well with the current observation that the smallest change
in enthalpic contribution is associated with HH8. The complexes of HH10 and HH26 derive
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stability mainly from enthalpic energy while the smaller mutational loss of association enthalpy
for HH8 (the smallest of the three) implies that this antibody is able to maintain most of the
(predominantly hydrophobic) interactions (6) crucial for its recognition, even with mutant
antigen. The magnitude of loss of enthalpic driving force for HH10 with JQL correlates with
its degree of specificity, which is intermediate. These conclusions agree with those of Kumagai
et al. (41,42).

Configurational entropy mediates antibody cross-reactivity
The total change in entropy ΔS is the summation of solvent, configurational and cratic effects,
represented by ΔSsolv, ΔSconf and ΔScrat, respectively (43). Upon formation of the antibody-
antigen complex, the variation of arrangement of water molecules around polar and apolar
patches is reflected in ΔSsolv, while the changes in configurational freedom of backbone and
side chains of both antibody and antigen is given by ΔSconf. ΔScrat represents the loss of
translational and rotational degrees of freedom for the associating proteins and is empirically
determined to be −8 cal K−1 mol−1. ΔSsolv is given by ΔCp ln(T/Ts*), where Ts* is taken as 112
°C, the temperature at which the aqueous dissolution of apolar compounds is independent of
the apolar surface area. The values of ΔSsolv and ΔSconf thus calculated are listed in Table 2
and Table 3 for antibody associations with HEL and JQL, respectively.

At all temperatures studied, the complexes of less-specific HH8 with HEL and JQL have the
largest favorable solvent contribution to entropy, as well as the largest unfavorable
configurational entropic penalty to total entropic change with the sole exception of HH10-JQL
at 10°C. On the other hand, the complexes of the highly-specific HH26 exhibit the smallest
favorable ΔSsolv as well as the smallest unfavorable ΔSconf at all temperatures, while the
corresponding changes for HH10 lie in between (note the similar ΔSconf for HEL complexes
of HH10 and HH26). Since these three related antibodies are known to recognize the same
structurally-characterized epitope on both HEL and JQL, the differences observed in
configurational entropy are probably primarily due to the structural differences among the
antibody binding sites. Previous computational studies showed that the binding site of HH26
is likely to be the most rigid, because it is stabilized by the largest number of intramolecular
salt-bridges (28,29). In contrast, the binding site of HH8 lacks these stabilizing interactions,
making it the most flexible and allowing it to adopt alternate conformations (28,29,44). The
binding site of HH10 has a moderate number of intramolecular salt-bridges and was predicted
to be of intermediate flexibility (28,29,44). The largest changes of configurational entropy
( Table 2 & Table 3) were seen for flexible HH8, consistent with the idea that its binding site
undergoes the largest conformational rearrangement upon association. The complexes of HH8
are thus very likely formed by molecular processes most typical of induced fit associations.
The conformational rearrangements in the complexes of HH8 also result in the largest buried
surface area and the greatest degree of intermolecular surface complementarity (28,29,44). The
increased complementarity is not necessarily due to structural rearrangements only in those
segments with sequence changes in complementarity determining regions (CDR) unique to
HH8, but also likely involves subtle structural rearrangements in the other CDR’s as well as
in HEL. This would lead to increased complementarity both of the entire binding interface and
in the areas of the interface buried upon complex formation (41). The intrinsic ability of HH8
to reorganize its binding site when it encounters a mutant antigen correlates with its cross-
reactivity. Conformational rearrangement may also allow preservation of hydrogen bonds and
electrostatic interactions that would otherwise be lost, leading to the observed smallest ΔΔH
of antigen mutation (Table 4).

In contrast, the configurational entropic effects of HH26 complexes may reflect the lower
degree of conformational rearrangement exhibited by this antibody. Structural studies
comparing movements of CDR2 of the heavy chain support this hypothesis (6). Although this
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antibody has the largest overall favorable mutational Δ(−TΔS), this falls short of compensating
for the losses of favorable ΔH. The loss of tight binding in HH26-JQL complex, evidenced by
the gain in configurational freedom, is also supported by the further reduction in the already-
smallest estimated buried surface area. If the binding site of HH26 is unable to adopt alternate
conformations that could lead to new interactions, the result would be increased configurational
freedom that does not compensate for the loss of bond energy. The inability of its binding site
to adopt alternate conformations, which agrees with modeling predictions and structural studies
(6,29), is a possible cause of its relative intolerance of epitope mutations. As the binding site
of HH26 undergoes minimal structural perturbation, the association of this antibody with its
antigen can be best described as a “lock and key” process.

The apparent conformational flexibility of HH8, on the other hand, helps this antibody to form
new interactions by conformational rearrangement of its binding site when it encounters a
mutant antigen. The higher affinity of HH8 for both HEL and variant antigens likely involves
both an increase in favorable enthalpy change of association due to localized interface
interactions, as well as compensatory decreases in favorable enthalpy and unfavorable entropy
due to other mutations which allow the flexibility (41). In addition, at any given temperature
the HH8 complexes with both antigens have the highest favorable solvent portion of the entropy
term compared to the respective complexes of either HH10 or HH26. This is consistent with
the conclusion of Mariuzza and colleagues that hydrophobic interactions are a primary
contributor to complex stability (6,33,37). The changes observed in the corresponding
energetic parameters of HH10 are moderate, indicating that it is able to partially compensate
for some of the lost interactions when it encounters a variant antigen by undergoing
conformational rearrangement, albeit to a lesser extent than HH8.

In conclusion, here we demonstrate that the energetic bases of specific and cross-reactive
association are fundamentally different. Specificity is often manifested in a pre-organized
combining site that mediates conserved interactions within the complex, as exhibited by HH26.
While HH26 incurs only a small configurational entropic penalty in associating with the mutant
antigen JQL, the inability of its rigidly pre-configured binding site to accommodate the mutant
antigen precludes the formation of new interactions that could otherwise moderate its large
loss of enthalpic driving force. Cross-reactivity, on the other hand, is generally associated with
a more “generic,” flexible binding site and less conserved interactions as evident in the
association of HH8 with the mutant antigen. The binding site of HH8 probably adopts alternate
conformations at the cost of large entropic penalties, but forms intermolecular interactions
(specific or non-specific) that would be otherwise lost with mutant antigen.
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Figure 1.
Calorimetric titration profile of association of HH8 with HEL at 25°C.
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Figure 2.
Calorimetric titration profile of association of HH26 with JQL at 25°C.
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Figure 3.
Energetics of association of HH8, HH10 and HH26 with HEL (Top) and JQL (Bottom).
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Table 1
Titration calorimetry results for HH10 with hen egg lysozyme (HEL) and Japanese quail egg lysozyme (JQL).

Buffer Lysozyme Temperature
°C

ΔH
kcal mol−1

Equivalence
Ratio

10 mM Na PO4, pH 8.0 HEL 37.0 −24.1±0.28 0.75±0.05

10 mM Na PO4, pH 8.0 JQL 37.0 −14.2±0.20 0.92±0.07

10 mM Na PO4, pH 8.0 HEL 25.0 −21.1±0.83 0.70±0.04

10 mM Na PO4, pH 8.0 JQL 25.0 −10.3±0.37 0.78±0.12

10 mM Na PO4, pH 8.0 HEL 10.0 −17.4±0.76 0.86±0.02

10 mM Na PO4, pH 8.0 JQL 10.0a −5.8±0.23 0.72±0.08

10 mM Tris, pH 8.0 HEL 25.0 −20.5±0.21 0.78±0.01

10 mM Tris, pH 8.0 JQL 25.0 −9.8±0.17 0.78±0.28

10 mM Na PO4, pH 8.0 +
100 mM NaCl
  HEL 25.0 −19.7±0.56 0.92±0.01

10 mM Na PO4, pH 7.0 HEL 25.0 −20.6±0.28 0.72±0.06

a
Actual experimental temperature 13.5°C; ΔH value at 10°C extrapolated using ΔCp. All other experimental temperatures were within 0.3° of reported

temperature.
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