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Abstract
A number of well-known type II inhibitors (ATP non-competitive) that bind kinases in their DFG-
out conformation were tested against wild-type LRRK2 and the most common Parkinson’s
disease-linked mutation G2019S. We found that traditional type II inhibitors exhibit surprising
variability in their inhibition mechanism between wild type (WT) and the G2019S mutant of
LRRK2. The type II kinase inhibitors were found to work by an ATP-competitive fashion against
the G2019S mutant, whereas they appear to follow the expected non-competitive mechanism
against WT. Since the G2019S mutation lies in the DXG-motif (DYG in LRRK2 but DFG in most
other kinases) of the activation loop, we explored the structural consequence of the mutation on
loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest
that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen
bonds, leading to an increase in the conformational barrier between the active and inactive forms
of the enzyme and a relative stabilization of the active form. The conformational bias toward the
active form of LRRK2 mutants has two primary consequences: 1) the mutant enzyme becomes
hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being
“locked” into the activated state and 2) the mutation creates an unusual allosteric pocket that can
bind type II inhibitors but in an ATP competitive fashion. Our results suggest that developing type
II inhibitors, which are generally considered superior to type I inhibitors due to desirable
selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant.

Parkinson’s disease (PD) is a neurodegenerative disorder that affects over 1 million
Americans and more than 60,000 patients are newly diagnosed each year. Loss of
dopaminergic neurons in a part of the brain called the substantia nigra leads to lowered
production of dopamine and the brain’s ability to control movement is compromised (1-4).
Mutations in several genes have been genetically linked to PD in recent years. Among them,
leucine-rich repeat kinase 2 (LRRK2) has emerged as a highly relevant gene to PD
pathogenesis (5-7). At least 40 mutations in LRRK2 have been identified in the most
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common familial forms of PD, some sporadic forms of PD, and have been associated with
typical idiopathic, late-onset PD (8-12).

LRRK2 is a large, multi-domain protein that encodes two distinct enzymes: a protein kinase
and a GTPase (13-16). The most prevalent mutation is G2019S, which demonstrates
increased kinase activity, is correlated with increased neurotoxicity. In recent studies,
LRRK2 inhibitors have been shown to protect dopaminergic neuron loss in PD animal
models (17-25), suggesting that kinase activity of LRRK2 plays a critical role in the
pathogenesis of PD. Several type I kinase inhibitors that are capable of targeting the ATP
binding hinge of the LRRK2 kinase in its active form (DYG-in) have been described but few
mechanistic studies have been carried on type II (DYG-out) inhibitors that target an inactive
conformation of the kinase.

The structural rearrangement needed for binding type II inhibitors involves movement of the
activation loop bearing a conserved DXG motif (DFG in most kinases but DYG in LRRK2),
where Asp and Phe/Tyr exchange positions (called as DXG-flip) that inactivates the kinase
(26-31). G2019S is immediately adjacent to this bipositional switch, suggesting that it may
directly affect the activation status of LRRK2. In this study, we test several type II kinase
inhibitors against wild-type LRRK2 and the PD-linked mutant G2019S. While most of these
molecules are shown to inhibit the WT enzyme in an ATP noncompetitive manner,
suggesting binding to a DYG-out state of the enzyme, the same inhibitors appear to block
the G2019S mutant by an ATP competitive mechanism.

In order to understand this unexpected and counterintuitive observation, we carried out
temperature dependent kinetic studies, metadynamics simulations (32-34), and induced-fit
docking. Metadynamics simulations support these experimental findings, suggesting that the
mutation not only leads to a high-energy barrier for the activation loop transition but also
preferentially stabilization the DYG-in state. The free energy surfaces and modeled
structures from the metadynamics simulations rationalize the observations and provide
mechanistic insights. Induced fit docking of type II inhibitors against mutant LRRK2 using
the DYG-in state explains the atypical ATP competitive inhibition observed in the
experimental studies.

Materials and Methods
Kinase assay

Truncated wild-type LRRK2 (residues 970-2527) and mutant G2019S (Invitrogen, Carlsbad,
CA) expressed in baculovirus system were used in this study. The kinase assay for
LRRKtide (RLGRDKYKTLRQIRQ) (American Peptide, Sunnyvale, CA) phosphorylation
was conducted in buffer containing 20 mM HEPES (pH 7.4), 50 mM NaCl, 10 mM MgCl2,
1 mM DTT, BSA 0.5 mg/ml, 1 mM beta-Gly-PO4, LRRKtide, ATP and [γ-33P]-ATP
(Perkin Elmer, Boston, MA). Detailed methodology of the assay and the analysis of data
were published previous by Liu et al (35). The reactions were conducted in duplicate,
initiated by the addition of 6 nM truncated LRRK2, and incubated at room temperature for
120 min. The reactions were stopped by the addition of 20 mM EDTA and the mixture was
transferred to a multiscreen PH filtration plate (Millipore, Billerica, MA) and washed six
times with 75 mM H3PO4. The plate was dried, filters were removed, and the samples were
analyzed with a scintillation counter. Background reactions were conducted in the absence
of LRRK2. In all cases, reaction progress curves for production of phospho-LRRKtide were
linear over at last 60 minutes and allowed calculation of initial velocities.
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Temperature dependent kinetics
We monitored kcat at various temperatures during LRRK2 catalyzed phosphorylation both
by WT and G2019S. The experiment yields enthalpy, entropy, and free energy values for
these enzyme forms. The experiments were carried out using a 1570 amino acid fragment of
LRRK2 (residues 970-2527, which retained full catalytic activity. According to transition
state theory, kcat (kc)depends on temperature as equation 1:

(1)

where ΔG‡, kB, h, and R are the Gibbs free energy of activation, the Boltzmann, Planck, and
gas constants, respectively. The rearranged equation gives:

(2)

where ΔH‡ and ΔS‡ are the enthalpy and entropy of activation, respectively. A linear plot of
ln(kch/kBT) vs 1/T has a slope of − ΔH‡/R and a y-intercept of ΔS‡/R, respectively.

Modeling of LRRK2 kinase domain and docking
The LRRK2 kinase domain, between residues 1859-2138, was modeled using Modeller
v9.11 (36-39). Briefly, the main variables in homology modeling are template selection and
sequence alignment between the target and the template. Modeling details have been
published previously and described in details in reference 35 but briefly, B-raf kinase with
33% sequence identity to the LRRK2 kinase domain, was used as a template for homology
modeling since this enzyme had the highest sequence similarity with LRRK2 around the
active site region and the ATP binding hinge compared to the other kinases. In addition, B-
raf and LRRK2 inhibitors could cross-inhibit each other supporting our choice of template
selection for modeling (details to be published elsewhere). Recently, kinase domain of
Roco4 from Dictyostelium discoidium (PDB code: 4F0G), a closely related member of the
LRRK2 family, was published and we constructed a model of LRRK2 with this as a
template and compared with our previous model. The comparison of the two LRRK2
models revealed that the overall C-alpha atoms RMSD was less than < 1.3Å.

Docking of the ATP molecule in the binding site was carried out using Glide v2.2 (40),
which treats the receptor rigidly. Docking of type II inhibitors were carried out using the
Induced Fit Docking (IFD) (41) protocol implemented in the Schrödinger suite (41). Briefly,
in the first stage of IFD 20 initial poses are generated using Glide with a softened potential
to allow for clashes with the receptor. For each of the top 20 poses from the initial softened-
potential docking step, a cycle of protein side chain prediction and full residue minimization
is performed using Prime to generate 20 induced-fit receptor structures (42). All residues
having at least one atom within 5 Å of any atom from the 20 ligand poses are refined.
Finally, the ligand is re-docked using Glide with default settings into each induced-fit
receptor structure and a composite score that accounts for the protein/ligand interaction
energy (GlideScore) and the total energy of the system (Prime energy) is used to rank the
induced-fit structures.

Modeling of the active and inactive conformations of LRRK2
Starting with the homology model of the active form of WT LRRK2 described above, the
DYG-out state of the activation loop between residues 2015-2027 was modeled using Prime
v2.0 (details in Supporting Information). The lowest energy structure with a DYG-out
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conformation was chosen for further modeling experiments. The protein domain motion
server HingeProt (43) was used to generate the “open” conformation of the kinase using the
Prime generated DYG-out structure as the input model, where the N-terminal β-sheet and C-
helix were repositioned resulting in disruption of the salt-bridge between K1096 and E1920.

The PD linked mutation G2019S was modeled both in the DYG-in (closed) and DYG-out
(open) conformation using the mutagenesis script of PyMOL (44) and the resulting structure
was subjected to 2000 cycles energy minimization using Desmond v3.0 (45). In order to
determine if the modeled structures were thermally stable, short MD simulations (5 ns) of
the two conformational states of the kinase (WT and G2019S) described above were carried
out using the Desmond v3.0 and the OPLS_2005 force field (46) (details in Supporting
Information). The model structures for LRRK2 WT and G2019S were found to be thermally
stable over the course of the short simulation with RMSD of C-alpha atoms less than 1.2 Å
from the starting structure.

Metadynamics simulations
Metadynamics (47-57) simulations were carried out with Desmond v3.0 using two collective
variables (CVs). In order to test for robustness of the simulations and choice of CVs, we
chose two independent pairs of CVs (one pair with distances and the other pair with
torsions) and ran separate simulations. We chose the distance between the center of mass of
a collection of atoms in the β-sheet (residues 1878-1906) and the N-terminal C-helix
(residues 1915-1928) as the first CV denoted [s]. For the second CV denoted [z], we chose
and the center of mass of a subset of residues in the activation loop (Y2018, A2021, C2024,
R2026, and M2027) and the center of mass for the ATP binding hinge comprised of residues
(M1947, L1949, and K1952) . The distance between the N-terminal β-sheet domain and C-
helix in the N-terminal domain describes the opening and closing motion of LRRK2 around
the hinge region. The center of mass of the activation loop is the primary degree of freedom
of interest for this study because it directly involves the transition from active to inactive
form.

For the torsion CVs, we chose Ramachandran ϕ/ψ dihedrals of residue 2019 (Gly in WT and
Ser in the mutant) in the activation loop. These torsions are known to undergo substantial
changes in the transition form DFG-in to DFG-out in other kinases. See Figure S1
(Supporting Information) and Table S1 (Supporting Information) for an illustration of the
location of these CVs on the LRRK2 modeled structure.

The default equilibration protocol in Desmond was run before the metadynamics
simulations, which relaxes the system in a gradual way with progressively weaker harmonic
restraints and heating of the system from 0 K to 300 K. The total length of each production
simulation was 250 ns at a temperature of 300 K and pressure of 1 atm. A Gaussian biasing
potential with a height of 0.03 kcal/mol was injected at 0.09 ps intervals throughout the
simulation and the free-energy surface (FES) was reconstructed from these Gaussians.
Multiple simulations were carried out using different initial activation loop conformations.
At the end of 250ns, all simulations converged and the FES constructed using these
simulations were virtually identical. Clusters of conformations corresponding to the various
energy minima observed in FES were extracted and were analyzed for structural details.

Results
Inhibition of LRRK2 by type II Inhibitors

Type II (or DFG-out) inhibitors are known to bind kinases at an allosteric site that exists
when the kinase switches to an inactive DFG-out form. The advantage of type II inhibitors is
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that they bind noncompetitively with ATP and therefore have the potential advantage of
avoiding selectivity problems arising from binding to the highly conserved ATP pocket in
all kinases. Four known type II inhibitors of other kinases (sorafenib, ponatinib, bosutinib,
and imatinib) were tested against LRRK2 for affinity and inhibition mechanism (Table 1,
Figure 1) and (Figure S2, supporting information). In addition, a type I inhibitor (GSK3-
XIII) was tested as a control (Table 1). Inhibition was measured in a dose-response manner
with WT and G2019S for each of the five compounds at concentrations of LRRKtide and
ATP around their Km values. The dependence of initial velocity on inhibitor concentration
followed the simple inhibition expression in the general form: vinhib = vcontrol/(1 + [I]/Ki,app).
All compounds except sorafenib behaved as classic inhibitors with no sign of partial
inhibition and no need of including higher-order terms to attain good data fitting (Figure 1)
and (Figure S2, Supporting Information). Partial inhibition was observed for sorafenib and it
is more evident with the mutant G2019S at higher [ATP]. The determined IC50 values are
summarized in Table 1.

The mechanism of inhibition of the four DYG-out inhibitors was studied and data were
analyzed using the methods of replots as described in detail previously (58). Briefly, initial
velocities of LRRK2-catalyzed LRRKtide phosphorylation were measured as a function of
inhibitor concentration [I] at varied ATP concentrations and at a fixed LRRKtide
concentration. The shape of replots of (kcat)ATP vs. [I] and (kcat/Km)ATP vs. [I] were used to
determine the inhibition mechanism. As expected based on their mechanism of action with
their targeted kinase (see Table 1), ponatinib, sorafenib, and imatinib show ATP non-
competitive inhibition toward WT (Table 1). Surprisingly however, ponatinib, sorafenib,
and imatinib inhibit the G2019S mutant via an ATP competitive mechanism (Table 1,
Figure 1 and Figure S2, Supporting Information). The atypical switching of the mode of
action for these three compounds motivated us to pursue kinetic and structural studies to
elucidate the origin of this behavior. Bosutinib was the only exception that showed ATP
competitive binding toward both WT and G2019S (Table 1 and Figure S2, Supporting
Information). This is not surprising since there is precedence for bosutinib being able to bind
both DFG-in and DFG-out states of cAbl (59).

Temperature dependent kinetics
We monitored kcat at various temperatures during LRRK2-catalyzed phosphorylation both
by WT and G2019S to determine enthalpy, entropy, and free energy values for these enzyme
forms (see Methods). Here we chose two peptides, LRRKtide and LRRKtideS to evaluate
activation parameters associated with both chemical transfer step and product release step.
Previously, we reported that G2019S has increased activity in catalyzing both peptide
substrates compared to WT and the rate-limiting steps of the process governed by kcat are
different for these two peptides— product release step is slow for LRRKtide and chemical
transfer is slow for LRRKtideS. The temperature dependencies of kcat for LRRKtide
phosphorylation catalyzed by both wild type and the mutant are shown in Figure 2 and
activation energy parameters for phosphorylation of both LRRKtide and LRRKtideS are
summarized in Table 2. These results show that G2019S has a lower energy barrier to
activation relative to WT in both reactions, consistent with its increased activity. The
relatively small difference in free energy between WT and the mutant G2019S are
associated with unexpected significant changes in enthalpy and entropy, suggesting
formation of new hydrogen bonds for the mutant G2019S during the steps of chemical
transfer and product release.

Structural models of WT and the G2019S mutation
The observation that the same inhibitor targets WT LRRK2 and the G2019S mutant by
different mechanisms suggests that the mutation in the DYG-motif of the activation loop
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could have an effect on the ability of this loop to switch between active and inactive
conformations. A homology model (Figure S3a, Supporting Information) of the LRRK2
kinase domain between residues 1859-2138 was constructed using B-raf (33% sequence
identity) as a template and compared with the x-ray structure of the LRRK2 homolog Roco
4 kinase. Our model based on B-raf and the model based on Roco 4 kinase were found to be
virtually identical with less than 1.3Å root mean squared deviation (RMSD) Cα atoms. In
order to investigate the robustness of the homology model, we compared modeled structures
predicted from four homology modeling programs (Modeller, Prime, SwissModel, and
Rosetta) (41, 60-62) and found that the root mean squared deviation (RMSD) of Cα atoms
was less than 1.2 Å for all pairwise comparisons. The model of LRRK2 built with Modeller
v9.11 (Figure S3, Supporting Information) shows a typical kinase domain composed of an
N-terminal N lobe and a C-terminal C lobe forming an ATP and substrate-binding active site
at the interlobe cleft (Figure S3b, Supporting Information). The activation loop spans
residues 2016-2036 and is modeled in the DYG-in conformation. Spatial comparison of key
residues in the LRRK2 model with high-resolution x-ray structures (previously published in
ref 35) of other kinases in the catalytic site residues, hinge region and the conserved
hydrophobic spines described by Taylor and co-workers indicate that the model has no large
errors associated with it.

Using the WT DYG-in model generated by Modeller as a starting point, we introduced the
G2019S mutation using PyMOL and energy minimized the structure using Desmond (45).
The energy-minimized structure of the G2019S mutant when subjected to molecular
dynamics (MD) thermal equilibration was found to be stable in water during the course of 5
ns simulation with a maximum backbone RMSD < 1.3 Å over the simulation. In addition,
the mutation was well accommodated at this site. In the initial model, S2019 was found to
make hydrogen bonds with R1918 and E1920. Similar observations were made by
Wittinghoffer and colleagues based on their model of LRRK2 constructed using the Roco4
(63). In the Roco4 homolog, the G1179S mutation in the activation loop (the side chain of
the structurally equivalent serine) was found to make a hydrogen bond with R1077 (63) .
However, upon thermal relaxation of the model using short MD simulations (5 ns, see
Materials and Methods for details), the relaxed structure retained only the hydrogen bond
between S2019 and E1920 after equilibration.

In order to generate the LRRK2 structure in the inactive conformation we carried out loop
sampling between residues 2016-2036 using Prime v2.0 (64). We saved 50 structures from
the loop sampling and chose the lowest energy structure with the activation loop in the
DYG-out conformation (Figure 3a). Structural overlay and comparison of the ϕ/ψ angles of
the DYG motif of the modeled LRRK2 (DYG-in and out) with x-ray structures of other
known kinases (Table S1, Supporting Information) indicate that the model torsion angle
values are within acceptable range for this motif (Figures 3b and 3c).

Free energy surface for activation loop transition
In order to determine the energy barrier between the active and inactive states of the
activation loop, we used an enhanced sampling molecular dynamics method called
metadynamics with two collective variables (CV) to describe the transition of the loop
between DYG-in and DYG-out states (see Materials and Methods for details on the
collective variables). Multiple metadynamics simulations starting with slightly different
activation loop conformations were carried out for a total of 250 ns for both WT LRRK2
and the mutant G2019S under identical simulation conditions. Free energy surfaces (FES)
for these simulations are shown in Figure 4. For WT, the FES shows two low energy wells
(blue) corresponding to the active and inactive conformations with a small barrier between
the DYG-in and DYG-out states (Figure 4). However, the FES for G2019S shows a much
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larger energetic barrier between the active and inactive forms, with an energetic preference
for the active form (Figure 5). The increased stabilization of the active state in G2019S
relative to WT appears to come from an enhanced hydrogen bonding network observed with
the serine and the reduced conformational flexibility of the activation loop. As a robustness
check and to determine the sensitivity to the choice of CVs, we carried out a second set of
metadynamics simulations using the ϕ/ψ Ramachandran angles of G2019 (WT) and S2019
(G2019S) as CVs and find similar results to those observed with the distance CVs described
above. The FES for the torsional CVs is shown in Figure S4 (Supporting Information).

Induced fit docking of type II inhibitors to DYG-in and DYG-out conformations of LRRK2
Finally, to understand the structural details of a type II inhibitor binding to an active form of
mutant LRRK2, we carried out Induced Fit Docking (IFD) calculations on the inhibitors
using both DYG-in and DYG-out structures of LRRK2 (details in Materials and Methods
and Supporting Information). We docked the four type II inhibitors in this study (ponatinib,
sorafenib, imatinib, and bosutinib) to the DYG-out structure of WT LRRK2 and the DYG-in
structure of the G2019S mutant. As seen in Figure 6 (right panel), the ligands docked to the
WT DYG-out conformation all adopt a traditional binding mode for type II kinase
inhibitors. However, for the G2019S mutant, ponatinib, sorafenib, and imatinib all make a
hinge interaction (Figure 6, left panel) . The IFD scores are reported in Table 1 and the key
interactions made by the inhibitors are shown along with a ligand-interaction diagrams
(Figure S5, Supporting Information).

Discussion
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known
genetic cause of PD, with the most prevalent LRRK2 mutation (G2019S) estimated to be
associated with 5%–6% of familial PD and 1%–2% of idiopathic cases in populations of
European descent (11, 65-85). Multiple reports have indicated that the mutation leads to a
hyperactive kinase, which might be directly linked to PD pathology; therefore, inhibition of
mutant LRRK2 represents an attractive therapeutic strategy in the PD field.

A large number of ATP competitive type I inhibitors of LRRK2 have been reported from
screening studies and recently reviewed (21, 86, 87). In addition, homology models of
LRRK2 built by other research groups have been used successfully to drive SAR studies for
ATP-competitive inhibitors (88). However, there is little discussion about modeling of ATP
non-competitive type II inhibitors of LRRK2 that bind to the DYG-out state. In this study,
we used a number of well-known type II (DFG-out) inhibitors of other kinases and test them
against LRRK2 (both WT and the G2019S mutant). Experimental findings of the inhibition
mechanism revealed an unexpected observation that type II inhibitors work by an ATP
competitive mechanism against G2019S whereas they behave as expected (noncompetitive
inhibitors) against WT. In addition, temperature-dependent kinetic studies conducted under
the condition of kcat revealed that the G2019S mutant is more entropically favorable than
WT (smaller negative ΔS for the mutant than WT) suggesting a greater population of the
enzyme maybe existing in its active form for the mutant compared to the WT.

In order to explain the inhibition mechanism and observed kinetics, we built homology
models of LRRK2 in the DYG-in (active) and DYG-out (inactive) forms for both WT and
G2019S. The models revealed the ability of the S2019 side chain in the mutant to make
hydrogen bonding interactions with E1920 that could potentially explaining the increased
stability for the DYG-in state and the observed kinetic behavior. Similar observations have
been made by Wittinghofer and co-workers with the recent x-ray structure of LRRK2
homolog roco4 (63).
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To gain further insights into the consequence of this mutation on the energetics of the
activation loop, metadynamics simulations were run to determine the free energy surface
(FES) associated with the activation loop transition in WT and G2019S. The simulations
revealed significant differences in the FES of the activation loop between WT and G2019S.
The FES for WT shows two nearly equienergetic basins for the DYG-in and DYG-out states
(numbered 1, 2 in Figure 4) along with a relatively low-energy transition path between the
two states. Similar analysis of the FES for G2019S shows that the DYG-out form is less
prominent (shallower well) when compared to the DYG-in state (Figure 5) and there is a
high-energy barrier that separates the two states. Analysis of the structure in the DYG-in
state of G2019S suggests that the side chain of S2019 participates in a stable hydrogen bond
with E1920 (Figure 5), which is not present in WT and contributes to the observed increased
barrier for transition (Figure 4 ).

In addition, G2019 in WT has more backbone conformational flexibility as compared with
S2019 in the mutant. The loss in side chain and backbone entropy of the mutant is
accompanied by unfavorable changes in the enthalpy, suggesting newly formed specific
interactions upon the mutation. In order to measure the change in conformational torsional
freedom upon mutation (entropic changes), we carried out metadynamics simulations using
the torsion angles (ϕ/ψ) of G2019 (WT) and S2019 (G2019S) as collective variables (Figure
S4, Supporting Information). Comparison of the FES of WT and G2019S mutant indicates
that the mutant shows a large reduction in torsional conformational space accessible to the
loop indicating that this mutation would lower the entropy of the loop and is in agreement
with the temperature-dependent studies (Figure 2 and Table 2).

The combination of enzyme mechanism studies, temperature dependent kinetics, and
metadynamics simulations suggests G2019S may not easily switch to a DYG-out form and
yet is able to bind traditional type II DFG-out inhibitors. To predict the binding mode for
these compounds, we carried out Induced Fit Docking calculations with four type II
inhibitors (Table 1) against WT (DYG-out state) and G2019S (DYG-in state). The docking
calculations reveal that the common feature between the two forms is the similar orientation
of the ATP-binding hinge region and major differences lie in the allosteric pocket. It is
therefore reasonable to expect that the number of interactions made by the inhibitor with the
hinge as opposed to the allosteric pocket would have a major impact on the inhibition
mechanism. The type II inhibitor sorafenib, which makes no H-bond interactions with the
hinge region (Figure 6 and Supporting Information Figure S5) was effective against WT but
was poorly effective against the G2019S mutant (Table 1). In addition, in the DYG-out state,
sorafenib makes an aromatic stack with Y2018 and an additional hydrogen bond with the
backbone L1885, which are both absent in the DYG-in form of the mutant. This contributes
to the potency of the inhibitor towards WT enzyme but not the mutant. The type II inhibitor
bosutinib, on the other hand, makes three hydrogen bond in the hinge region and very few
interactions in the DYG-out pocket (Figure S5, Supporting Information). This also explains
why bosutinib is equally potent against WT and the G2019S mutant and inhibits both
enzyme forms by an ATP competitive mechanism (Table 1 and Figure S5, Supporting
Information). Ponatinib is capable of making one hydrogen bond in the hinge region and a
number of hydrophobic interactions in the DFG-out pocket of WT. Structural comparison of
docked structures of ponatinib with WT and G2019S reveal that in both cases ponatinib in
the allosteric pocket makes strong aromatic stacking interactions with tyrosine residues.
Y1992 is involved in this aromatic stacking in WT but in case of the mutant, Y2018
occupies the same virtual position as Y1992 making nearly identical set of interactions. This
makes ponatinib not only exceptionally potent against WT but also retain fair amount
potency against the mutants due to hinge interactions (Table 1 and Figure S5, Supporting
Information). A control type I kinase inhibitor GSK-3-XIII showed nearly identical potency
against WT and the G2019S mutant, consistent with expectations that it binds to the DYG-in
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conformation of LRRK2. Similar observation were made by Gray and others that have
described ATP-competitive inhibitors of LRRK2 that target the hinge region of the kinase
(21).

This model emerging from the combination of experimental and computational studies
suggests that the G2019S mutant stabilizes the DYG-in conformation, which has an
allosteric pocket that cannot fully accommodate inhibitors that are DFG-out pocket
dominant binders (sorafenib for example). As such, type II inhibitors that cannot make
sufficient hinge interactions with the kinase lose considerable potency when binding to
G2019S. Interestingly, type II kinase inhibitors with significant hinge-binding
characteristics, such as bosutinib, are able to bind G2019S in an ATP competitive fashion
and show nearly identical potency against WT and G2019S. This dual characteristic of the
unique allosteric pocket of G2019S opens up the possibility of a new design strategy to
generate G2019S specific inhibitors, since traditional type I kinase inhibitors tend to lack
selectivity and type II inhibitors were found in this work to either not bind to G2019S or to
adopt an ATP-competitive binding mode.

While the x-ray structure for LRKK2 is yet to be determined (a closely related roco kinase
domain is now available), enzyme mechanism studies and molecular modeling have
provided significant insights into the nature of LRRK2 and the PD-linked mutation G2019S.
With further studies, possibly including x-ray crystallography or long timescale molecular
dynamics simulations, it may eventually be possible to understand the nature of the
allosteric pocket in the G2019S mutant enzyme and develop highly selective inhibitors.
However, given the unique insights gained in this work with traditional type II kinase
inhibitors binding to the G2019S mutant in an ATP-competitive way, it is conceivable that a
new class of inhibitors (e.g. type III) will be needed to gain the desired affinity and
selectivity to target G2019S in the pursuit to treat Parkinson’s disease. The presence of two
exposed cysteine residues (C2024 and C2025) close to the ATP binding site (see supporting
information) opens up one such possibility of developing covalent inhibitors for this
enzyme. Recent ab initio binding simulation of kinase inhibitor complexes by D.E Shaw and
co-workers have revealed previously ligand unprecedented binding sites within the C-
terminal of kinases (45). It is conceivable that similar sites can be discovered on LRRK2 as
well that can form hot-spots for type III inhibitor design.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Inhibition study of wt LRRK2 catalyzed phosphorylation of LRRKtide by Ponatinib. A:
Plot of initial velocities vs [ATP] at [Ponatinib] = 1 (●), 0.3 (엯), 0.1 (▾), 0.04 (▿), 0.1 (∎),
and 0 μM (□) all at a fixed LRRKtide concentration of 50 μM. B & C: Ponatinib
concentration dependencies of (kcat)ATP and (kcat/Km)ATP apparent values derived from
analysis of the data of panel A. (b) Inhibition study of the G2019S mutant catalyzed
phosphorylation of LRRKtide by Ponatinib. A: Plot of initial velocities vs [ATP] at
[Ponatinib] = 8 (●), 4 (엯), 2 (▾), 1 (▿), 0.5 (∎), and 0 μM (□) all at a fixed LRRKtide
concentration of 50 μM. B & C: Ponatinib concentration dependencies of (kcat)ATP and (kcat/
Km)ATP apparent values derived from analysis of the data of panel A.

Liu et al. Page 15

Biochemistry. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Temperature dependencies for WT LRRK2 and mutant-catalyzed LRRKtide and LRRKtideS

phosphorylation. The Eyring plots show kcat dependence of temperature for WT LRRK2
(a), the mutant G2019S (b). The kcat was the average of four independent measurements.
The data from these plots are summarized in table 1.
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Figure 3.
(a) Homology of model of LRRK2 with the activation loop in the DYG-out conformation
generated using Prime. (b) superposition of the DYG-in model of LRRK2 with x-ray
structures of cABL, cKIT, Aurora, B-raf, EPHA3, SRC, LCK and MK14 in their DFG-in
conformation. The overall RMSD between any two pairs of structures is < 1.9Å and the
DYG-in of LRRK2 (shown in green) model is conformationally very similar to these x-ray
structures. (c) superposition of the DYG-out model of LRRK2 (shown in green) generated
using Prime with x-ray structures of cABL, cKIT, Aurora, B-raf, EPHA3, SRC, LCK and
MK14 in their DFG-out conformation. The overall RMSD between any two pairs of
structures is < 2.0Å and the DYG-out of LRRK2 model is conformationally very similar to
these x-ray structures.

Liu et al. Page 17

Biochemistry. Author manuscript; available in PMC 2014 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
(a) Representative free energy surface (FES) generated from 250 ns metadynamics
simulation of WT LRRK2 generated by following the opening and closing of the enzyme
involving the ATP binding β-sheet domain and C-helix as the first collective variable (z) and
the motion of the center of mass of the activation loop as the second collective variable (s)
as the kinase switches between active and inactive form. The FES shows that opening and
closing motion of the enzyme occurs unhindered and the activation loop can switch between
the active and inactive form easily (a contagious low energy path connects the two
conformations forms). (b) Snapshots of structures extracted from local clustering of
conformations within the simulation corresponding to the three local minima observed
during the course of the simulation are shown here. The states 1 and 2 correspond to the
active (DYG-in) and inactive (DYG-out) states of the enzyme. An intermediate metastable
transition is observed, where K1906 makes a shared hydrogen bond with both E1920 (C-
helix) and D2017 (DYG-motif).
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Figure 5.
(a) Representative free energy surface (FES) generated from a 250 ns metadynamic
simulation run of G2019S mutant generated by following the opening and closing of the
enzyme involving the ATP binding β-sheet domain and C-helix as the first collective
variable (z) and the motion of the center of mass of the activation loop as the second
collective variable (s) as the kinase switches between active and inactive form. The
simulations were carried out under identical conditions as that of the WT LRRK2 described
above. The FES plot shows that there is a high energy barrier that separates the active and
inactive form of the kinases indicating that higher amount of energy is required for the
mutant to switch between active and inactive conformations relative to WT. However,
independently both the active and inactive form of the enzyme can switch between open and
closed forms. (b) Snapshots of structures extracted from local clustering of conformations
within the simulation corresponding to the three local minima are shown here. In state 1, the
G2019S mutation results in a side-chain of E1920 and S2019. This offers additional stability
to this state. In state 2, the side-chain of S2019 makes a hydrogen bond with the backbone of
D2017 and appears to be a metastable state. A transient stable intermediate state 3 is
observed in the simulation where the side chain of S2019 makes a hydrogen bond with
backbone of Y2018.
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Figure 6.
(left panels) Structural representations of induced fit docked conformations for the known
DFG-out inhibitors bosutinib, imatinib, sorafenib and ponatinib on the DFG-in conformation
of G2019S mutant of LRRK2. (right panels) Structural representations of induced fit docked
conformations for the known DFG-out inhibitors bosutinib, imatinib, sorafenib and
ponatinib on the DFG-out conformation of WT LRRK2. In this figure, only few residues are
labeled to preserve clarity. Figure S5 in Supporting Information accompanies this figure
showing all protein inhibitor interactions.
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Table 1

Docking score and Ki,app values of DYG-out inhibitors of LRRK2

Compounds Dominant Binding mode
to WT LRRK2

Ki,app, μM IFD Scores

WT G2019S WT G2019S

Ponatinib DFG-out + hinge 0.031 ± 0.004 NC 0.2 ± 0.03 C −528.6 −525.2

Sorafenib DFG-out 0.7 ± 0.3 NC 9.7 ± 3.2 C −523.2 −517.35

Bosutinib Hinge 0.3 ± 0.02 C 0.2 ± 0.02 C −525.8 −525.1

Imatinib DFG-out + Hinge 5.1 ± 1.4 NC 5.6 ± 0.4 C −515.2 −513.5

GSK3-XIII Hinge 0.1 ± 0.01 0.1 ± 0.01 −520.4 −520.3

C → competitive inhibition, NC → Non-competitive inhibition, IFD → Induced fit docking
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Table 2

Activation energy parameters of kc for LRRK2-catalyzed LRRKtide phosphorylation

LRRK2 ΔG‡ , kJ ΔH‡, kJ aTΔS‡, kJ

WT −75.0 ± 0.1 −63.4 ± 4 11.6 ± 4.1

G2019S −73.8 ± 0.1 −69.8 ± 6.7 4.0 ± 1

aT = 298 K
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