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The Stokes flow induced by the slow evaporation or condensation of two spheres is studied. 
The phase-change velocity is prescribed and uniform over the surfaces of the spheres. Exact 
expressions are obtained for the streamfunction and the drag forces. Simpler expressions 
applicable to a variety of limit cases (distant spheres, a source and a sphere, and a sphere and a 
plane) are presented. When only one sphere is evaporating, depending on the distance from the 
other sphere, the flow may exhibit a variety of interesting behaviors such as smooth-boundary 
separation, closed recirculating eddies, and infinite open eddies. 

I. INTRODUCTION 

The hydrodynamic interaction between two spheres in 
low-Reynolds-number flow is a classic problem to which 
many papers have been devoted. 1-6 The novel aspect of this 
problem, which is investigated here, is the effect of the evap
oration or condensation of one or both spheres. 

Specifically, we consider the steady flow that is estab
lished as a result of a prescribed constant and uniform nor
mal velocity on the surface of the spheres and calculate the 
streamfunction and the forces that each sphere exerts on 
itself and on the other sphere as a consequence of this phase
change process. Some cases previously considered in the 
literature, such as a source in the presence of a sphere 7-9 and 
a sphere moving toward a plane wall,10,11 are contained in 
our results. Since the flow is studied in the Stokes approxi
mation, the problem is linear and the drag resulting from 
other external flow fields can be added to our expressions. 

It will be clear from the results to be discussed below, 
which are to some extent unexpected, that the present prob
lem possesses an intrinsic fluid mechanic interest. However, 
our original motivation in studying it has been its bearing on 
multiphase phenomena. An example may be found in a 
cloud of particles (e.g., smog or other atmospheric pollu
tants), which undergo sublimation or absorb gases. Small 
droplets in such diverse situations as the nucleation stage of 
condensation (e.g., rain formation), mist flow near the exit 
of a boiling channel at high heat fluxes, or cooling towers, 
furnish other examples. In all these situations the modeling 
at small, but finite, volume fraction of the disperse phase 
requires a knowledge of the pairwise interparticle forces. For 
instance, Batchelorl2 has shown how the sedimentation ve
locity of a cloud of spheres depends on such forces to first 
order in the volume fraction. Similarly, in the modeling of 
multi phase processes by averaged equations, the phasic mo
mentum equations contain source terms, which account for 
the interphase forces. Therefore, whatever the approach, a 
significant role is played by these forces and the way in which 
they are affected by phase change is of interest. In the actual 
physical process the reciprocal effect, namely, the influence 
of the hydrodynamic interaction of the particles on the 
phase-change process, is also important. We do not address 
this problem here, but concern ourselves exclusively with the 

fundamental understanding of the fluid mechanic aspects of 
the situation described. This circumstance enables us to 
make several simplifying assumptions. 

By prescribing a uniform evaporation velocity at the 
surface of the particles we uncouple the problem from its 
heat transfer aspects. This approximation will be acceptable 
when the latent heat is transported to the surface mainly 
from the interior of the sphere, with only a small fraction 
coming from the vapor side. Examples are sublimation or 
phase change at low superheats or subcoolings in the absence 
of boundaries. For a nonuniform phase-change rate, the nor
mal velocity at the surface of the sphere must be expanded in 
a series of suitable eigenfunctions and our results will only 
apply to the first term in such an expansion. Nevertheless, 
when the drops are not too close, and in the absence of ex
treme anisotropies, the salient features of the process can be 
expected to be captured by our simplified approach. 

The particles are taken to be spherical, which is reasona
ble for small fluid drops because of surface tension, but is at 
best an idealization for solid particles. The neglect of any 
internal circulation in the case of droplets is justified on the 
basis of the small viscosity of the vapor phase relative to that 
of the liquid. 

The Reynolds number based on the evaporation veloc
ity may be estimated by means of the following heat flux 
balance at the surface of the evaporating particle: 

kp(fJ.TIR)=LpvV, (1) 

where kp is the particle's thermal conductivity, fJ.T is its 
superheat,pv the vapor density, and L the latent heat. From 
this relation we find 

Re=pv VR Ipv = kp fJ.T ILpv. 

With the physical properties of water at 100 ·C, this gives 
Re - 0.024 fJ. T, which is a small number for superheats reali
zable in practice. This circumstance justifies the usual as
sumptions of Stokes flow. Furthermore, in a slow flow, iner
tia forces are unimportant and therefore the distance 
between the spheres enters the problem only as a parameter 
even if, as a consequence of the mutual interaction forces, 
this distance were to vary with time. 

To examine the assumption of steady evaporation, con
sider the typical case of particles subject to a slowly falling 
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ambient pressure, as would happen, for instance, in the case 
of a mist falling down a conduit. For our results to be appli
cable, the inverse time scale for this pressure drop, 
I (l/p)dp/dt I, where the derivative is taken following the 
particles, must be smaller than the inverse of the diffusion 
time in the particles t d , given by 

td = R 2/Xp , (2) 

where Xp is the particles' thermal diffusivity. Typical pres
sure gradients dp/dz in pipes in the annular flow regime are 
of the order of a few kilo-Newtons per cubic meter, with 
corresponding flow velocities U of a few tens of meters per 
second. Withp-105 Pa, we then find (p/U)/(dp/dz) of the 
order of a few seconds. A water drop at 100 ·C has a compar
able diffusion time for a radius in the millimeter range. 

There are several methods for the solution of the Stokes 
flow equations in the presence of two spherical boundaries. 
Here, as has already been done in closely related prob
lems,4.1O.1I.13-18 we use bispherical coordinates. Although 
straightforward in nature, the solution technique requires a 
special treatment of the source term, a fact that does not 
seem to have always been correctly recognized in the past. 19 

In the next section we state the mathematical problem 
and derive its analytical solution. Some limit cases are stud
ied in Sec. III. A detailed examination of the flow field is 
given in Sec. IV and the results for the interparticle forces are 
presented in Sec. V. 

II. ANALYSIS 

We consider two spherical particles surrounded by an 
incompressible viscous fluid in an otherwise unbounded re
gion (Fig. 1). The normal velocity Jj, j = 1,2, of the fluid at 
the surface of the jth particle is uniform and given. Because 
of the neglect of any internal circulation, the tangential ve
locity at the particle surface vanishes. The problem is gov
erned by the usual continuity and momentum equations in 
the Stokes approximation 

V'u = 0, 

Vp = fL V2u, 

r 

z 

Sphere I 

(3) 

(4) 

FIG. 1. Schematic of the two evaporating spheres of radii RI and R 2• In the 
bipolar coordinate sytem they are represented by S = /3 and S = - a, re
spectively. The evaporation rates (i.e., the normal velocities at the spheres' 
surfaces) are uniform and equal to VI and Vz, respectively. 
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where u is the velocity field, p is the pressure, and fL is the 
viscosity of the vapor. 

The problem possesses an axis of symmetry in the line 
joining the centers of the spheres. Cylindrical coordinates 
(r,z), referred to this axis, are given in terms ofthe bipolar 
coordinates (S,rO by 

z = c sinh S /(cosh S - cos 1]), 
(5) 

r = c sin 1]/(cosh S - cos 1]). 

Here c is the half-distance between the points identified by 
+ 00 and S ..... - 00, and the origin is placed midway 

between these two points. In terms of the radii R I,R2 and the 
distance D between the spheres' centers, the length c is given 
by 

(6) 

We note for future reference that the points with coordinates 
z ± c are the images of the foci S ..... ± 00 in the spheres. 

The sphere 1 in Fig. 1 is defined by S = {3 and the sphere 
2 by S = - a. The distance between the spheres' centers is 
given by 

D = c(coth {3 + coth a), (7) 

while the spheres' radii are given by 

R 1 = c/sinh {3, R2 = c/sinh a. 

From these relations it is easy to prove that 

{3 = cosh-' [ (D 2 + RI2 - R 2 )/2 DR , ], 

a = cosh-' [ (D 2 - RI2 + R2 )!2 DR2]' 

(8) 

(9) 

(10) 

The geometry of the problem is completely determined by 
two dimensionless lengths, which we take to be 

s=R2/R 1, d= (D-R 1 -R2 )/R 1• (11) 

The continuity equation is identically satisfied by the 
introduction of the Stokes streamfunction t/J(S,1]), related to 
the velocity components by 

[u ,u ] = (COShS-COS1])2(at/J,_ at/J). (12) 
S 7J c2 sin 1] a1] as 

Upon substituting these relations in the curl of the momen
tum equation we obtain 

( 13) 

where L_, is the axisymmetric Stokes operator in the bipo
lar coordinate system, 

L - sin 1](cosh S - cos 1]) [~(COSh S - cos 1]) ~ 
-1- c2 as sin 1] as 

+ ~ (COSh ~ - cos 1] ) ~] . 
a1] S10 1] a1] 

In terms of the streamfunction the vanishing of the tangen
tial velocity on the particles is expressed by 

at/JI =0 at/JI =0 
as S ~ {3 , as s ~ - a • 

(14) 

The condition of a prescribed normal velocity on sphere 1 
leads to 

Oguz, Prosperetti, and Antonelli 1657 



ihP I - V 2 sin 1/ - - IC -----''----
a1/ 5 ~ /3 ( cosh .8 cos 1/) 2 ' 

with a similar equation for sphere 2. These relations can be 
integrated with respect to 1/, which simplifies the calcula
tion. One finds 

(IS) 

and 

tP15~ -a - c2 V2/(cosh a - cos 1/} + c2A', (I6) 

where A ' and B ' are integration constants to be determined. 
The general solution to the Stokes equation (13) in bi

polar coordinates has been given in Ref. 1 and recently gen
eralized to cases involving sources and sinks in Ref. 13 in the 
following form: 

tP(s,1/} = (cosh s - cos 1/) -3/2 

QO 

X L En (s)C n-+I?(cos 1/), 
i~ I 

where 

and 

E -I (s) A (cosh ~ + 3 cosh !s) 

+ B(sinh ~s - 3 sinh !s), 

Eo(S) = A (cosh ~ + 3 cosh ~ s ) 

B(sinh ~S - 3 sinh !s), 

Elt (s) = An cosh(n - ps + Bn sinh(n - ps 

+ Cn cosh(n + ~)s + Dn sinh(n + ~)s, 

(17) 

for n = 1,2, .... HereA,B,A It , Bn, Cn, andDIt are integration 
constants and C n +l~Z is the Gegenbauer polynomial of order 
(n + 1) and degree -~. It may be noted that the general 
solution used by Sen and Lawl9 is incorrect because the 
source terms are not treated separately. As a consequence, 
their drag force calculation is also wrong. 

In the present problem some simplification is obtained 
by using the linearity of the Stokes flow to decompose the 
streamfunction, 

Because ofthe following relation between tPl and tPz, 

tP2 (a,.8;s, 1/) = tP 1 (.8,a;s,1/)' (19) 

we only need to solve for one of the streamfunctions, say tPt. 
Accordingly, in the following, we set V2 = 0 and VI = 1 in 
the boundary conditions ( 15) and (16). 

TheintegrationconstantsA ' andB' can be calculated by 
imposing (IS) and (16) at the points 1/ = 0,1r on each 
sphere. A direct substitution yields 

2v2A = - 1/(cosh.8 + 1) + B I = A I, (20) 

2V'lB = - 1/ (cosh .8 - 1) + B '= - A " (21 ) 

from which 

A' = 1/(sinh2 ,8), B I = cosh.8 Isinhz .8, (22) 

A = (V'l14) (1/sinh2 .8), 

B = - (V'l14)( 1/sinh2 .8). 
(23) 

Next we expand the boundary-condition equations 
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(14 )-( 16) in series of C n-;~z. Matching each term in the 
series arising from (15) and (16) gives the following condi
tions for En: 

En (.8) = - ~ e- (n+ 1/2)/3 

-- - ,(24) 
3B' (e -(n - 112)/3 e -(n + 3(2)/3) 

4V'l n -! n + ~ 
3A' (e-(n 1/2)a _ e-(n+3/2)a) , 

4V'l n -! n + ~ 
(25) 

while from (14) we have 

dEn (.8) = 3(n + !) e- (n+ 112)/3 

ds V'l 

+ 3B' sinh.8 e (n+ 112)/3 (26) 
2V'l ' 

d'= 3A' . h ;i ( -a) = - 2:; a e (n+ 1/2)a. (27) 

The following special form of En (s) for n> 1 satisfies the 
conditions (24) and (25): 

En(s) 

= A sinh(n - ~)(.8 - S) B sinh(n - p (S + a) 

nsinh(n !)(.8+a)+ "sinh(n-p(p'+a) 

+ Cn(.:.:.si=nh=(:..:.:n_---..:.J..!.p~(.8c:.........---=S~) sinh(n +~) (.8 - S») 
sinh(n - !)(.8 + a) sinh(n + ~)(.8 + a) 

+D (Sinh(n-p(s+a) 
n sinh(n - !)(.8 + a) 

_ Sinh(n+~)(s+a») 
sinh(n +~) (.8 + a) , 

provided that 

An - --- - , 
_ 3A' (e-(n-1I2)a e-<n+3/2la) 

4V'l n -! n + ~ 
B = __ 1_ e (n + IIZ)/3 

n V'l 

_ 3B' (e-(n-l/2)/3 _ e-(n+3IZ)/3). 

4V'l n -! n + ~ 

(28) 

(29) 

(30) 

We now calculate Cn and Dn by satisfying Eqs. (26) and 
(27), 

Cn = (Inhn gnen)/(/~ -~), 

Dn = (gnhn - In en )I(f~ - ~), 

where 

In = (n - p/tanh(n -!> (.8 + a) 

- (n + ~)/tanh(n +~) (.8 + a), 

gn = (n - !)/sinh(n - !)(.8 + a) 

- (n + ~)/sinh(n +~) (.8 + a), 

en = (n - ~) ( tanh(n ~;) (.8 + a) 
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sinh(n - ~) ({3 + a) 

3(n+!) -(n+I12){3 3B'sinh{3 -(n+I/2){3 
- v1 e - 2v1 e , 

tanh(n - !)({3 + a) 

3A ' sinh a _ (n + I12)a + e . 
2v1 

As will be shown in the next section, these expressions 
contain a number of interesting limit cases. In particular, the 
limit {3 -+ 0 corresponds to a sphere in the presence of an 
evaporating plane wall. Although this limit case is in princi
ple contained in (17), its actual calculation is nontrivial be
cause of the need to identify infinite constants that cancel. 
For this case it is easier to solve the problem directly to find 

"'(t,'I]) = (cosht-cosh'l])-3/2 

"" XL 2n (t)C n-+I?(cos '1]), 
;= 1 

where 

2n (t) = Bn sinh(n - !) (t + a) 
sinh(n - !)a 

Here 

_ C (sinh(n - !)t _ sinh(n + ~)t) 
n sinh(n _ pa sinh(n + ~)a 

D (Sinh(n - p (t + a) 
+ n • h sm (n - ~)a 

_ sinh(n +~) (t + a»). 
sinh(n + ~)a 

Bn = (11v1) [n(n + l)/(n - !)/(n + ~)], 

Cn = (fnhn -gnen)/(f~ -in), 

(33) 

(34) 

(35) 

(36) 

(37) 

It is easy to see that this system can be reduced by a simple 
kinematic transformation to that of a sphere approaching a 
plane with the evaporation velocity VI' This problem has 
been solved by Brenner lO and Maude. 11 

Although exact, the solutions obtained are unfortunate-
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ly rather complicated. In order to get some insight into the 
physical processes that they describe it is useful to consider 
some limiting cases and to show explicitly the streamlines of 
the flow. This is the object of the next sections. 

III. LIMIT CASES 

The first limit case we consider is that in which the evap
orating sphere collapses to a point. As is clear from (8), the 
limit R 1-+ 0 can be obtained by letting {3 become larger and 
larger. This situation corresponds to a source in the presence 
of a sphere. The strength M of the source is 

or, in terms of {3, 

(38) 

which shows that, as {3 -+ 00, VI must also tend to infinity in 
such a way as to keep M constant. It can be shown from (8) 
and ( 11) that the source's position takes on the coordinates 
r-+O,z = c in the limit. 

As {3-+ 00 the leading-order terms in the general solu
tion previously given diverge like sinh - 2 {3 and therefore re
main finite if this solution is expressed in terms of the source 
strength M. Indeed, it is clear from (38) that to effect this 
limit operation the integration constants A " B', A, and B 
must be multiplied by the factor sinh2 {3/417. The remaining 
integration constants An' B n' C n' and D n are all proportion
al toA ' andB'. Ifwe combine the terms that are proportional 
to B' and take the limit {3 -+ 00, we obtain three nonzero 
terms in the series, namely, 

(39) 

Upon division by the factor (cosh t - cos '1])3/2 appearing 
in (17), this result gives 

(v1M 1817)(cosh t - cos '1]) -1/2(e - O/2)s - cos'l]e(1I2)S), 
(40) 

which is readily seen to be just the streamfunction of a point 
source expressed in bispherical coordinates. It may also be 
shown that in this limit the expression (28) for 2 n becomes 

2n = An e - (n - I12)(s+ a) + C
n 

(e - (n - 1I2)(s+ a) 

_ e- (n+312)(s+a), 

where, from (30) and (32), 

A --- -----
_ 3M (e- (n+312)a e- (n-l12 la) 

n 161TV'2 n+~ (n-~) 

C
n 

= (3MI161TV'2)[e-(n+3/2la_ e -(n-1I2 la 

- e- (n+3/2)aln + V]. 

(41) 

By suitably combining terms, the series can be summed to 
obtain the following closed-form expression: 
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t/J = (.JV'!M /81T)(cosh S' - cos 1]) -3/2{cosh S' - cos 1])(e O/2)s - cos 1]e(l/2)S) 

+ [cosh(S' + 2a) - cos 1]) ]( cos 1] e 1I2(s + 2a) _ e 1l2(S + 2a» 

+ e 2ae- (3/2)s sinh(S' + a) (1- COS2 1]) + Y2 [cosh (S' + 2a) - cos 1]]3/2 

- 3Y2 sinh a sinh(S' + a) [cosh(S' + 2a) - cos 1]] 1/2 

- 3 sinh a sinh(S' + a)(cos 1]e(i/2)(s+2a) - e- (I/2)(s+2a»}. (42) 

This representation of the solution can be rendered more 
transparent by introducing a spherical coordinate system 
(R,O) with the origin placed at the center of the remaining 
sphere (sphere 2, corresponding to S' = - a) and the radial 
coordinate scaled by R2. The image of the source in this 
sphere is at the point S' = - 00 and the distance P2 of the 
generic field point from this image is given by 

P2 = (Rz/h)(h 2R 2 - 2hR cos 0 + 1) 1/2 

= v1[ce(l/2)s I( cosh S' cos 1]) 1/2] , (43) 

where 

h=DIR2 ea. (44) 

Similarly, the distance PI from the source is given by 

PI = R2(R 2 - 2hR cos 0 + h 2) 1/2 

= Y2[ ce (I/2)s I( cosh S' cos 1/) 1/2] . (45) 

In terms of R, 0, PI' and P2' the expression (42) of the 
streamfunction simplifies to 

2.(R 2 - l)R 
2 

R cos 0 - hR 2) X , 
hp2 

(46) 

I 

~nd coincides with the form given by Collins8
•
9 and Hasi

moto.7 By taking the sphere larger and larger (i.e., h - 0) we 
find the solution for the flow induced by a point source near a 
wall, as in Blake and Chwang,20 who used Lorentz's reflec
tion principle 

(47) 

Here H is the distance of the source from the wall and rand z 
are dimensional cylindrical coordinates centered at the point 
where the normal to the wall passing through the source 
meets the wall. Now the distances PI and P2 of the generic 
field point from the source and its image in the wall are given 
by 

PI=[r+(z H)2]1/2, P2 [r+(z+H)2]1!2. 
(48) 

Another interesting limit case is that in which the 
spheres are far apart so that the distance D between their 
centers is much larger than the radii. In this limit the relation 
between the radii, R 1, R 2, and D is given by 

(49) 

so that a and P are both large. If we take the general solution 
( 17) and keep only the first four terms the following form of 
the streamfunction is obtained: 

t/JI = (cosh S' - cos 1/) -3/2A { (e - (3/2)s + 3e(1I2)s - cos 1](e(3/2)s + 3e - (l/2)S) - 2(1 - cos2 1] )e(l/2)s 

++(1-COS2 1]) [~ e ae-(1I2)S+(2e- 2fl _: e-ae-fl)el12s+2e 2fle(S/2)S] 

+ ~ cos 1/(1 - COS2 1/)( - 4e- 2fl )e(3I2)s} , 

where terms of order e - 3fl, e 3a, etc. have been neglected. 
By using the above relations and combining certain terms, it 
is possible to simplify the expression. Thus we find the fol
lowing approximate result for the streamfunction: 

t/J= VIR i {~_ ~ (~)2 [2..& 
PI 2 D 2 P2 

_ ~'&liL + 2 ~ (liL)3]} , (51) 
4 D PI RI PI 

where again the cylindrical coordinates (5) have been used, 
PI andpz are given by (45) and (43), and, to a consistent 
order, 
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(50) 

A further case of interest, which can be analyzed along 
similar lines, is that of an evaporating sphere at a large dis
tance from a plane, nonevaporating wall. This limit is ob
tained for a - 0 in (50). The result is 

t/J=VIRi {(C-Z _ c+z +4 z:) 
PI P2 P2 

+ ~ (~)2liL [3 _ 2 P2 _ (p2)2]} . 
32 H P2 PI PI 

(52) 

Here His the distance of the center of the evaporating sphere 
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(sphere 1) from the wall and c=H( 1 - R i /2D 2). 

As a final limit case we consider a nonevaporating 
sphere at a large distance from a plane. evaporating wall. In 
this case we start from the solution (33) and assume a to be 
large to find 

1 sin2 TJ Y2 tP1=- +- (cosh s 
2 (cosh s - cos TJ)2 2 

-COSTJ)-3/2[e(l!2)s(3e-a+~ e 2a) 

e (1/2)'; (~ e a + 1; e- 2a) 

+ e - (5/1)'; (~ e a + : e -2a)] . (53) 

or, in terms of cylindrical coordinates, 

tP=..lrV{I+ R~ [3R2 (2+~..&) 
2 I 4H2 PI 4 H 

_ R2 (9+~ R2)+..&(pl)2(3+~..&)]}. 
P2 2 H P2 P2 4 H 

(54) 

Here H is the distance of the center of the nonevaporating 
sphere (sphere 2) from the wall and c=H(1- R i/2D 2

). 

(d) 

(b) 

(c) 

FIG. 2. Streamlines of two evaporating spheres at a dimensionless distance 
d defined by (II) equal to 2. In (a) the radii and the evaporation velocities 
areequaI.In (b) R21R, = 0.5, again with equal velocities. (c) R2 = R, and 
V21V, =0.5. 
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(b) 

FIG. 3. Streamline plot showing the effect of a varying distance between 
spheres when only the sphere at the right is evaporating. Here the radii are 
equal and dis 3, 2.25, and 2 for cases (a), (b), and (c), respectively. 

IV. FLOW FIELD 

In this, as in many other problems, the pattern of 
streamlines is particularly revealing and key features of the 
flow may be missed without its analysis. The streamlines 
formed by two equal and equally evaporating spheres, which 
are shown in Fig. 2(a), are not unexpected. The stagnation 
point is at the midpoint of the segment joining the spheres' 
centers. It is also found that when the right sphere is made 
bigger than the left one, still maintaining an equal evapora
tion rate, the stagnation point moves to the left [Fig. 2 (b) ] . 
Predictable changes also occur if the radial velocity ratio is 
decreased, so that the left sphere evaporates less than the 
right one [Fig. 2 (c)] . 

These results become more interesting if the individual 
flows resulting from each sphere are examined separately, 
which we do in Fig. 3 for spheres of equal radius. Here we set 
V2 to zero and consider the flow field produced by the evapo
ration of sphere 1 alone. In Fig. 3 (a) the dimensionless dis
tance d defined in (11) is 3. The streamlines again look pre
dictable. The flow of vapor goes around the second sphere to 
infinity. But when the distance between the spheres is de
creased to d = 2 [Fig. 3 (c) ], we observe the presence of an 
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FIG. 4. Flow pattern induced by a point source near a sphere obtained from 
the closed-form solution (42). Here (D - R2 )/R2 equals 5. 

infinite recirculation zone behind the nonevaporating parti
cle. (This zone is actually also present in the previous exam
ple of Fig. 3 (a) but is out of the frame of the picture.) This is 
an interesting example of the separation behavior at a 
smooth boundary, the possible occurrence of which in 
Stokes flow is well known.21 Even more interestingly, for 
distances between the spheres intermediate between those of 
Figs. 3 (a) and 3 ( c ), a closed recirculation zone behind the 
nonevaporating sphere is found in addition to the infinite 
one [Fig. 3(b)]. 

To be sure that the small recirculation is not a numerical 
artifact, we plot in Fig. 4 the streamlines of the closed-form 
solution previously given for the case of a point source near a 
sphere. The small and the infinite eddies are present in this 
limit case as well. This finding indicates that this behavior is 
rather insensitive to the radius ratio as long as the evaporat
ing sphere is smaller than the other one. In this case also 
there is an infinite recirculating region that is pushed farther 
away behind the nonevaporating sphere as the radius of the 
evaporating sphere increases. 

E 

o A 
(e) 

FIG. 5. Detail (not to scale) oftheditferent ftow regimes shown in Fig. 3 in 
the neighborhood of the back of the nonevaporating sphere. The transition 
from case (a)-(c) occurs as the distance between the spheres is increased. 
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The change between the regimes of flow shown in Fig. 3 
may be described in greater detail with reference to Fig. 5, in 
which the flow near the back of the nonevaporating sphere is 
sketched (not to scale). At relatively small distances [Fig. 
5 (a) ] there are a separation point A and a stagnation point B 
on the sphere. As the distance increases, the streamline issu
ing from A curves downward and gives rise to the streamline 
ACDE in Fig. 5 (b). This "captures" the small recirculating 
eddie behind the sphere. As the distance increases further, 
the points A and C of Fig. 5 (b) move closer and closer to
ward B and the recirculating region disappears [Fig. 5 ( c ) ] . 
At the same time the streamline issuing from the stagnation 
point D becomes steeper and steeper. 

These results indicate that one can classify the flow by 
looking at the velocity on the axis of symmetry behind the 
second drop. If the sign of the velocity does not change as one 
moves away from the sphere, the flow is of the type shown in 
Fig. 3 ( a) or 5 ( a). If the sign changes twice the flow is of the 
type shown in Fig. 3(b) or 5(b), and if the sign changes only 
once the flow is of the type shown in Fig. 3 ( c) or 5 ( c ). These 
flow regimes are sketched in the parameter space (s,d) in 
Fig. 6. In this figure, the boundaries are not exact but esti
mated on the basis of numerical results at discrete points. A 
noteworthy feature of this diagram is that for radius ratios 
smaller than about 0.4 the flow separation on the nonevapor
ating sphere does not occur as the distance between the 
spheres becomes smaller. 

In summary, we can say that the flow has two basic 
regimes and a transition regime. In the first regime the infi
nite recirculation zone is detached from the nonevaporating 
particle. This happens when the particles are far enough 
from each other. The second regime manifests itself by hav
ing the recirculation zone attached to the nonevaporating 
particle when the gap between the spheres is less than ap
proximately one radius. In the transition zone, a finite recir
culation zone behind the nonevaporating particle appears. 
However, as usually happens in Stokes flow, the fluid in this 
small recirculation region is nearly stagnant. Therefore, in 
the full problem in which the effects of the flow field on the 
phase change process are considered, it can be expected that 
this feature will have a negligible effect on the heat transfer. 

3 

2 

o~"11 
0.1 1 

d 

10 

FIG. 6. Diagram in the space of parameters s = R2/ R" 
d = (D - R, - R2 )/R" showing the occurrence of the ditferent ftow struc
tures shown in Figs. 3 and 5. The boundaries between the regions are not 
exact, but only an estimate based on numerical results at discrete points. 
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Results bearing a general resemblance to those found 
here may be found in Ref. 22 where the Stokes flow induced 
by various singularities near a caplike obstacle is considered. 

V.DRAG 

As a result of the linearity of the problem, the total force 
on each sphere is simply the sum of the forces induced by Vt 
and V2• Therefore, we may write the total forces F\ and Fz on 
spheres 1 and 2, respectively, as 

Fl = 1Tp,VtR 1F l1 (f3,a) + 1Tp,V2RzFd{3,a) (55) 

and 

F2 = 1Tp,VtR tFz1 ({3,a) + 1Tp,V2R 2F22 ({3,a). (56) 

This decomposition is reminiscent of the introduction of re
sistance coefficients in other two-sphere Stokes problems. 6.23 

I 

By using symmetry arguments it is easy to show that the 
nondimensional force coefficients Fij are related as follows: 

F Il ({3,a) = - Fn (a,[3), F21 ({3,a) = - F t2 (a,[3). 
(57) 

It is therefore sufficient to determine Fll and F21 to have a 
complete description of the forces between the two spheres. 
It would be useful to obtain another relation between 
F\2({3,a) and F 21 ({3,a) by use of the Lorentz reciproal 
theorem. Actually, this proves to be impossible to do in a 
simple way because of the net flow of momentum at infinity 
and to the complexity of the near-field flow. 

The drag formula in the bispherical coordinate system 
was given by Stimson and Jeffery! and generalized by Oguz 
and Sadhal 13 to cases involving sources and sinks. The appli
cation of this drag formula to the present case gives 

[

CO (Rn + Dn )e(n - 1/2)a _ (An + Cn)e - (n - 112){3 Dne(n + 3/2)a _ Cne - (n + 312){3)] . 
FII = 2J2 4A - 4R + r - smh {3, 

n = 1 sinh(n - ~)(a + /3) sinh(n + ~)(a + /3) 

In Figs. 7 and 8 the force coefficients Fll (/3,a) and 
F21 ({3,a) are plotted against the dimensionless distance d 
defined by (11) for various radius ratios. The forces cover a 
wide range of values but, in general, exhibit two distinct re
gimes. When the two particles are close (i.e., d is small) the 
drag force varies linearly with respect to 1/ d (note that the 
scale is logarithmic and therefore the slope is - 1). Upon 
effecting a simple kinematic transformation, it is seen that 
this limiting case closely resembles that in which two none
vaporating spheres approach each other. In this situation, if 
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1000 
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R'; II, 
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---1 
- - -10 

10'" -t-"'T"'.,....,......,.,...,.r-...-.-~,..",........,.....,....,..,..,....."T"""...,.-........ ~--, ........ ,..,...,...l! 
0.001 O.O( 0.1 10 100 

d 

FIG. 7. The "self' force coefficientF" defined by (58) as a function of the 
dimensionless distance between the spheres d = (D - R, - R 2)!R2 fordif
ferent values of the ratio R2! R ,. 
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(58) 

Ithe gap between the spheres is small compared to their radii, 
a modified lubrication approximation can be used to calcu
late the drag as shown by Jeffrey.5 To leading order he found 
FI\ and F21 to be 

(60) 

In Figs. 9(a) and 9(b), we plot the coefficients given by (58) 
and (59) multiplied by (1 - R 1/R2 )2d. For small values of 
d, according to the approximation (60), the result should be 
the constant 6. This is indeed confirmed by the figures over a 

(0000.,....---,...-----,----..,...-----,----, 

1000 
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10 
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0.0001 

RdR, 
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10'" -t-.............. .......,r-,....,.. ........ ....,...-.-................ "........,......,..,..,.......,.---. ................ ."f 
0.001 O.O( 0.1 10 100 

d 

FIG. 8. The "induced" force coefficient F2 , defined by (59) as a function of 
the dimensionless distance between the spheres d = (D - R, - R 2)! R2 for 
different values of the ratio R2! R ,. 
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FIG. 9. Plots of (a) FII and (b) F2 " scaled by the asymptotic value (60) for 
small d, i.e., closely spaced spheres. In both cases departure from the con
stant value 6 indicates the limit of validity of the approximate result (60). 
The slight irregularity in (a) is a numerical artifact. 

greater and greater range of values of d, as the evaporating 
sphere (sphere 1) becomes smaller than the other one. This 
shows that the flow outside the gap region contributes very 
little to the drag. 

The other limit is when the distance between the spheres 
is large. From Figs. 7 and 8 we see that FII and F21 decay like 
1/ d 3 and 1/ d 2, respectively. The asymptotic form of these 
force coefficients can be obtained by an asymptotic analysis 
of our expressions (58) and (59) or, more simply, by the 
method reflections. The results are 

F II =9(R2IR I )(R IID)3 (61) 

and 

F21 =6(R2IR I ) (RIID)2. (62) 

It is readily recognized that the result for F21 can be obtained 
from the standard formula of Stokes' drag using the flow 
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FIG. 10. Plots of (a) FII and (b) F2 " scaled by the asymptotic values (61) 
and (62) for large d, i.e., widely spaced spheres. Departure from the con
stant values 9 and 6, respectively, indicates the limit of validity of the ap
proximation. 

velocity VIR ~ I D 2 induced by the evaporation of sphere 1 at 
the position of sphere 2. It may be noted that, to lowest or
der, the term arising from Faxen's law vanishes because the 
Laplacian of the velocity field, due to a source, is zero. This 
circumstance increases the domain of validity of these ap
proximate expressions. It is also apparent from these results, 
and can be verified on the general formulas, that the forces 
between the particles do not satisfy the action-reaction prin
ciple, which indicates a net flow of momentum to infinity. 
This is associated with the open recirculating eddy that was 
described in the previous section. 

A close examination of Figs. 7 and 8 reveals that transi
tion between the different flow regimes shown in Figs. 5 or 6 
does not have, per se, a large effect on the interparticle forces. 

We can also compare the asymptotic value (62) ofF21 to 
drag induced by a point source. By applying the same drag 
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formula (59) and summing the series, we arrive at the fol
lowing simple expression for the drag exerted on a noneva
porating sphere by a source of strength M: 

F -~ ~ (R 2/D)3 - (R 2/D) (63) 
2 - 2 fl R2 (D /R2) - (R 2/D) 

This result is to be compared with F2 in (56) written, instead 
that in terms ofthe evaporating velocity VI' in terms of the 
source strength M = 41TR t VI' 

F =~ M (~)2 (64) 
2 2 fl R2 D 

Evidently, the two expressions coincide to leading order. It is 
obvious that the force on the source FI is zero. Figure 1 O( a) 
is a plot of the force coefficient FII multiplied by (R I / 

R 2 )(D/R\)3. The approximate result (61), which should 
apply when the spheres are far away, is indeed seen to hold to 
a greater and greater accuracy as R I gets smaller. The ap
proximation holds very well for any radius ratio as long as 
the distance between the two spheres is larger than R l' This 
is expected, because in the absence of the sphere 2, the flow 
would be completely described by a source located at the 
center of sphere 1. In Fig. lO(b) we show F21 multiplied by 
the same factor, which should equal 6, according to (62). A 
similar conclusion holds. Since in practical situations domi
nated by pairwise (as opposed to higher-order) interactions 
the average distance between the particles will be larger than 
the radius, it is expected that the above formulas would be 
useful in many such cases, 

In conclusion we show the approximate expressions val
id for a sphere at a large distance from a plane. If the sphere is 
evaporating and the plane is not, we have from (52) 

FII ~ 18(RlD)2. 

In the converse case of a nonevaporating sphere in the pres
ence of an evaporating plane we have from (33) 

(En + Dn)e - (n - 1/2)a Cn 

sinh(n - 1I2)a 

D e-(n+3/2)a_c)] + n n sinh a, 
sinh(n + 3/2)a 

(65) 
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and, when the sphere is far from the plane, 

F21=6(1 + ~R2/D). 
These last two results have been previously given by Bren
nerlo and Maude II for the closely related problem of a sphere 
moving toward a plane. 
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