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Miksis and Ting [J. Acoust. Soc. Am. 81, 1331 (1987) ] reported examples of a marked 
increase of the radius of an oscillating gas bubble as predicted by their nearly adiabatic model. 
They attributed this phenomenon to a process of rectified heat transfer into the bubble. By 
comparison with a more complete model which contains the nearly adiabatic one as an 
approximation, it is shown that the real cause of this result is instead the error inherent in the 
approximation. This error arises primarily from the failure of the approximation to capture the 
complex behavior of the gas temperature and manifests itself in a spurious growth of the mass 
of gas contained in the bubble. In addition to being more accurate, the more complete model is 
also found to be less computationally demanding than the approximate one. 

PACS numbers: 43.35.Ei 

INTRODUCTION 

In two interesting papers •'2 Miksis and Ting studied the 
forced sinusoidal oscillations of a gas bubble of radius much 
greater than the thermal penetration length in the gas. On 
the basis of the assumption that, in this limit, the gas behaves 
nearly adiabatically, they were able to obtain an integral 
equation of the Volterra type for the gas pressure. • In a nu- 
merical study of this model, they reported the unexpected 
finding that, in certain conditions, the time-averaged radius 
of the oscillating bubble could become substantially larger 
than its static value. 2 This result was puzzling and the at- 
tempt. to understand it better has motivated the present 
work. 

Our conclusion is that the radius increase reported by 
Miksis and Ting arises in reality from the inaccuracy of the 
nearly adiabatic approximation which manifests itself in a 
spurious increase of the mass of gas contained in the bubble. 
This result has been mentioned in a recent paper 3 in which 
however Miksis and Ting's numerical method was errone- 
ously questioned. Here, we present a fuller discussion. 

The above conclusion is supported by two arguments. In 
earlier papers 3-5 we have derived a comprehensive model of 
the thermo-fluid mechanical behavior of the gas contained in 
a spherical bubble. Under the same assumption of near adia- 
baticity used by Miksis and Ting, it has been shown that their 
result follows from this complete model, 3 which is therefore 
useful to judge the accuracy of the approximation. We find 
that, already at the beginning of the second or third cycle, 
the results of the approximate and of the complete models 
start diverging substantially. A second test, "internal" to the 
quasiadiabatic approximation in that it does not rely on 
comparisons with other models, consists in checking the sat- 
isfaction of a lower bound for the mass of gas contained in 
the bubble. This bound is computable within the framework 
of the quasiadiabatic approximation and is found to be gross- 
ly exceeded. 

The point of course is not that the results of Ref. 1 are 
incorrect. They are the fruit of a correct analysis and can, in 
fact, be checked by an alternative derivation. 3 Rather, we 

find that the residual error converges to zero too slowly for 
practical applications. The result, therefore, while conceptu- 
ally quite interesting in showing explicitly the effects of the 
system's memory, appears to be of limited use. 

I. MATHEMATICAL MODELS 

Following Refs. 1 and 2, in the description of the radial 
dynamics of the oscillating bubble, we ignore the compress- 
ibility of the liquid and use the Rayleigh-Plesset equation 

dt • + 2\dt/ 

--•(p(t)--Poo (t)--2c--4 • dR) (1) R R dt 

where R (t) is the instantaneous radius of the bubble at the 
time t, p(t) is the internal gas pressure, c is the interfacial 
tension, p is the liquid density, and p is its viscosity. The 
time-varying external pressure p • (t) that drives the oscilla- 
tions is taken to be 

p• (t) = Po( 1 -- ß sin cot), (2) 

where Po is the static pressure, co is the angular frequency, 
and ß is the dimensionless forcing amplitude. 

In the comprehensive model of Refs. 3-5, the internal 
pressure p is obtained from the solution of the gas energy 
equation incorporating a special explicit expression for the 
local gas velocity. Underlying this expression are the as- 
sumptions (also made by Miksis and Ting in Ref. 1 ) of the 
spatial uniformity of the gas pressure and the perfect nature 
of the gas. In view of the rather complex form of the equa- 
tions of this complete model we do not reproduce them here 
and refer the reader to the original papers. Suffice it to say 
that the version of this complete model used here exactly 
adheres to Miksis and Ting's work and furnishes therefore a 
legitimate basis for comparison. In particular, the propor- 
tionality between thermal conductivity and temperature 
used by them is also adopted. 

Following Miksis and Ting, in nearly adiabatic condi- 
tions, one may postulate the presence of a thermal boundary 
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layer adjacent to the bubble surface, and an approximate 
asymptotic solution of the gas energy equation becomes then 
possible. In this way, the following integral equation for the 
gas pressure can be obtained 3 

p.a 3y• 1+ 3•/(D• 1/2 * 4rr \ rr/ 

fo * 0. •7. ) 1 ] q•-1/2 d•7. X [p•-(y-- 1)/y( __ __ , 

(3) 

where y is the ratio of the gas specific heats and 

fo t* , , , O. • (4•r): p. (t.)R 4 (t )dt (4) 

These equations are written in dimensionless variables, de- 
noted by asterisks, to render explicit the appearance of the 
small perturbation parameter 

D = •'/coR • ,• 1, (5) 
(where • is the thermal diffusivity of the gas ) measuring the 
thickness of the thermal boundary layer with respect to the 
equilibrium radius of the bubble Ro. The other quantities 
appearing in Eqs. (3) and (4) are defined by 

P. = P/Po, R. = R/Ro, t. = cot, (6) 
where Po = Po + 2•r/Ro is the internal gas pressure at equi- 
librium. In place of (3) Miksis and Ting give the expression• 

pl•/Ya3 •1-••(--•D•) 
fo * 0. -- •7. ) 1 ] •7•-•/: d•7. X [p; (y-- 1)/y( __ , 

(7) 

which is evidently equivalent to first order in D. In the fol- 
lowing, we shall use this equation to calculatep.. The results 
deriving from Eq. (3) will be considered at the end. 

II. NUMERICAL METHOD 

A pseudospectral method, discussed in detail in Ref. 5, 
is used for the numerical solution of the complete model. Its 
accuracy can be monitored during the numerical integration 
by calculating, from the computed temperature field and 
pressure, the total gas mass within the bubble. In our pre- 
vious studies, 4'5 this quantity has proven to be a reliable indi- 
cator of the accuracy of the calculation. In all the cases con- 
sidered for the present study, the mass anomaly was never 
found to exceed 0.5%. 

To evaluate the convolution integral in (3) or (7), we 
divide the integration range into two parts. The contribution 
of the first part is evaluated by the trapezoidal rule using 
values ofp stored at equally spaced times. The second part, 
which consists of the last computed six time steps, is handled 
in a special way because of the square-root singularity. First, 
a cubic spline is fitted to the term in brackets in the integrand 
of Eq. (7) [ or (3) ] so that its value can be computed at any 
point by interpolation. Then, with this approximation, an 
adaptive Gaussian quadrature (QUADPACK routine 

qaws) with a weighting factor of s•- 1/2 is employed to effi- 
ciently account for the singularity. The final step of evaluat- 
ing the pressure at the new time level requires iteration be- 
cause of the implicitness of these formulas. A good initial 
guess is available from the value at the previous time step 
since the correction is small by hypothesis. Typically, less 
than 10 iterations are sufficient for convergence to within 
10- 2 % of the final value. We have decreased the tolerance 

to 10- 3 % and 10-4 % with negligible effects on the results. 
The number of points used for the pressure interpolation, 
200 per cycle, was sufficiently large that linear interpolation 
in place of cubic splines introduced negligible differences. A 
coarser discretization with 100 points per cycle also only had 
minimal effects. 

The numerical approach taken for the solution of the 
system formed by the radial equation (1) and the integral 
equation (7) is based on Gear's stiff integration technique 
and the globally adaptive integration scheme of Piessens et 
al., respectively, as implemented in the IMSL's routine 
ivpag. 6'7 Clearly, the computation of the convolution inte- 
gral becomes more and more time consuming as the simula- 
tion progresses. 

III. RESULTS 

In Ref. 2, Miksis and Ting present numerical results for 
a 100-/•m radius air (y = 1.4) bubble in water at 20 øC and 1- 
atm pressure. They calculate the resonance frequency from 
the purely adiabatic relation 

a,• = 3rPø(1 2a ) (8) o \ ' 
although the natural frequency computed from their model 
is actually given by • 

co•= 3ypo(1 2tr 3(7/--1 )•f•). (9) pR • Ropo 

So as to consider exactly the same cases studied by them, we 
shall neglect the O(x/D ) correction in this relation and use 
(8) to calculate coo and find coo/2rr = 32.8 kHz for Ro = 100 
/•m. They consider excitation of the bubble at frequencies 
co/coo=0.55, 1.0, and 2.0 and dimensionless forcings 
e = 0.5 and 0.75. We have repeated all their calculations but 
present results only for the most interesting ones. 

Typical of the unexpected findings that they describe is 
the case co/coo = 0.55, for which D -- 0.0176, D •/2 = 0.133, 
with a dimensionless forcing pressure amplitude e = 0.75. 
They report that "After passage through a very large ampli- 
tude region the oscillations appear to settle down to a period- 
ic oscillation about a larger mean radius." From their Fig. 7, 
it can be seen that, after a few oscillations, the radius-time 
curve loses the prominent harmonic component at 2co initial- 
ly present. At the same time, the average radius increases 
and, after a period of violent oscillations, eventually appears 
to stabilize around R/Ro•_2. The oscillations, although 
strongly nonlinear, appear to be synchronous with the forc- 
ing as if the bubble were driven close to the fundamental 
resonance rather than the first harmonic resonance. Due to 

the inverse proportionality of natural frequency and radius, 
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for a fixed value of co, a doubling of the radius would halve 
coo, thereby indeed bringing the forcing close to resonant 
conditions. A similar behavior was found for the same fre- 

quency and the weaker forcing e = 0.5. 
In Fig. 1, we plot for this case (co/coo = 0.55, e = 0.75) 

the nondimensional radius of the bubble starting from rest as 
computed by us. Following Miksis and Ting, the abscissa in 
this and the following figures is the dimensional time t divid- 
ed by the characteristic time 

•' = Rox/P/Po . ( 1 O) 
For the examples given in this paper •' = 9.99/•s. In this unit 
the (dimensionless) period of the forcing is co•'/2•r = 5.54. 
Figure 1 (a) shows the motion during the first 36 periods of 
the forcing pressure field and Fig. 1 (b) from the 81 st to the 
100th period. The results of the complete model are shown 
by the solid line while the dashed line is for the nearly adiaba- 
tic approximation (7). The two curves are close for the first 
two cycles, but substantial differences unfold as the integra- 
tion progresses. For example, it is clear from Fig. 1 (b) that 
the complete model predicts the motion to settle down to a 
regime of steady oscillation with an appreciable component 
at 2co and a relatively small amplitude. The approximate 
model, on the other hand, indicates a gradual loss of the 
harmonic component and a rapid growth of the oscillation 
amplitude in the course of the 19th-21st period just as in 
Miksis and Ting's calculation. This evolution can be appre- 
ciated even more clearly from Fig. 2, where the running 
average of the radius R (t) is shown for the first 100 cycles. 
All these results are identical to those of Miksis and Ting. 
The same behavior was found at the lower amplitude e = 0.5 
with the complete model showing a steady state with a 
strong harmonic component. 

Another example with co/coo = 1.0 (D=0.00970, 
D •/• = 0.0985, co•'/2•r = 3.05) and e = 0.75 is illustrated in 
Figs. 3 and 4. Part (a) of the first figure shows the radius 
versus time during the periods 1 to 16 of the driving, while 
part (b) is for the periods 82 to 100. As before, the solid line 
shows the results of the complete model and the dotted line 
those of the quasiadiabatic approximation. Figure 4 is analo- 
gous to Fig. 2 and shows R (t) for the first 100 periods. Even 
though the oscillation amplitudes in this case are greater 
than those of Fig. 1 (a), as found by Miksis and Ting, no 
strong transition is encountered. However, it is clear that the 
radius-time curve predicted th the approximation is signifi- 
cantly different from that of the complete model. 

The divergence of the nearly adiabatic approximation 
from the complete model from which it derives is clearly 
illustrated by these comparisons. 

We have also compared the two models in the first sub- 
harmonic region. The qualitative behavior of the nearly 
adiabatic one is unchanged except for a smaller rate of error 
accumulation due to the reduced oscillation amplitude. 

IV. DISCUSSION 

It is well known that an oscillating bubble is a "soften- 
ing" nonlinear oscillator in the sense that, in an amplitude- 
versus-frequency diagram, the resonant peaks lean toward 

489 
lower frequencies. ' ' Hence if, in the course of the oscilla- 
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FIG. 1. Comparison between the radius-time behavior predicted by the 
complete model (solid line) and the nearly adiabatic approximation (7) 
(dotted line) for o/COo = 0.55, e = 0.75, Ro = 0.1 mm. The physical prop- 
erties are those of air and water at normal temperature and pressure. The 
characteristic time unit •-, defined in Eq. (10), has the value •- = 9.99/as. 
The dimensionless period of the forcing is co•-/2•r = 5.54. (a) The motion 
during the first 36 periods of the forcing and (b) the motion during the 
periods 81 to 100. 

tions, the ratio co/coo is made to slowly increase from a small 
value, at some sharply defined points, 9 the motion will be 
attracted by a series of resonances with a strong transient 
and a considerable increase in amplitude as in Fig. 1. On the 
other hand, a radius increase starting from co/coo- 1 will 
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FIG. 2. Running average of the bubble radius versus time for the same case 
as in the previous figure according to the complete model (solid line) and 
the nearly adiabatic approximation (dotted line) for the first 100 cycles of 
the forcing. 
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FIG. 3. Comparison between the radius-time behavior predicted by the 
complete model (solid line) and the nearly adiabatic approximation (7) 
(dotted line) for a•/a•o = 1, e = 0.75, Ro = 0.1 mm. The physical properties 
are those of air and water at normal temperature and pressure. The charac- 
teristic time unit •', defined in Eq. (10), has the value •' = 9.99 ps. The di- 
mensionless period of the forcing is a•'/2•r = 3.05. (a) The motion during 
the first 16 periods of the forcing and (b) the motion during the periods 82 
to 100. 

result in a decrease of the oscillation amplitude as the de- 
scending portion of the resonant peak is gradually described, 
in qualitative agreement with Fig. 3. 

Miksis and Ting attribute the increase of the effective 
bubble radius to rectified diffusion of heat, a process that is 
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FIG. 4. Running average of the bubble radius versus time for the same case 
as in the previous figure according to the complete model (solid line) and 
the nearly adiabatic approximation (dotted line) for the first 100 periods of 
the forcing. 

well known to occur in the case of oscillating vapor bubbles 
(see, e.g., Refs. 10-13 ). We will show that this effect, while 
present, is however small and quite insufficient to account 
for their findings. Rather, these derive from an accumula- 
tion of the error introduced by the quasiadiabatic approxi- 
mation which is equivalent to a spurious increase of the mass 
rn of gas contained in the bubble as suggested in Ref. 3. (En- 
ergy, on the other hand, is conserved exactly.) The approxi- 
mation fails therefore to be uniformly valid in time. This 
conclusion can easily be established as follows. In view of the 
assumed perfect nature of the gas, the total mass contained 
in the bubble can be computed from 

•o 1 m T o y: m.-- = 3p.R 3 dy= 1, (11) 
m o T(y,t) 

where rno is the initial mass, T the local gas temperature, To 
the initial (uniform) gas temperature, and y = r/R (t). The 
quasiadiabatic approximation is derived assuming that the 
instantaneous temperature distribution in the gas consists of 
a "core" very close to the adiabatic value 

T•,• / To = œ •.• - • • / • (12) 
and a thin boundary layer across which the temperature falls 
monotonically to the undisturbed value at r -- R (t). If ( 12 ) 
is used to calculate the integral in ( 11 ), one finds 

3 (13) ma• = p•./•R .. 
Near radius minima the bubble core is hot and, if the tem- 

perature distribution is as described above, one concludes 
that T• Taa throughout the bubble. It follows therefore that 
in this situation (13) should underestimate the value of the 
integral in ( 11 ) so that 

rn•a • 1 near radius minima. (14) 

We show in Fig. 5 a graph ofrnaa for the first 36 cycles of 
the case of Fig. 1 for the nearly adiabatic approximation 
( upper curve ) and for the complete model (lower curve ). In 
view of the fact that rn•a acts as a lower bound only in the 
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FIG. 5. Graph of the quantity maa defined in Eq. (13) as given by the com- 
plete model (lower curve) and by the quasiadiabatic approximation (upper 
curve, dashed) during the first 36 cycles of the forcing for the case of Figs. 1 
and 2. Since this quantity acts as a lower bound for the mass of gas contained 
in the bubble only near the radius minima, it is plotted only during the time 
intervals when p. > 2. For the mass to be conserved, if the adiabatic approx- 
imation were valid, rnaa should stay below 1. See text. 
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FIG. 6. Graph of the quantity mad defined in Eq. (13) as given by the com- 
plete model (lower curve) and by the quasiadiabatic approximation (upper 
curve, dashed) during the first 33 cycles of the forcing for the case of Figs. 3 
and 4. Since this quantity acts as a lower bound for the mass of gas contained 
in the bubble only near the radius minima, it is plotted only during the time 
intervals whenp, > 2. For the mass to be conserved, if the adiabatic approx- 
imation were valid, mad should stay below 1. See text. 

neighborhood of the radius minima, we show this quantity 
only during the time intervals such that the pressure of the 
gas in the bubble is greater than twice the equilibrium value 
to guarantee that the bubble is indeed collapsing. (Since the 
average radius is growing according to the approximation, a 
criterion based on this variable would not be suitable to iden- 

tify the collapse phases.) It is apparent that, while in the 
early part of the calculation rnad as computed from the near- 
ly adiabatic approximation slightly exceeds 1, as the integra- 
tion progresses it rapidly grows to values well above 1. As a 
matter of fact, it is found that, in the range shown in Fig. 
1 (b), rnad oscillates around a value close to 8, consistent 
with a doubling of the bubble radius. Similar results for the 
case of Figs. 3 and 4 are presented in Fig. 6, and again the 
bound (14) is seen to be conspicuously violated by the ap- 
proximation, although by not nearly as much as in the pre- 
vious case. The same behavior is found in all the other cases 
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FIG. 7. The solid line shows the dimensionless temperature Tc/T o at the 
center of the bubble as calculated from the complete model for the first 20 
cycles of the case of Figs. 1 and 2. The dotted line is the adiabatic tempera- 
ture given by Eq. (12) computed from the value ofp, also obtained from the 
complete model. Note that the bubble center becomes hotter than the adia- 
batic estimate after the first cycle. 

FIG. 8. The solid line shows the dimensionless temperature Tc/To at the 
center of the bubble as calculated from the complete model for the first 20 
cycles of the case of Figs. 3 and 4. The dotted line is the adiabatic tempera- 
ture given by Eq. ( 12 ) computed from the value ofp, also obtained from the 
complete model. 

considered by Miksis and Ting. For example, for w/COo = 1 
(the case of Figs. 3 and 4) even at the low forcing e = 0.2, we 
find values of the order of 1.15 for mad after 15-20 cycles. 

It is seen in Figs. 5 and 6 that, although much better 
behaved, the value of mad given by the complete model also 
shows a tendency to have minimum values slightly above 1 
after a few cycles. As mentioned before, we have checked 
directly the value of the integral ( 11 ) in the complete model 
and we have consistently found errors smaller than 1% even 
after hundreds of cycles. The explanation of the phenome- 
non is therefore different, and can be understood from Figs. 
7 and 8 which show, for the complete model, the actual com- 
puted temperature Tc at the bubble center (solid line) and 
the adiabatic value (12) (dotted line). It is clear that, while 
the two curves coincide up to the first bubble collapse, the 
adiabatic temperature remains thereafter slightly below the 
actual temperature. Therefore, since Tad, although close to 
the center temperature, is slightly smaller, the quantity mad 
fails to be an exact lower bound for the mass by a few percent. 
It is clear that this circumstance in no way affects our con- 
clusions on the failure of mass conservation in the nearly 
adiabatic approximation. In the first place, the effect is small 
(as can be judged from the results of the complete model), 
while mad as given by the approximation far exceeds the 
error arising from the use of a sightly incorrect core tempera- 
ture. Second, as remarked above, the assumption that, dur- 
ing the collapse phase, T< Tad, is inherent in the approxima- 
tion, and if this inequality is incorrect, so is the 
approximation itself. 

At first sight the fact that the core temperature is greater 
than Tad is rather surprising. We have already encountered 
this behavior in Ref. 14, where we have offered an explana- 
tion that basically coincides with Miksis and Ting's rectified 
diffusion of heat. As is clear from Figs. 1 and 3, bubble oscil- 
lations are characterized by a marked asymmetry between 
the expansion and collapse phases with the former much 
longer than the latter. When the bubble expands past its 
equilibrium radius, it tends to cool with respect to the sur- 
rounding liquid and therefore heat is conducted into the gas. 
The contraction phase is much shorter and, although the gas 
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is now hotter than the liquid, the energy lost by conduction is 
less than that acquired during the preceding expansion. This 
process is enhanced by the spherical geometry which causes 
different thicknesses of the liquid thermal boundary layer in 
the two phases, just as in the case of rectified mass diffu- 
sion. •s This effect of rectified heat transfer is however clearly 
seen from our results to have a rather modest magnitude. 
Indeed, only a slight increase in the average gas temperature 
is sufficient to offset the bias in the collapsing versus the 
expanding phase heat exchanges as can be judged from the 
fact that the oscillations quickly become steady, as shown in 
Figs. 1 and 3. On a much longer time scale, a second and 
more significant rectified heat transfer process takes place. 
As the liquid surrounding the bubble gradually heats up, the 
temperature of the gas also needs to increase according to the 
same mechanism outlined above and this process can contin- 
ue basically indefinitely. We have carried out some prelimi- 
nary calculations that will be reported in due course and find 
that time scales of the order of thousands of cycles are neces- 
sary to obtain a barely detectable effect. In any event, this 
process cannot be studied with either one of the models used 
here which both assume that the heat capacity of the liquid is 
essentially infinite. 

To gain a better understanding of the reasons for the 
failure of the nearly adiabatic approximation, it is interesting 
to show the evolution in time and space of the gas tempera- 
ture, which we do in Figs. 9 to 12. Here the temperature 
calculated from the complete model is divided by the adiaba- 
tic value (12) before plotting to bring out more vividly the 
discrepancy between the actual temperature behavior and 
that assumed in the derivation of the approximation. Figures 
9 and 10 are three-dimensional graphs showing T/Tad as a 
function of both r/R (t) and time for the first 5 cycles of the 
cases with w/tOo = 0.55 and 1 studied before. It is clear that 
T/Tad very quickly becomes appreciably different from 1 
essentially everywhere. Indications of a nonmonotonic be- 
havior of the temperature field are also present. To explore 
this feature, we show in Figs. 11 and 12 sequences of tem- 
perature distributions at different instants during the first 
three cycles of the previous examples. The picture is quite 

FIG. 9. Space-time plot of the gas temperature divided by the adiabatic 
value (12) during the first five cycles of the case w/tOo -- 0.55 of Figs. I and 
2. 

FIG. 10. Space-time plot of the gas temperature divided by the adiabatic 
value (12) during the first five cycles of the case tO/tOo = 1 of Figs. 3 and 4. 

complex. In the first place, the distribution is often nonmon- 
tonic and such that even the direction of the heat exchange 
would be judged incorrectly by considering only the differ- 
ence between the core and the wall temperatures. Second, 
the region of appreciably nonuniform temperature extends 
over at least 30% of the radius, which is indeed a number of 
the order of the estimated thermal boundary layer thickness 
D 1/2 for the cases considered here, but can hardly be consid- 
ered small in the case of a sphere for which it contains 66% 
of the total volume. An interesting feature of these figures is 
also the rapidity with which the core temperature increases 
above the adiabatic value during the initial expansion phase. 

1.235 1.843 2.461 3.078 3.696 4.313 4.930 ! 5.539 

ii :11 ii; ; : • 
, •i • , •'i , i , , i , , I , , 

FIG. 11. Temperature distribution inside the bubble of Fig. 1 at 27 equally 
spaced instants during the first three cycles. The quantity plotted is the ac- 
tual temperature divided by the adiabatic value (12). 
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0.5 ' ' , i , I , I , I , I , I , I 
FIG. 12. Temperature distribution inside the bubble of Fig. 3 at 27 equally 
spaced instants during the first three cycles. The quantity plotted is the ac- 
tual temperature divided by the adiabatic value (12). 

V. ADDITIONAL COMMENTS 

Before closing, the following additional comments on 
our results may be of some interest. 

Since it has been found that the approximation is valid 
initially, we examine in greater detail the first few cycles. For 
small times one might be tempted to use the lower-order 

-- 37' in the integrals in ( 3 ) and (4) to obtain estimatep. = R. 
(to the same formal order of accuracy) the explicit relations 

37' 1 _k 37/(__D/1/2 p. R . = 4re\ •r / 

0* 3(7'--1)(0 * __ r/. ) __ 1 ]r/•-1/2 dr/. X [R. , 
(15) 

•0 t* R. . . 0. = (4•';) 2 4- 37'(t, )dt' . (16) 

For the case of Fig. 1, we compare in Fig. 13 the two implicit 
nearly adiabatic approximations (3) (thin solid line) and 
(7) (thick dashes) with the complete model (thick solid 
line) and the explicit nearly adiabatic approximation (15), 
( 16 ) (dash-and-dotted line ). The four lines are all very close 
for the first cycle. The explicit approximation however dete- 
riorates very quickly after that and already shows signs of 
transition at the 4th-5th cycle. The implicit approximations 
are very close over the time interval of this figure, although 
that of Eq. (3) is found to cause a slightly slower accumula- 
tion of the error because it predicts the transition to occur 
about five cycles later than Eq. (7). 

We can understand this result if, with an obvious nota- 
tion, we write for the moment Eq. (7) in the form 

J•I•/YR 3 = 1 + x/D •, 
and raise to the power •' to compare with (3) to find 

(17) 

2.5 

2.0 / \ 
•"x / \ I 

// \ / • I 
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0.6 

ø'øo ;o 30 

FIG. 13. Comparison of the complete model (thick solid line), the implicit 
nearly adiabatic approximations (3) (thin solid line) and (7) (thick 
dashes), and the explicit one (15) (dash-and-dotted line) during the first 
five cycles of Fig. 1. 

37' 1 -3- x/• yQ q- «y(y -- 1)D Q2 + .... (18) p.R. = 
The use of (3) in place of (7) is therefore approximately 
equivalent to dropping the O(D) term in this equation, 
which is clearly positive definite. For the same [to O( 1)] 
pressure-time history, this would then result in a smaller 
radius and therefore a somewhat smaller error. 

It is found numerically that the mass error of the nearly 
adiabatic approximation is reversible after the forcing is 
stopped. In other words, if the oscillations are calculated for 
some time and then the forcing e is set to 0, the motion be- 
comes a strongly damped oscillation around a slowly declin- 
ing average radius that goes back to the original value 1. 
Analytically this can be explained by noting that, after the 
oscillations have essentially subsided, p. --• 1 so that the inte- 
grand of (7) effectively vanishes. From that point on the 
upper limit of the integral remains therefore fixed and the 
correction to the adiabatic law decays approximately as 
t- 1/2. 

Vl. CONCLUSIONS 

We have examined the accuracy of the nearly-adiabatic 
approximation in two ways. One is a consistency check of the 
results, which shows that the approximation violates conser- 
vation of mass. The second one is the comparison of the 
bubble behavior predicted by the approximation with that 
given by a more complete model which contains it in a suit- 
able limit. The disappointing finding has been that the ap- 
proximation converges very slowly in the sense that the per- 
turbation parameter D on the smallness of which it relies 
must be very small indeed for it to be accurate. For the cases 
examined by Miksis and Ting, in which D is of the order of 
0.01, the error due to the neglect of higher-order terms very 
quickly accumulates and causes the approximation to fail 
after a short time. While this error manifests itself in a spur- 
ious increase of the gas mass, it is really caused by the failure 
of the approximation to capture the complex spatial and 
temporal behavior of the temperature field of the gas. 

From the results shown in Figs. 10 and 11, it can be 
estimated that the gas temperature conforms with that as- 
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sumed in the approximation only for about the first half- 
cycle, during which it is monotonic in space with a core value 
well predicted by the adiabatic law. Since the bubble radius 
depends essentially on a two-fold time-integral of the pres- 
sure, the calculated R (t) curve is close to that given by the 
complete model for a somewhat longer time, of the order of 
one cycle for the case of Figs. 1 and 11 and of the order of 
three cycles for that of Figs. 3 and 12. 

Thus, in conclusion, we find that the nearly adiabatic 
approximation, beyond its remarkable conceptual signifi- 
cance, is probably not a practically useful tool for most appli- 
cations. 
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