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Abstract
Purpose – This paper aims to discuss multilevel modeling for longitudinal data, clarifying the
circumstances in which they can be used.
Design/methodology/approach – The authors estimate three-level models with repeated measures,
offering conditions for their correct interpretation.
Findings – From the concepts and techniques presented, the authors can propose models, in which it is
possible to identify the fixed and random effects on the dependent variable, understand the variance
decomposition of multilevel random effects, test alternative covariance structures to account for
heteroskedasticity and calculate and interpret the intraclass correlations of each analysis level.
Originality/value – Understanding how nested data structures and data with repeated measures work
enables researchers and managers to define several types of constructs from which multilevel models can be
used.
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1. Introduction
Regression models for longitudinal data are very useful when the researcher wishes to study
the behavior of a given phenomenon in the presence of nested data structures with repeated,
or longitudinal, measures.

While in nested structures of clustered data certain explanatory variables do not present
variation between observations (representing a level of analysis) coming from a given group
(representing another level of analysis), in data structures with repeated measures there is
also the temporal evolution, a fact that enables the researcher to investigate the individual
reasons that may lead each of the observations to present different behaviors of the
dependent variable, for the same group or for distinct groups, over time (Fávero, 2010;
Martins & Terra, 2015; Misangyi, Lepine, Algina, & Goeddeke, 2006).
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For example, certain school data that does not vary among students, such as location and
size, can be compared with data from other schools; and certain student data, such as sex
and religion, that do not vary over time, can be compared with data from other students,
which allows the different influences in the dependent variable to be analyzed. In all of these
situations (nested data without or with repeated measures), datasets provide structures from
which hierarchical models can be estimated.

Multilevel regression models have become considerably important in several fields of
knowledge, and the publication of papers that use estimations related to these models has
become more and more frequent (Goldstein, 2011). The reason for the importance of
multilevel modeling is due mainly to the determination of research constructs that consider
the existence of nested data structures, in which certain variables show variation between
distinct units that represent groups but do not assess variation between observations that
belong to the same group. In addition, the computational development and investments that
data analysis software developers have made in the processing capacity to estimate
multilevel models have also provided support to researchers who are increasingly interested
in this type of approach (Gelman & Hill, 2007; Hough, 2006; Santos, Fávero, & Distadio,
2016; Serra & Fávero, 2018).

Theoretically, researchers can define a construct with a greater number of levels of
analysis, even if the interpretation of model parameters is not something trivial. For
instance, imagine the study of school performance, throughout time, of students nested into
schools, these nested into municipal districts, these into municipalities, and these into states
of the federation. In this case, we would be working with six analysis levels (temporal
evolution, students, schools, municipal districts, municipalities and states).

The main advantage of multilevel models over traditional regression models estimated,
for instance, by ordinary least squares (OLS), is the possibility of considering a natural
nesting of data (Steenbergen & Jones, 2002), that is, multilevel models enable us to identify
and analyze individual heterogeneities, and heterogeneities between the groups, to which
these individuals belong, making it possible to specify random components in each analysis
level (Heck & Thomas, 2009).

Multilevel models correct for the fact that observations in the same group are not
independent and thus, compared to OLS models, lead to unbiased estimates of standard
errors (SEs). But one could say that the same can be obtained with clustered standard errors
in OLS. Indeed, if the number of clusters is plentiful (i.e. above 20), clustered SEs in OLS
models and multilevel models are equally adequate for precision estimates of group-level
effects. On the other hand, if there are less than 20 clusters, researchers should avoid using
clustered SEs and adopt multilevel modeling. Furthermore, if researchers are also interested
in testing whether group-level covariates moderate individual-level effects, multilevel
models may prove to be the most appropriate choice (Arceneaux & Nickerson, 2009;
Steenbergen& Jones, 2002).

According to Courgeau (2003), within a model structure with a single equation, there
seems to be no connection between individuals and the society in which they live. In this
sense, the use of level equations enables the researcher to “jump” from one science to
another: students and schools, families and neighborhoods, firms and countries. Ignoring
this relationship means to elaborate incorrect analyzes about the behavior of the individuals
and, equally, about the behavior of the groups. Only the recognition of these reciprocal
influences allows the correct analysis of the phenomena.

This is in line with what is called by Mathieu and Chen (2011) the multilevel paradigm,
which refers to a way of thinking: considering management phenomena in context and
looking for driving variables not only from the focal unit of analysis but also from levels
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above and below. Such an approach often implies the development of multidisciplinary
theories and investigations, what is the spirit articulated by Hitt, Beamish, Jackson, and
Mathieu (2007) when discussing the built of theoretical and empirical bridges across levels
through multilevel modeling. Most modern-day multilevel studies seek to associate
relationships across proximal layers, such as team attributes and members’ attitudes or
environmental conditions and variable performance.

In an effort to make multilevel modeling more accessible, we provide the syntax for the
mixed procedures in Stata for each step and show how to test and compare these designs in
the model-building process. Previous discussions involving multilevel data have illustrated
the use of multilevel modeling in programs such as MLn (Kreft & de Leeuw, 1998), R
(Bliese & Ployhart, 2002), HLM (Raudenbush, Bryk, Cheong, Congdon, & DuToit, 2004), and
SAS (Littell, Milliken, Stroup, &Wolfinger, 2004; Singer, 1998).

In this paper, our focus will be on hierarchical linear models (HLM), also known as linear
mixed models (LMM). According to West, Welch, and Gałecki (2015), the term “linear mixed
models” comes from the fact that these models present linear specification and the
explanatory variables include a mix of fixed and random effects. That is, they can be
inserted into components with fixed effects, as well as into components with random effects.
While the estimated fixed effects parameters indicate the relationship between explanatory
variables and the metric dependent variable, the random effects components can be
represented by the combination of explanatory variables and non-observed random effects.

Ourmain objectives are:
� to introduce the concepts of nested data structures;
� to define the type of model to be estimated based on the characteristics of the data;
� to estimate parameters through several methods in Stata;
� to interpret the results obtained through several types of existing estimations for

multilevel models; and
� to define the most suitable estimation for diagnosing and forecasting effects in each

of the cases studied.

2. Nested data structures
Models that take into account the presence of nested structures in the data offer benefits to
researchers since they make possible the study of the sources of variance, in different levels,
of an outcome variable.

Raudenbush and Bryk (2002) discuss the applications of multilevel modeling from nested
data structures in various areas of knowledge, particularly education. In this field, works of
Aitkin and Longford (1986), Raudenbush and Bryk (1986), Garner and Raudenbush (1991),
Raudenbush (1993), Rumberger and Thomas (1993), O’Connell and McCoach (2008), and
Goldstein (2011) deserve mention.

Multilevel modeling is also extensively used in strategy literature to compare existing
variances at firm and industry levels for firm performance composition, such as
Schmalensee (1985), McGahan and Porter (1997), Brush and Bromiley (1997), Mauri and
Michaels (1998), Brush, Bromiley, and Hendrickx (1999), Chang and Singh (2000), Bowman
and Helfat (2001), McGahan and Porter (2002), Ruefli and Wiggins (2003), Short, Ketchen,
Palmer, and Hult (2007) and Short, McKelvie, Ketchen, and Chandler (2009). Other authors
have analyzed the country-of-origin effect on performance, notably Christmann, Day, and
Yip (1999), Lee (2003), Hawawini, Subramanian, and Verdin (2004), Makino, Beamish, and
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Zhao (2004a), Makino, Isobe, and Chan (2004b), Misangyi et al. (2006), Goldszmidt, Brito, and
Vasconcelos (2007), Fávero (2008), and Holcomb, Combs, Sirmon, and Sexton (2010).

Therefore, multilevel regression models enable us to formally investigate the behavior of
a certain dependent variable Y, which represents the phenomenon we are interested in,
based on the behavior of explanatory variables, whose changes may occur for clustered
data, between observations and between groups to which these observations belong, and for
data with repeated measures throughout time. In other words, there must be variables that
have data that change between individuals that represent a certain level. But these variables
remain unchanged for certain groups of individuals, and these groups represent a higher
level.

First, imagine a dataset with data on n individuals, and each individual i=1, . . ., n
belongs to one of the j=1, . . ., J groups, obviously n> J. Therefore, this dataset can have
certain explanatory variables X1, . . ., XQ that refer to each individual i, and other
explanatory variables W1, . . ., WS that refer to each group j; but they are invariable for the
individuals of a certain group. Table I shows the general model of a dataset with a two-level
clustered/nested data structure (individual and group).

Based on Table I, we can see that X1, . . ., XQ (columns 4 to 6) are level-1 variables (data
change between individuals), and W1, . . ., WS (columns 7 to 9) are level-2 variables (data
change between groups; however, not for the individuals in each group). Furthermore,
quantities of individuals in groups 1, 2, . . ., J (column 2) are equal, respectively, to n1, n2 �
n1, . . ., n � nJ�1 (column 1). Figure 1 shows the existing nesting between the level-1 units
(individuals) and the level-2 units (groups), which characterizes the existence of clustered
data.

Imagine another dataset in which, in addition to the nesting presented for clustered data,
there is temporal evolution. That is, data with repeated measures. Thus, besides the
individuals that will now belong to level 2 and therefore will be called j=1, . . ., J, nested into

Table I.
General model of a
dataset with a two-
level clustered/nested
data structure

(Observation)
(individual i)
level 1 (1)

Group j
level 2
(2)

Yij

(3)
X1ij

(4)
X2ij

(5) . . .
XQij

(6)
W1j

(7)
W2j

(8) . . .
WSj

(9)

1 1 Y11 X111 X211 . . . XQ11 W11 W21 . . . WS1

2 1 Y21 X121 X221 XQ21 W11 W21 WS1
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n1 1 Yn11 X1n11 X2n11 XQn11 W11 W21 WS1

n1 þ 1 2 Yn1þ1;2 X1n1þ1;2 X2n1þ1;2 XQn1þ1;2 W12 W22 WS2

n1 þ 2 2 Yn1þ2;2 X1n1þ2;2 X2n1þ2;2 XQn1þ2;2 W12 W22 WS2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n2 2 Yn22 X1n22 X2n22 XQn22 W12 W22 WS2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

nJ�1þ 1 J YnJ�1þ1;J X1nJ�1þ1;J X2nJ�1þ1;J XQnJ�1þ1;J W1J W2J WSJ

nJ�1þ 2 J Ynj�1þ2;J X1nJ�1þ2;J X2nJ�1þ2;J XQnJ�1þ2;J W1J W2J WSJ
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n J YnJ X1nJ X2nJ XQnJ W1J W2J WSJ

Note: The dataset will have a balanced nested data structure if n1 = n2 � n1 = . . . = n� nJ�1
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k=1, . . ., K groups (which now belong to level 3), we will also have t=1, . . ., Tj periods in
which each j individual is monitored. Consequently, this new dataset can have the same
explanatory variables X1, . . ., XQ that refer to each j individual. But now they are invariable
for each j individual during the periods of monitoring. Moreover, the dataset can also have
the same explanatory variables W1, . . ., WS that refer to each group k. But W1, . . ., WS are
also invariable throughout time for each group k. Table II provides the logic to describe a
dataset with a three-level nested data structure with repeated measures (time, individual and
group).

Based on Table II, we can now see the variable that corresponds to the period is a
level-1 explanatory variable (column 1), since the data change is in each row of the
dataset, and that X1, . . ., XQ (columns 5 to 7) become level-2 variables (data change
between individuals, but not for the same individual throughout time), and that W1, . . .,
WS (columns 8 to 10) become level-3 variables (data change between K groups (column 3),
but not for the same group throughout time). Furthermore, quantities of periods in which
individuals 1, 2, . . ., J (column 2) are monitored are equal, respectively, to T1, T2 � T1, . . .,
TJ�TJ�1 (column 1).

Similar to what was shown for the case with two levels, Figure 2 enables us to see the
existing nesting between the level-1 units (temporal variation), the level-2 units (individuals),
and the level-3 units (groups), which characterizes a data structure with repeated measures.

Through Tables I and II, as well as through the corresponding Figures 1 and 2, we can
see that the data structures present absolute nesting. That is, a certain observation can be
nested into only one group, and this group into only another higher-level group, and so on.

In the next section, we will estimate multilevel models with repeated measures in Stata,
whose econometric development is in Appendix 1. Appendix 2 is intended for the
presentation of the commands in Stata.

3. Estimation of multilevel models with repeated measures in Stata
This section gives researchers the opportunity to estimate multilevel models through
Stata Statistical Software®. For our example, we will use the step-up strategic
multilevel analysis proposed by Raudenbush and Bryk (2002), and Snijders and
Bosker (2011). That is, we first studied the variance decomposition from the definition
of a null model (non-conditional model), so that afterwards, a random intercepts
model and a random intercepts and slopes model could be estimated. Finally, from the
definition of the random nature of the error terms, we estimated the complete model
by including level-2 variables into the analysis. We, therefore, estimate a three-level
hierarchical linear model, in which the nesting of data will be characterized due to the
presence of repeated measures. Thus, there is temporal evolution in the behavior of
the dependent variable.

Figure 1.
Two-level nested

structure of clustered
data
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Table II.
General model of a
dataset with a three-
level nested data
structure with
repeated measures
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3.1 Hypotheses and data
A dataset was constructed by a professor interested in monitoring students’ school
performance for a certain period of time, in order to investigate if there is variability in this
performance throughout time between students within the same school, and between those
from different schools. In addition, if yes, if there are certain student and school
characteristics that explain this variability. This dataset follows the logic of the seminal
work developed by Raudenbush, Rowan, and Kang (1991).

A total of 15 schools volunteered to provide data on their students’ school performance
(scores from 0 to 100) in the last four years, a total of 610 students. In addition, the professor
also obtained each student’s gender in the dataset in order to verify if there are differences in
school performance resulting from this variable. The variable regarding professors’ years of
teaching experience, for each school, also was included in the study. The dataset
PerformanceTimeStudentSchool.dta can be found in Fávero and Belfiore (2019).

It is important to mention that, although traditional maximum likelihood estimation
methods for multilevel modeling have been shown to provide biased estimates when the
number of clusters is below 30, methods such as restricted maximum likelihood (REML)
estimation have shown potential to perform well with ten clusters or fewer (McNeish &
Stapleton, 2016). In this paper, as discussed below, we estimate all models through REML.

First, we test three fundamental hypotheses regarding the nature of student’s school
performance over time, following the logic proposed by Raudenbush and Bryk (2002) and
Short, Ketchen, Bennett, and Du Toit (2006):

H1. There is significant variance in student’s school performance over time, both within
students and schools.

H2. Student’s school performance follows a linear trend over time.

H3. There is significant variance around a linear performance trend.

Student and schools’ characteristics may influence student’s school performance over time.
Thus, we test the following:

H4. There is a significant relationship between students’ characteristics and student’s
school performance over time.

Figure 2.
Three-level nested

structure with
repeatedmeasures
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H5. There is a significant relationship between schools’ characteristics and student’s
school performance over time.

We have a balanced longitudinal data structure since all 610 students are monitored in the
four periods. Figure 3 enables us to analyze the temporal evolution of the school
performance of the first 50 students in the sample. From the trends in the lines, we can see
that the temporal evolutions of the school performance have different intercepts and slopes
between students. These different intercepts and slopes justify the use of multilevel
modeling and provide reasons to include intercept and slope random effects in Level 2 of the
models that will be estimated.

Figure 4 shows the temporal evolutions of the average school performance. The
increasing trend over time provides further justification for estimating a three-level

Figure 3.
Temporal evolution
of the school
performance of the
first 50 students in
the sample

Figure 4.
Temporal evolution
of students’ average
school performance at
each school (linear
adjustment through
OLS)
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hierarchical model. Figure 4 also shows the linear adjustment through OLS of the school
performance behavior over time for each school. In addition, the figure enables us to display
the intercept and slope random effects in Level 3 of the models that will be estimated, since
the temporal evolutions of the school performance present different intercepts and slopes
between the schools.

3.2 Step-up strategic multilevel modeling
Having characterized the temporal nesting of the students from different schools in the data
with repeated measures, we can initially estimate a null model (non-conditional model) that
enables us to determine if there is variability in the school performance between students
from the same school and between those from different schools. No explanatory variable is
inserted into the modeling, which only considers the existence of one intercept and of error
terms u00k, r0jk and etjk, with variances, respectively, equal to tu000, t r000 and s

2. The model
to be estimated has the following expression:

Null Model:

performancetjk ¼ p 0jk þ etjk

p 0jk ¼ b00k þ r0jk

b00k ¼ g 000 þ u00k

which results in[1]:

performancetjk ¼ g 000 þ u00k þ r0jk þ etjk

At the top of Figure 5, we can initially demonstrate that we have a balanced longitudinal
data structure since for each student we have minimum and maximum quantities of periods
of monitoring equal to four, with a mean also equal to four.

About the fixed effects component, we can see that the estimation of parameter g 000 is
equal to 68.714, which corresponds to the average of students’ expected annual school
performance of the (horizontal line estimated in the null model, or general intercept).
Moreover, at the bottom of Figure 5, the estimations of the variances of error terms tu000 =
180.194, t r000= 325.799 ands 2 = 41.649 are presented.

We can, therefore, define two intraclass correlations, given the existence of two variance
proportions. The first one refers to the correlation between the data of variable performance
in t and in t0 (t= t0) of a certain student j from a certain school k (Level-2 intraclass
correlation). The other one refers to the correlation between the data of variable performance
in t and in t0 (t= t0) of different students j and j0 (j= j0) from a certain school k (Level-3
intraclass correlation). Therefore, we have:

� Level-2 intraclass correlation:

rhostudentjschool ¼ tu000 þ t r000
tu000 þ t r000 þs 2 ¼

180:194þ 325:799
180:194þ 325:799þ 41:649

¼ 0:924

� Level-3 intraclass correlation:

Multilevel
modeling for
longitudinal

data

467



rhoschool ¼ t u000
tu000 þ sr000 þs 2 ¼

180:194
180:194þ 325:799þ 41:649

¼ 0:329

Hence, the correlation between annual school performances is equal to 32.9 per cent
(rhoschool) for the same school, and the correlation between annual school performances is
equal to 92.4 per cent (rhostudent|school) for the same student of a certain school. Therefore, for
the model without explanatory variables, while the annual school performance is slightly
correlated between schools, the same becomes strongly correlated when the calculation is
carried out for the same student from a certain school. In this last case, we estimate that
students and schools random effects representing approximately 92 per cent of the total
variance of the residuals[2].

Regarding the statistical significance of these variances, the fact that the estimated
values of tu000, t r000 and s 2 are considerably higher than their respective standard errors
suggests that there is significant variation in the annual school performance between
students and between schools.

This information is essential to underpin the choice of the multilevel modeling, instead of
a simple and traditional regression model through OLS. At the bottom of Figure 5, we can
verify this fact by analyzing the result of the likelihood-ratio test. Given Sig. x 2 = 0.000, we
can reject the null hypothesis that the random intercepts are equal to zero (H0: u00k = r0jk =
0), which makes the estimation of a traditional linear regression model be ruled out for the
data with repeated measures.

Figure 5.
Null model
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Even though researchers frequently ignore the estimation of null models, analyzing the
results may help to reject the research hypotheses or not. It may even provide adjustments
in relation to the constructs proposed. For our data, the results of the null model allow us to
state that there is significant variability in the school performance throughout the four years
under analysis. Furthermore, there is significant variability in the school performance over
time between students of the same school, and there is significant variability in the school
performance over time between students from different schools.

H1 can be supported, i.e. there is significant variance in student’s school performance over
time within both students and schools. Since our main objective is to verify if there are student
and school characteristics that would explain the variability in the school performance between
students from the same school and between those from different schools, we will continue with
the nextmodeling steps, respecting the step-up strategic multilevel analysis.

Let us insert level-1 variable year into the analysis, aiming at investigating if the
temporal variable has a relationship to students’ school performance behavior and, more
than this if the school performance has a linear behavior throughout time.

Linear TrendModel with Random Intercepts:

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk

p 0jk ¼ b00k þ r0jk

p 1jk ¼ b10k

b00k ¼ g 000 þ u00k

b10k ¼ g 100

which results in the following expression[1]:

performancetjk ¼ g 000 þ g 100 � yearjk þ u00k þ r0jk þ etjk

First, we can see that the mean of the annual increase in school performance is
statistically significant, with an estimated parameter of g 100 = 4.348, ceteris paribus.
Thus, we can also support H2, since student’s school performance over time statistically
follows a linear trend.

Regarding the random effects components, we have also verified that there is statistical
significance in the variances of u00k, r0jk and etjk, because the estimations of tu000, t r000 and
s 2 are considerably higher than the respective standard errors. Therefore, new intraclass
correlations can be calculated, as follows:

� Level-2 intraclass correlation:

rhostudentjschool ¼ tu000 þ t r000
tu000 þ t r000 þs 2 ¼

180:196þ 333:675
180:196þ 333:675þ 10:146

¼ 0:981

� Level-3 intraclass correlation:
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rhoschool ¼ tu000
tu000 þ t r000 þs 2 ¼

180:196
180:196þ 333:675þ 10:146

¼ 0:344

Both variance proportions are higher than the ones obtained in the estimation of the null
model, which shows the importance of including the variable that corresponds to the
repeated measure in level 1. Besides, the result of the likelihood-ratio test at the bottom of
Figure 6 allows us to prove that the estimation of a simple traditional linear regression
model (performance based on year) only with fixed effects must be ruled out (H3 supported).

Therefore, now, our model starts to have the following specification:

performancetjk ¼ 57:844þ 4:348 � yearjk þ u00k þ r0jk þ etjk

Figures 7 and 8 provide better visualization of the random intercepts per school and per
student.
Therefore, we are able to conclude that students’ school performance follows a linear trend
throughout time. In addition, there is a significant variance of intercepts between those who
study at the same school and between those who study at different schools.

Thus, we also need to verify if there is a significant variance of the school performance
slopes throughout time between the different students. Therefore, let us insert slope random
effects into Levels 2 and 3 of our multilevel model that, by maintaining the intercept random
effects, will have the following expression:

Linear TrendModel with Random Intercepts and Slopes:

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk

p 0jk ¼ b00k þ r0jk

Figure 6.
Linear trendmodel
with random
intercepts
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p 1jk ¼ b10k þ r1jk

b00k ¼ g 000 þ u00k

b10k ¼ g 100 þ u10k

which results in[1]:

performancetjk ¼ g 000 þ g 100 � yearjk þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk

Figure 8.
Random intercepts

per student

Figure 7.
Random intercepts

per school
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Note that the variable year is present in the fixed effects component and in the Level-3
random effects components (by multiplying error term u10k), and in the Level-2 ones (by
multiplying error term r1jk). Figure 9 shows the results obtained through this estimation.

We can see that, even though the fixed-effects parameter estimations do not change
considerably in relation to the previous model, the variance estimations are different, which
generates new intraclass correlations, as follows:

� Level-2 intraclass correlation:

rhostudentjschool ¼ tu000 þ tu100þt r000 þ t r100
tu000 þ tu100þt r000 þ t r100 þs 2

¼ 224:343þ 0:560þ 374:285þ 3:157
224:343þ 0:560þ 374:285þ 3:157þ 3:868

¼ 0:994

� Level-3 intraclass correlation:

rhoschool ¼ tu000 þ tu100
tu000 þ tu100þt r000 þ t r100 þs 2

¼ 224:343þ 0:560
224:343þ 0:560þ 374:285þ 3:157þ 3:868

¼ 0:371

Therefore, for this model, we estimate that the students and schools random effects
represent approximately 99 per cent of the total variance of the residuals.

Figure 10 shows a likelihood-ratio test applied to compare the estimations of the linear
trendmodels with random intercepts andwith random intercepts and slopes.

Figure 9.
Linear trendmodel
with random
intercepts and slopes
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By using the values of the restricted likelihood functions obtained in Figures 5 and 9, we
arrive at the x 2 statistic for the test, with 2 degrees of freedom:
x 2
2 = (�2·LLr-randomintercept � (�2·LLr-randomslope)) = {�2·(�7,801.420)� [�2·(�7,464.819)]} =

673.20 which results in a Sig. x 2
2 = 0.000< 0.05 and ends up favoring the linear trend model

with and random intercepts and slopes. It is important to mention that this likelihood-ratio
test is only valid when a comparison of the estimations obtained through REML of two
models is carried out with identical fixed effects specification. Given that in our case, both
models, that were estimated through REML, present the same fixed effects specification,
g 000þ g 100 yearjk, the test is considered valid.

Hence, our model starts to have the following specification:

performancetjk ¼ 57:858þ 4:343 � yearjk þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk

In the current situation, we are able to state that students’ school performance follows a
linear trend throughout time. In addition, there is a significant variance of intercepts and
slopes between those students who study at the same school and between those who study
at different schools. Therefore, let us insert Level-2 variable gender into the analysis to
determine if this characteristic explains the variation in the annual school performance
between students.

Linear TrendModel with Random Intercepts and Slopes and with Level-2 Variable gender:

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk

p 0jk ¼ b00k þ b01k � genderjk þ r0jk

p 1jk ¼ b10k þ b11k � genderjk þ r1jk

b00k ¼ g 000 þ u00k

b01k ¼ g 010

b10k ¼ g 100 þ u10k

b11k ¼ g 110

which results in the following expression[1]:

performancetjk ¼ g 000 þ g 100 � yearjk þ g 010 � genderjk þ g 110 � genderjk � yearjk þ u00k

þu10k � yearjk þ r0jk þ r1jk � yearjk þ etjk

Figure 10.
Likelihood-ratio test
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This model shows significant estimations for the fixed effects parameters, as well as for the
variances of the random effects terms, at a significance level of< 0.05 (Figure 11). Moreover,
at this moment of the modeling, we are able to state that students’ school performance
follows a linear trend throughout time, and there is a significant variance of intercepts and
slopes between those who study at the same school and between those who study at
different schools. Additionally, the fact that a certain student is female or male is part of the
reason why there is this variation in school performance (H4 supported).

Themodel then has the following specification:

performancetjk ¼ 64:498þ 4:029 � yearjk � 15:033 � genderjk þ 0:705 � genderjk � yearjk
þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk

and, from which we can see that male students (dummy gender = 1) have worse
performance than female students, on average and ceteris paribus.

Finally, let us investigate if Level-3 variable texp (professors’ years of teaching
experience), also explains the variation in the annual school performance between the
students. After some intermediate analyses, let us move on to estimate the three-level
hierarchical model with the following specification:

Linear Trend Model with Random Intercepts and Slopes, Level-2 Variable gender and
Level-3 Variable texp (CompleteModel):

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk

p 0jk ¼ b00k þ b01k � genderjk þ r0jk

Figure 11.
Linear trendmodel
with random
intercepts and slopes
and Level-2 variable
gender
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p 1jk ¼ b10k þ b11k � genderjk þ r1jk

b00k ¼ g 000 þ g 001 � texpk þ u00k

b01k ¼ g 010

b10k ¼ g 100 þ g 101 � texpk þ u10k

b11k ¼ g 110

which results in the following expression[1]:

performancetjk ¼ g 000 þ g 100 � yearjk þ g 010 � genderjk þ g 001 � texpk
þ g 110 � genderjk � yearjk þ g 101 � texpk � yearjk þ u00k

þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk

Even though the estimations of the fixed effects parameters and random effects variances
are significant, at a significance level of 0.05, it is necessary to study the structure of the
random effects (u00k, u10k and r0jk, r1jk) variance-covariance matrix. Based on the outputs
found in Figure 12, we have:

Figure 12.
Linear trendmodel

with random
intercepts and slopes
and Level-2 variable
gender and Level-3

variable texp
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� Random effects variance-covariance matrix for level school:

var
u00k
u10k

" #
¼ 87:994 0

0 0:263

" #

� Random effects variance-covariance matrix for level student:

var
r0jk
r1jk

" #
¼ 337:627 0

0 3:092

" #

Since we did not specify any covariance structure for these error terms, we are assuming
that this structure is independent, that is, both cov(u00k, u10k) = 0 and cov(r0jk, r1jk) = 0.
Nevertheless, we can generalize the structure of these matrices by allowing u00k and u10k
to be correlated, and r0jk and r1jk to be correlated too. Thus, following Short et al. (2006),
one additional contribution of this paper is the testing of alternative covariance
structures to account for heteroskedasticity. In our sample, we found significant
differences based on the model assumptions and covariance structure specified in our
empirical test.

Figure 13.
Outputs of the linear
trendmodel with
random intercepts
and slopes and Level-
2 variable gender and
Level-3 variable texp,
with correlated
random effects (u00k,
u10k) and (r0jk, r1jk)
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The results obtained through the estimation considering correlated random effects (u00k,
u10k) and (r0jk, r1jk) are shown in Figure 13.

The fixed effects parameter estimations are close to those obtained when estimating the
model that considers the existence of a structure that is independent from the random-effects
variance-covariance matrices (Figure 12). Regarding the random-effects parameters, except
for the estimations of u10k and cov(u00k, u10k), which are statistically significant at a
significance level of 0.10, all the other estimations are significant at a significance level of
0.05. Considering that cov(u00k, u10k) and cov(r0jk, r1jk) are statistically different from zero,
based on the outputs in Figure 13 we can write that:

� Random effects variance-covariance matrix for level school:

var
u00k
u10k

" #
¼ 88:737 �3:185

�3:185 0:255

" #

� Random effects variance-covariance matrix for level student:

var
r0jk
r1jk

" #
¼ 350:913 �13:251

�13:251 3:258

" #

Even statistically different from zero, the estimations of the random effects covariances in
both levels of the analysis, if researchers wish to prove the better suitability of this last
model over the one that considers the matrix with independent error terms, they just need to
run a likelihood-ratio test to compare both estimations (Figure 14).

Figure 15 presents the result of the likelihood-ratio test applied to compare the
estimations of the complete models with independent and correlated random effects (u00k,
u10k) and (r0jk, r1jk).

Figure 14.
Variance-covariance

matrices with
correlated random

effects (u00k, u10k) and
(r0jk, r1jk)

Figure 15.
Likelihood-ratio test
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As Sig. x 2
2 = 0.000< 0.05, we can state that the structure of the random effects variance-

covariance matrices can be considered unstructured. That is, we can consider that error
terms u00k and u10k are correlated (cov(u00k, u10k) = 0) and that error terms r0jk and r1jk are
correlated too (cov(r0jk, r1jk)= 0).

We have arrived at our final model, with the following specification:

performancetjk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk þ 0:652

� genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k � yearjk þ r0jk

þ r1jk � yearjk þ etjk

Besides, the expected values of each student’s school performance in each of the periods
monitored are given by:

performânce_studentjk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk
þ 0:652 � genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k

� yearjk þ r0jk þ r1jk � yearjk

On the other hand, the expected values of each student’s school performance in each of the
periods monitored, without considering the random effects in the level student, can be given
by:

performânce_schoolk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk
þ 0:652 � genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k

� yearjk

We have seen that students’ school performance follows a linear trend over time. Moreover,
there is a significant variance of intercepts and slopes between those who study at the same
school and between those who study at different schools, and students’ gender is significant
to explain part of this variation. H5 can be supported since professors’ years of teaching
experience at each school (Level-3 variable) itself also explains part of the discrepancies in
the annual school performance between students from different schools.

Figure 16 shows the predicted values of school performance throughout time for the first
50 students in the sample (yhatstudent) and, through which, we can see different intercepts
and slopes throughout time for different students.

Finally, a more inquisitive researcher, aiming at questioning the superiority of multilevel
models in relation to traditional regression models estimated through OLS, whenever there
are datasets with nested structures, decides to construct a graph (Figure 17). Through this
graph, it is possible to compare the predicted school performance values generated by this
three-level hierarchical modeling (HLM3) to those generated by an estimation through OLS,
for all the students in the sample, in each of the periods analyzed, using the same
explanatory variables year, gender, texp, genderyear and texpyear. Obviously, there are only
fixed effects in the estimation through OLS.

The gray line at 45° shows the observed school performance values of each one of the
students in the sample in each of the periods analyzed (performance x performance). By
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using Figure 17, we can clearly see the superiority of the linear trend model with
explanatory variables and random intercepts and slopes in levels 2 and 3 (complete HLM3
model) over the multiple linear regression model estimated through OLS with the same
explanatory variables in this case. The absence of random terms for each contextual effect in
traditional regression models, such as OLS, prevents greater adherence between predicted
and observed values of the outcome variable in phenomena where is possible to directly or
indirectly identify hierarchies, or levels, in the data structure (Raudenbush & Bryk, 2002).
This demonstrates the importance of considering the random effects components whenever
there are nested data structures.

4. Final remarks
This paper provides a brief discussion about the concepts, processes, stages, tasks, and the
types of methods and techniques it can employ. It enables researchers and managers to
assess the relationship between a certain performance variable and one or more predictor
variables, which characterize different levels of analysis.

Figure 16.
Predicted school

performance values
throughout time for
the first 50 students

in the sample

Figure 17.
Values predicted
through OLS and
through HLM3�
observed school

performance values
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Moreover, as well as contributed and discussed by Short et al. (2006), this study offers
progress toward resolving the ambiguity related to the structure of the random effects
variance-covariance matrices by applying a multilevel model with random intercepts and
slopes, by explicitly accounting for and modeling heteroskedasticity in the data analysis,
and by articulating the importance of and offering interpretations for different specifications
to testing the effects of time on performance. Time studies in business management research
have not reflected enough attention to these issues, and multilevel modeling provides a tool
to ameliorate such issues when using a longitudinal design.

Researchers can also estimate hierarchical cross-classified models (HCM) and multilevel
multiple membership classification models (MMMC) in situations where lower level
observations are nested within multiple higher-level units from the same classification.
According to Durrant, Vassallo, and Smith (2018), not accounting correctly for such multiple
membership structures leads to biased results. Researchers can study HCM and MMMC in-
depth in Browne, Goldstein, and Rasbash (2001), Meyers and Beretvas (2006), Uyar and Brown
(2007), Fávero (2011), Rabe-Hesketh and Skrondal (2012a, 2012b), Chung and Beretvas (2012),
Brunton-Smith, Sturgis, and Leckie (2017), and Fávero, Serra, Santos, and Brunaldi (2018b).

Multilevel modeling is a broad theme that can often be explored in depth in the field of
business management. Each level is formed by individuals or groups nested into other
groups and so on. Since variables from a certain group are invariable between groups or
individuals that correspond to lower levels that are nested into that group, it is natural for
many researchers and constructs to use such models (Zhang, Li, & Song, 2014).

Many can be the characteristics of the datasets with nested data structures. The most
common are those with absolute nesting, in which there are clustered data or data with
repeated measures. In this paper, we chose to use a dataset to estimate three-level hierarchical
linear models with repeated measures. Nonetheless, from which, we believe researchers will
have the conditions to estimate, for example, for three-level models with clustered data or even
to consider a higher number of analysis levels, resulting frommore complex nesting structures.

Multilevel models enable us to identify and analyze individual heterogeneities and the
heterogeneities between the groups to which these individuals belong, making it possible to
specify random components in each analysis level. This fact represents the main difference
of the traditional regression models estimated through OLS, which cannot consider the
natural nesting of data and, consequently, generate biased parameter estimators (Fávero &
Belfiore, 2017; Lazega& Snijders, 2016; Pinheiro & Bates, 2009).

Although many papers use multilevel models only to estimate null models to investigate
the variance decomposition of the phenomenon being studied in the different analysis levels,
the possibility of including explanatory variables that correspond to the different levels
in the fixed and random effects components enables us to investigate possible relationships
between these variables and the dependent variable. This makes it possible to establish and
examine new research objectives and interesting constructs (Gelman, 2006).

The models we studied in this paper are part of what we call generalized linear latent and
mixed models (GLLAMM), which encompass the hierarchical linear models (HLM). In this
sense, as discussed by Fávero, Santos, and Serra (2018a), a researcher can also propose
hierarchical nonlinear models, that refer to the situations in which, in a nested data
structure, the dependent variable is a categorical variable or a variable with count data.
Thus, logistic, Poisson or negative binomial multilevel models could also be estimated.

Discovering implicit and contextual standards from larger and larger volumes of data
becomes an essential condition for organizations to become successful in competitive
environments, and multilevel modeling contributes in a considerable way to our ability to
understand phenomena.
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Notes

1. All parameters are defined in the Appendix 1.

2. One might notice that the sum of variance percentages is not equal to 1. This is the default for
displaying Stata outputs. In order to obtain the variance percentages of each level on the outcome
variable, we must proceed with the following calculations:

Level-1 intraclass correlation:

rhotime ¼ 41:649
180:194þ 325:799þ 41:649 ¼ 0:076

Level-2 intraclass correlation:

rhostudent ¼ 325:799
180:194þ 325:799þ 41:649 ¼ 0:595

Level-3 intraclass correlation:

rhoschool ¼ 180:194
180:194þ 325:799þ 41:649 ¼ 0:329

whose sum is 1.
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Appendix 1. Econometrics of the Three-Level hierarchical linear models with repeated
measures (HLM3)
In general, according to Raudenbush et al. (2004), a three-level hierarchical model has three sub-
models, one for each analysis level of the nested data structure. Therefore, we can define a general
model with three analysis levels and nested data. The first level presents explanatory variables Z1,
. . ., ZP that refer to level-1 units i (i=1, . . ., n). The second level, explanatory variables X1, . . ., XQ that
refer to level-2 units j (j=1, . . ., J). Whereas the third level presents explanatory variablesW1, . . .,WS

that refer to level-3 units k (k=1, . . ., K), as follows:

Level 1:Yijk ¼ p 0jk þ
XP
p¼1

p pjk � Zpjk þ eijk (A1)

where ppjk (p=0, 1, . . ., P) refer to the level-1 coefficients, Zpjk is the p-th level-1 explanatory variable
for observation i in the level-2 unit j and in the level-3 unit k, and eijk refers to the level-1 error terms
that follow a normal distribution, with mean equal to zero and variance equal to s 2.

Level 2:p pjk ¼ bp0k þ
XQp

q¼1

bpqk � Xqjk þ rpjk (A2)

where bpqk (q=0, 1, . . ., Qp) refer to the level-2 coefficients, Xqjk is the q-th Level-2 explanatory
variable for unit j in the level-3 unit k, and rpjk are the level-2 random effects, assuming, for each unit
j, that the vector (r0jk, r1jk, . . ., rPjk)¨ follows a multivariate normal distribution with each element
having mean zero and variance t rppp.
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Level 3: bpqk ¼ g pq0 þ
XSpq

s¼1

g pqs �Wsk þ upqk (A3)

where g pqs (s=0, 1, . . ., Spq) refer to the level-3 coefficients, Wsk is the s-th level-3 explanatory variable
for unit k, and upqk are the level-3 random effects, assuming that, for each unit k, the vector formed by
terms upqk follows a multivariate normal distribution with each element having mean zero and variance
tuppp, which results in a variance-covariance matrixTbwith a maximum dimension equal to:

DimmaxTb ¼
XP
p¼0

Qp þ 1
� ��XP

p¼0

Qp þ 1
� �

(A4)

which depends on the number of Level-3 coefficients specified with random effects.
Let’s imagine a single Level-1 explanatory variable that corresponds to the periods in which the

data of the dependent variable are monitored. In other words, Level-2 units j nested into Level-3 units
k are monitored for a period t (t=1, . . ., Tj), which makes the dataset have j time series, as shown in
Table II. The main objective is to verify if there are discrepancies in the temporal evolution of the
data of the dependent variable and, if yes, if these occur due to characteristics of the Level-2 and
Level-3 units. This temporal evolution is what characterizes the term repeated measures.

In this regard, Expression (A1) can be rewritten as follows, in which subscripts i become
subscripts t:

Ytjk ¼ p0jk þ p 1jk � periodjk þ etjk (A5)

where p 0jk represents the intercept of the model that corresponds to the temporal evolution of
the dependent variable of Level-2 unit j nested into Level-3 unit k, and p 1jk corresponds to the
average evolution (slope) of the dependent variable for the same unit throughout the period analyzed.
The substructures that correspond to Levels 2 and 3 remain with the same specifications as those
respectively presented in Expressions (A2) and (A3).

Figure A1 shows the plotting of the set of models represented by Expression (A5) in a conceptual
way. Through the plotting of the models, we can see that the individual models that represent Level-2
units j can present different intercepts and slopes throughout period t. The fact that this may occur is due
to certain characteristics of the Level-2 units j themselves or due to characteristics of the Level-3 units k.

FigureA1.
Individual models
that represent the

temporal evolution of
the dependent

variable for each of
the J Level-2 units
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Thus, there must be characteristics of level-2 units j, temporally invariable, and of Level-3 units k, invariable
also for Level-2 units j nested into each Level-3 unit k (as shown in Table II), that can explain the differences
in the model intercepts and slopes Ŷ tjk ¼ p̂ 0jk þ p̂ 1jk � periodjk represented in Figure A1.

Hence, assuming there is a single explanatory variable X that represents a characteristic of Level-2 units
j, and a single explanatory variableW that represents a characteristic of Level-3 units k, from Expression (A5)
and based on Expressions (A2) and (A3), we can define the following model with three analysis levels. In this
model, the first level refers to the measure repeated and only contains the temporal variable:

Level 1:Ytjk ¼ p 0jk þ p 1jk � periodjk þ etjk (A6)

Level 2:p 0jk ¼ b00k þ b01k � Xjk þ r0jk (A7)

p 1jk ¼ b10k þ b11k � Xjk þ r1jk (A8)

Level 3: b00k ¼ g 000 þ g 001 �Wk þ u00k (A9)

b01k ¼ g 010 þ g 011 �Wk þ u01k (A10)

b10k ¼ g 100 þ g 101 �Wk þ u10k (A11)

b11k ¼ g 110 þ g 111 �Wk þ u11k (A12)

By combining Expressions (A6) to (A12), we obtain the following expression:

Ytjk ¼ g 000 þ g 001 �Wk þ g 010 � Xjk þ g 011 �Wk � Xjk þ u00k þ u01k � Xjk þ r0jk
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random effects intercept

þ g 100 þ g 101 �Wk þ g 110 � Xjk þ g 111 �Wk � Xjk þ u10k þ u11k � Xjk þ r1jk
� � � periodjk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

random effects slope

þ etjk (A13)

where g 000 represents the expected value of the dependent variable at the initial moment and when
X=W=0 (general intercept), g 001 represents the increase in the expected value of the dependent
variable at the initial moment (alteration in the intercept) for a certain Level-2 unit j that belongs to a
Level-3 unit k when there is a unit alteration in the characteristicW of k, ceteris paribus.
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Besides that, g 010 represents the increase in the expected value of the dependent variable at the
initial moment for a certain unit jk when there is a unit alteration in the characteristic X of j, ceteris
paribus, and g 011 represents the increase in the expected value of the dependent variable at the initial
moment for a certain unit jk when there is a unit alteration inW.X, ceteris paribus. Moreover, u00k and
u01k represent the error terms that indicate there is randomness in the intercepts, and the last one
impacts the alterations in variable X.

Additionally, g 100 represents the alteration in the expected value of the dependent variable
when there is a unit alteration in the analysis period (change in the slope due to a unit temporal
evolution), ceteris paribus, g 101 represents the alteration in the expected value of the dependent
variable due to a unit temporal evolution for a certain unit jk when there is a unit alteration in the
characteristicW, ceteris paribus.

Finally, g 110 represents the alteration in the expected value of the dependent variable due to a
unit temporal evolution for a certain unit jk when there is a unit alteration in the characteristic X,
ceteris paribus, and g 111 represents the alteration in the expected value of the dependent variable due
to a unit temporal evolution for a certain unit jk when there is a unit alteration inW.X, ceteris paribus.
Terms u10k and u11k represent errors that indicate there is randomness in the slopes, and the last one
impacts the alterations in variable X.

Expression (A13) facilitates the visualization that the intercept and slope can be
influenced by random effects resulting from different behaviors of the dependent variable
throughout time for each of the level-2 units (different time series), and this phenomenon can be
a result of these units’ characteristics, as well as of characteristics of the groups to which such
units belong.

If researchers wish to elaborate an analysis about the fixed and random effects components that
can influence the behavior of the dependent variable, given that this procedure even facilitates the
insertion of the commands to estimate multilevel models in Stata, as we will see below we just need to
rearrange the terms of Expression (A13) as follows:

Ytjk ¼ g 000 þ g 001 �Wk þ g 010 � Xjk þ g 011 �Wk � Xjk

þ g 100 � periodjk þ g 101 �Wk � periodjk þ g 110 � Xjk � periodjk þ g 111 �Wk � Xjk � periodjk

)
Fixed Effects

þ u00k þ u01k � Xjk þ u10k � periodjk þ u11k � Xjk � periodjk þ r0jk þ r1jk � periodjk þ etjk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RandomEffects

(A14)

As multilevel models allow interactions between variables in the fixed effects component and, more
than that, allow interactions between error terms and variables in the random effects component, the
model can be naturally heteroskedastic. Regarding Expression (A14), if the variances of the random
terms u10k, u11k, r0jk and r1jk are statistically different from zero, traditional parameter estimations,
such as OLS, will not be adequate.

In three-level hierarchical models, we can define two intraclass correlations given the existence
of two variance proportions. One corresponds to the behavior of the data that belong to the same
Level-2 units j and the same Level-3 units k (Level-2 intraclass correlation), and the other corresponds
to the behavior of the data that belong to the same Level-3 units k. But the data are from different
Level-2 units j (Level-3 intraclass correlation).

While fixed effects parameters are estimated traditionally th rough maximum likelihood, the
variance components of the error terms can be estimated through maximum likelihood or through
REML.
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Appendix 2. Commands in stata
We now present all Stata commands (Version 15) used throughout the paper to generate tables and
graphs and to estimate models:

Figure 3:
graph twoway connected performance year if student <= 50,

connect(L)
Figure 4:
statsby intercept=_b[_cons] slope=_b[year], by(school) saving
(ols, replace): reg performance year

sort school
merge school using ols
drop _merge
gen yhat_ols= intercept1 slope*year
sort school year
separate performance, by(school)
separate yhat_ols, by(school)
graph twoway connected yhat_ols1-yhat_ols15 year || lfit

performance year, clwidth(thick) clcolor(black) legend(off)
ytitle(performance at school)

Figure 5:
xtmixed performance || school: || student:, var nolog reml

This command shows two random effects components, one that corresponds to level 3 (school) and
another to level 2 (student). The order in which the random effects components are inserted into the
command xtmixed is decreasing when there are more than two levels. That is, we must begin with
the highest data nesting level and continue until the lowest level (level 2):

Obtention of intraclass correlation:
estat icc
right after the estimation of the corresponding model.

Figure 6:
xtmixed performance year || school: || student:, var nolog reml
estimates store randomintercept
predict u00 r0, reffects

Figures 7 and 8:
graph hbar (mean) u00, over(school) ytitle(“Random Intercepts

per School”)
graph hbar (mean) r0, over(student) ytitle(“Random Intercepts

per Student”)

Figure 9:
xtmixed performance year || school: year || student: year, var

nolog reml
estimates store randomslope

Figure 10:
lrtest randomslope randomintercept

Figure 11:
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gen genderyear = gender*year
xtmixed performance year gender genderyear || school: year ||

student: year, var nolog reml

If the researcher wants to type directly the command without the necessity of previously calculate
the product term gender * year, the following command can be used alternatively:

xtmixed performance year gender i.gender##c.year || school:
year || student: year, var nolog reml

Figure 12:
gen texpyear = texp*year
xtmixed performance year gender texp genderyear texpyear

|| school: year || student: year, var nolog reml estimates store
finalindependent

Figure 13:
xtmixed performance year gender texp genderyear texpyear ||

school: year, covariance(unstructured) || student: year, covari-
ance(unstructured) var nolog reml

estimates store finalunstructured predict yhatstudent, fitted
level(student)

which defines the variable yhatstudent, which can also be obtained through the following command:
gen yhatstudent = 54.7343514.515641*year - 14.70213*gender 1

1.178656*texp 1 0.6518855*genderyear - 0.0566496*texpyear 1
u00final1 u10final*year1 r0final1 r1final*year

Figure 14:
estat recovariance

Figure 15:
lrtest finalunstructured finalindependent

Figure 16:
sort student year graph twoway connected yhatstudent year if stu-

dent <= 50, connect(L)

Figure 17:
quietly reg performance year gender texp genderyear texpyear

predict yhatreg
graph twoway scatter yhatreg performance || scatter yhatstudent

performance || lfit performance performance ||, legend(label(1
“OLS”) label(2 “HLM3”) label(3 “Observed Values”))
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