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Abstract: The low-rank alternating direction implicit
(LR-ADI) iteration is an effective method for solving large-
scale Lyapunov equations. In the software library pyMOR,
solutions to Lyapunov equations play an important role
when reducing a model using the balanced truncation
method. In this article, we introduce the LR-ADI iteration
as well as pyMOR, while focusing on its features which
are relevant for integrating the iteration into the library.
We present the results of numerical experiments, which
indicate that the iteration’s pure pyMOR implementation
outperforms external libraries when dealing with large
problem dimensions.
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1 Introduction

The basis for numerous practical applications and re-
search areas, such as systems and control theory, con-
sists of modeling large-scale technical and dynamical
systems. Due to the growing complexity of modern
applications, the occurrence of systems of differential
equations that are too large for numerical computations
or simulations is not uncommon. To overcome this is-
sue, a variety of model order reduction methods have

been developed. The main goal of some of these meth-
ods is to approximate a high-dimensional system with a
much smaller one, which can be used effectively in com-
putations but also estimates the input-output behavior
of the original system well. In the process of modeling,
linear time-invariant (LTI) systems of the form

ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t )+Du(t ),
(1)

with A ∈ Rn×n , B ∈ Rn×m , C ∈ Rp×n , and D ∈ Rp×m play
an important role. Furthermore, u(t) ∈ Rm describes
the input, y(t ) ∈Rp the output and x(t ) ∈Rn the state of
the underlying system. An established method which is
used to reduce this type of system is balanced trunca-
tion, which requires solving Lyapunov equations of the
type

AX +X AT +BB T = 0,

ATX +X A+C TC = 0,

as a central component. This type of equation appears
in various applications [2, 25, 26], where the system
matrix A is either small and dense or large and sparse.
When dealing with small Lyapunov equations, it is ap-
propriate to use direct solvers like the Bartels-Stewart
method [6] and Hammarling’s algorithm [15], which are
based on the Schur decomposition of the system matrix
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A. For large Lyapunov equations, it is usually too costly
to compute the Schur decomposition. Additionally, it
would not be possible to store the resulting dense solu-
tion matrix X ∈Rn×n . In order to avoid these issues, it is
wise to use iterative solvers, such as the LR-ADI iteration,
which compute low-rank factors Z ∈ Rn×` with `¿ n
such that the solution is approximated via X ≈ Z Z T.

There exist a variety of software packages, such as
SLICOT [20] and M.E.S.S. [8], which provide solvers for
problems that occur in model order reduction. SLICOT
focuses on Fortran 77 implementations which are rel-
evant for applications in systems and control theory
whereas M.E.S.S. has originally been developed to
solve sparse matrix equations in MATLAB. A model order
reduction framework written in the increasingly popu-
lar programming language Python is represented by the
library pyMOR [5, 18, 23].

This paper revisits the LR-ADI iteration for solving Lya-
punov equations and discusses aspects of implementing
the corresponding algorithm in pyMOR respecting the li-
brary’s design pattern, which enforces the abstraction of
high-dimensional operations. The final implementation
allows the library to work without depending on exter-
nal solvers for large and sparse Lyapunov equations. Ad-
ditionally, we discuss pyMOR’s design paradigm, which
allows developers to easily integrate external solvers
for partial differential equations and extend operations,
such that these can be used in parallel distributed sys-
tems. Finally, we compare the run time of external li-
braries and the implementation that is solely based on
abstract operations available in the pyMOR environment
with numerical experiments. For the comparison, we
use C-M.E.S.S. and Py-M.E.S.S., which represent
implementations of the M.E.S.S. library in C and a
wrapper in Python, respectively.

In Section 2, we introduce balanced truncation, which
serves as a motivation for solving Lyapunov equations.
The LR-ADI iteration is discussed in Section 3, where
we derive real low-rank formulations for the solution
and the residual of Lyapunov equations. Additionally,
we present appropriate choices for shift parameters and
consider generalized Lyapunov equations. In Section 4,
we introduce pyMOR and discuss practical aspects of
implementing the LR-ADI iteration. Numerical exper-
iments, which compare the run time of different im-
plementations available in pyMOR, are presented in Sec-
tion 5. Finally, we provide a summary and outlook in
Section 6.

Throughout this paper we use the following notation:
the symbol R− denotes the strictly negative real num-
bers, whereas C− represents the open left-half plane.
The symbolsΛ(A) andΛ(A,E ) denote the spectra of the

matrix A and the pair of matrices (A,E), respectively.
Furthermore, diag(x1, . . . , xn) is the n ×n diagonal ma-
trix which has the values x1, . . . , xn on its diagonal. For

a complex matrix A ∈Cn×m we define AH := A
T ∈Cm×n

as the complex conjugated transposed matrix.

2 Balanced Truncation
The primary motivation for solving Lyapunov equations
in the context of model order reduction is their rele-
vance for the balanced truncation (BT) method. In this
section, we shortly discuss BT based on [2]. Note that we
focus on continuous-time LTI systems, which are asymp-
totically stable, hence satisfy Λ(A) ⊂ C−. This ensures
that the resulting Lyapunov equations have a unique
positive semidefinite solution. Additionally, we solely
consider homogeneous initial conditions for systems of
differential equations that occur within this article.

Generally speaking, BT determines weakly observable
and controllable states of a system and then eliminates
those appropriately. In order to distinguish between
weakly and strongly observable and controllable states,
some measure for these properties needs to be provided.
The reachability Gramian

P =
∞∫

0

e At BB Te ATt dt , (2)

and observability Gramian

Q =
∞∫

0

e ATtC TCe At dt , (3)

serve exactly this purpose: Small eigenvalues of P and
Q can be associated with weakly controllable and weak-
ly observable states, respectively. In general, there is no
guarantee that weakly controllable states coincide with
those that are weakly observable. For this reason, the
first step in BT consists of determining a matrix T ∈Rn×n

such that

T P T T = T −TQT −1 =Σ=
[
Σ1 0
0 Σ2

]
= diag(σ1, . . . ,σn),

where Σ1 ∈Rr×r and Σ2 ∈R(n−r )×(n−r ). Using this trans-
formation, the original system’s realization, defined by
the tuple

(A,B ,C ,D) ∈Rn×n ×Rn×m ×Rp×n ×Rp×m ,

can be brought into a balanced realization(
T AT −1,T B ,C T −1,D

)
∈Rn×n ×Rn×m ×Rp×n ×Rp×m



GAMMAS 2020 L. Balicki 3

which describes the original dynamical system, but has
the property that weakly controllable states are simulta-
neously weakly observable.

In order to determine the transformation matrix T ,
it is crucial to compute the Gramians from equations
(2) and (3). It can be shown [17] that the Gramians are
solutions to the dual Lyapunov equations

AP +P AT +BB T = 0,

ATQ+QA+C TC = 0.

After computing the Gramians, Cholesky-like factoriza-
tions of the form P = ZP Z T

P and Q = ZQ Z T
Q allow the

formulation of the singular value decomposition

Z T
P ZQ = LΣRT = [

L1 L2

][
Σ1 0
0 Σ2

][
RT

1

RT
2

]
,

where Σ1 ∈ Rr×r and the matrices L1 and R1 have r
columns, respectively. Finally, we can define the trans-
formation matrix via T =Σ− 1

2 RTZ T
Q , where it holds that

T −1 = ZP LΣ− 1
2 and Σ− 1

2 = diag(1/
p
σ1, . . . ,1/

p
σn). As

a next step, we want to truncate the system such that
states that can be associated with the singular values
σr+1, . . . ,σn will be eliminated. Let therefore

TL :=Σ− 1
2

1 RT
1 Z T

Q and TR := ZP L1Σ
− 1

2
1 ,

which define Ã := TL ATR , B̃ := TLB , C̃ :=C TR and thus
the reduced-order model

˙̃x(t ) = Ãx̃(t )+ B̃u(t ),

ỹ(t ) = C̃ x̃(t )+Du(t ),

with Ã ∈Rr×r , B̃ ∈Rr×m , C̃ ∈Rp×r , x̃(t ) ∈Rr , ỹ(t ) ∈Rp .

3 Low-Rank ADI Iteration for
Lyapunov Equations

In practical applications, the coefficient matrix A of a
Lyapunov equation is often sparse and the matrix BB T,
which we refer to as the right-hand side, has a low rank
(i.e., B ∈ Rn×m with m ¿ n). In this case, it can be
shown [3] that the solution of the underlying Lyapunov
equation often has a low numerical rank as well. This
serves as a motivation to approximate it with low-rank
factors Z ∈Rn×` such that `¿ n and X ≈ Z Z T. An iter-
ative approach for solving Lyapunov equations, which
takes advantage of these properties, is the LR-ADI it-
eration. In this section, we introduce the iteration for
standard Lyapunov equations

AX +X AT +BB T = 0, (4)

and later extend the resulting algorithm such that it can
be applied to generalized Lyapunov equations

AX E T +E X AT +BB T = 0, (5)

where E ∈Rn×n is an invertible matrix.

3.1 ADI Iteration

The basis for deriving the LR-ADI iteration usually con-
sists of formulating the two-step iteration [17, 22]

(A+αi I )Xi− 1
2
=−BB T −Xi−1

(
AT −αi I

)
,

(A+αi I )X T
i =−BB T −X T

i− 1
2

(
AT −αi I

)
with complex shift parameters αi ∈ C− and an initial
guess X0 = 0 ∈Rn×n . We discuss an appropriate choice
of shift parameters in Section 3.6. The above expression
is equivalent to the single iteration step

Xi = (A+αi I )−1 (
A−αi I

)
Xi−1

(
A−αi I

)H(A+αi I )−H

−2Re(αi )(A+αi I )−1BB T(A+αi I )−H.
(6)

This formulation neither takes advantage of the right-
hand side’s low rank nor does it compute the desired
low-rank solution factors. In the following paragraphs,
we derive a formulation of the ADI iteration, which tack-
les these issues, and summarize the results in a first
algorithm.

3.2 Low-Rank Solution Factors

By rearranging (6) and considering X0 = Z0Z H
0 with ini-

tial value Z0 = [ ] ∈Cn×0, we obtain the expression

Zi Z H
i =

(
(A+αi I )−1 (

A−αi I
)

Zi−1

)
×

(
(A+αi I )−1 (

A−αi I
)

Zi−1

)H

+
(√−2Re(αi )(A+αi I )−1B

)
×

(√−2Re(αi )(A+αi I )−1B
)H

.

A single low-rank factor is then given by

Zi =
[√−2Re(αi )(A+αi I )−1B ,

(A+αi I )−1 (
A−αi I

)
Zi−1

]
.

Repeatedly replacing Z j for j = i −1, . . . ,0 on the right-
hand side of the expression above yields

Zi =
[√−2Re(αi )(A+αi I )−1B , . . . ,√−2Re(α1)Ti · · ·T2(A+α1I )−1B

]
,

(7)
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Algorithm 1 LR-ADI Iteration Version 1

Input: A ∈Rn×n , B ∈Rn×m , {α1, . . . ,αs} ⊂C−
Output: Z ∈Cn×sm

1: solve (A+α1I )V1 = B for V1

2: Z1 =
√−2Re(α1)V1

3: for i = 2, . . . , s do
4: solve (A+αi I )V̂ =Vi−1 for V̂
5: Vi =Vi−1 −

(
αi +αi−1

)
V̂

6: Zi =
[

Zi−1,
√−2Re(αi )Vi

]
7: end for
8: Z = Zs

where T j := (A+α j I )−1(A −α j I ). Considering the fact

that the matrices (A±αI )±1 and (A±βI )±1 commute
for arbitrary α,β ∈C as long as the inverse exists [17], al-
lows us to rearrange the factors occurring in the product
Ti · · ·T2. Reversing the order of the shifts yields a more
beneficial expression for (7) with

Z1 =
√−2Re(α1)V1,

Zi =
[

Zi−1,
√−2Re(αi )Vi

]
, (8)

where

V1 = (A+α1I )−1B ,

Vi =
(

A−αi−1I
)

(A+αi I )−1Vi−1 (9a)

=Vi−1 −
(
αi +αi−1

)
(A+αi I )−1Vi−1. (9b)

This leads to our first formulation of the LR-ADI iter-
ation, which requires the solution of a shifted linear
system with multiple right-hand sides in each step of
the iteration and is presented in Algorithm 1. Note that
m columns are added to the solution factor in each itera-
tion step since Vi ∈Cn×m . A fundamental issue with this
algorithm is the lack of information about the quality of
the approximation Z Z H, and in connection to that, it
is unclear how many iteration steps s are necessary in
order to obtain a sufficiently accurate approximation. A
commonly used indicator for a high-quality approxima-
tion is a small Lyapunov residual

Ri = AXi +Xi AT +BB T.

Note that the Lyapunov equation is equivalent to a sys-
tem of linear equations [2]. Due to the residual’s relation
to the error of the currently computed approximation
[1], a stopping criterion for the LR-ADI iteration based
on the residual is an obvious choice. Evaluating Ri , as
stated above, requires several large matrices to be multi-
plied. Since the computational effort for the multiplica-
tions is too large, we present a more favorable approach
to evaluate the residual in the following subsection.

3.3 Low-Rank Residual Factors

Results presented in [10] have shown that not only the
solution of a Lyapunov equation but also its residual has
a low rank. In particular, it can be shown that the rank of
the Lyapunov residual Ri coincides with the rank of the
right-hand side BB T if it holds {α1, . . . ,αi }∩Λ(A) = ;.
This serves as a motivation to analyze low-rank residual
factors Wi ∈Cn×m such that Ri =Wi W H

i .
In order to derive an expression for Wi , we consider

the following formula which is a result of subtracting
the solution X from equation (6)

Xi −X = (A+αi I )−1
((

A−αi I
)

Xi−1

(
A−αi I

)H

−2Re(αi )BB T
)
(A+αi I )−H −X

= (A+αi I )−1
((

A−αi I
)

Xi−1

(
A−αi I

)H

+ (
αi +αi

)(
AX +X AT

)
− (A+αi I )X (A+αi I )H

)
(A+αi I )−H

= (A+αi I )−1 (
A−αi I

)
(Xi−1 −X )

× (
A−αi I

)H(A+αi I )−H.

Repeatedly plugging this into the expression

Ri = A(Xi −X )+ (Xi −X )AT =Wi W H
i

leads to

Wi W H
i = A

(
i∏

k=1
Tk

)
(−X )

(
i∏

k=1
T H

k

)

+
(

i∏
k=1

Tk

)
(−X )

(
i∏

k=1
T H

k

)
AT

=
(

i∏
k=1

Tk

)
BB T

(
i∏

k=1
T H

k

)
,

with T j = (A+α j I )−1(A −α j I ) as previously defined.
Clearly, a single low-rank residual factor can then be
written as

Wi =
(

i∏
k=1

Tk

)
B.

Reconsidering the Vi defined in (9a) allows us to de-
rive the following expression by repeatedly replacing the
Vi−1 and afterwards rearranging the remaining factors
appropriately

Vi =
(

A−αi−1I
)

(A+αi I )−1Vi−1

= (A+αi I )−1

(
i−1∏
k=1

Tk

)
B

= (A+αi I )−1Wi−1 (10a)

= (
A−αi I

)−1Wi . (10b)
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Algorithm 2 LR-ADI Iteration Version 2

Input: A ∈Rn×n , B ∈Rn×m , {α1, . . . ,αs} ⊂C−, 0 < ε¿ 1
Output: Z ∈Cn×sm

1: Z0 = [ ], W0 = B , i = 1

2: while
∥∥∥W H

i−1Wi−1

∥∥∥> ε‖B TB‖ do

3: solve (A+αi I )Vi =Wi−1 for Vi

4: Wi =Wi−1 −2Re(αi )Vi

5: Zi =
[

Zi−1,
√−2Re(αi )Vi

]
6: i = i +1
7: end while
8: Z = Zs

Finally, we obtain the formulation

Wi =
(

A−αi I
)

Vi = (A+αi I −2Re(αi )I )Vi

=Wi−1 −2Re(αi )Vi ,
(11)

for the residual factors.
The major benefit of expressing the residual as a prod-

uct of two low-rank factors is that for several matrix
norms it holds [10]

‖Ri‖ =
∥∥∥Wi W H

i

∥∥∥=
∥∥∥W H

i Wi

∥∥∥ .

Since W H
i Wi ∈Rm×m is a small matrix, eigenvalues can

be cheaply computed, which allows fast evaluation of
the matrix norm, for instance when using ‖·‖2.

Thus, a stopping criterion for the LR-ADI iteration is
provided by the relative residual

‖Ri‖
‖R0‖

=

∥∥∥W H
i Wi

∥∥∥∥∥∥B TB
∥∥∥ ≤ ε, (12)

where 0 < ε¿ 1. Integrating this expression into the
iteration leads to an improved version of Algorithm 1
summarized in Algorithm 2. Note that for a clearer pre-
sentation we consistently assume that the presented
algorithms require exactly s iteration steps until the con-
vergence criterion is fulfilled.

3.4 Real Low-Rank Factors

So far, we have considered the matrices Wi and Zi to be
complex, since the shift parameters {α1, . . . ,αs} are com-
plex as well. In [9], real formulations for these low-rank
factors have been derived, based on the assumption that
complex shifts only appear in pairs of complex conju-
gates {αi ,αi+1 =αi }.

In the following, we assume that the LR-ADI iteration
is in the k-th step and that the previously computed
residual factor Wk−1 and solution factor Zk−1 are real-
valued. Letting complex shift parameters appear as pairs

of complex conjugates exclusively, we now derive real
formulations for Wk and Zk or Wk+1 and Zk+1, respec-
tively, by analyzing every relevant case that can occur
within the iteration:

1. Case αk ∈R−: Due to (10a) and (10b) it holds

Wk = (A−αk I )(A+αk I )−1Wk−1.

Since Wk−1 is a real matrix and αk ∈ R− we obtain
Wk ∈ Rn×m . Hence, equation (10b) also provides a
real-valued representation for Vk . Finally, from (8)
we immediately obtain that the solution factor Zk is
real-valued as well.

2. Case αk ∈C− \R, αk+1 =αk : Splitting equation (10a)
into its real and imaginary part yields

Wk−1 = (A+αk I )Vk

= (A+Re(αk )I + ı Im(αk )I )

× (Re(Vk )+ ı Im(Vk ))

= A Re(Vk )+Re(αk )Re(Vk )− Im(αk ) Im(Vk )

+ ı(Im(αk )Re(Vk )+ A Im(Vk )

+Re(αk ) Im(Vk )).

According to our assumption we deduce

0 = Im(Wk−1)

= Im(αk )Re(Vk )+ A Im(Vk )+Re(αk ) Im(Vk )

= (
A+αk I

)
Im(Vk )+ Im(αk )Vk ,

which is equivalent to

0 = 1

Im(αk )
Im(Vk )+ (

A+αk I
)−1Vk

in the currently discussed case. Usingαk+1 =αk and
(9b), we obtain

Vk+1 =Vk −2αk

(
A+αk I

)−1Vk

=Vk +2
Re(αk )− ı Im(αk )

Im(αk )
Im(Vk )

=Vk +2
Re(αk )

Im(αk )
Im(Vk ).

(13)

Finally, equation (11) yields

Wk+1 =Wk −2Re(αk )Vk+1

=Wk−1 −2Re(αk )Vk −2Re(αk )Vk+1

=Wk−1

−2Re(αk )

(
Vk +Vk +

2Re(αk )

Im(αk )
Im(Vk )

)
=Wk−1

−4Re(αk )

(
Re(Vk )+ Re(αk )

Im(αk )
Im(Vk )

)
,

(14)
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where clearly Wk+1 ∈Rn×m .
Based on the derived real-valued expression for the
residual factor, we can show that Zk+1 has a real rep-
resentation as well. Let us therefore consider equa-
tion (8), which clearly yields

Zk+1 =
[

Zk−1,
√−2Re(αk )Vk ,

√−2Re(αk+1)Vk+1

]
.

By observing

VkVk
T +VkV T

k = 2Re(Vk )Re(Vk )T

+2Im(Vk )Im(Vk )T,

introducing the notation δk := Re(αk )
Im(αk ) , and consider-

ing (13) we obtain

Xk+1 = Zk+1Z H
k+1

= Zk−1Z T
k−1 −2Re(αk )

(
VkV

T
k +Vk+1V

T
k+1

)
= Zk−1Z T

k−1

−4Re(αk )
(
Re(Vk )Re(Vk )T + Im(Vk )Im(Vk )T

+δk Im(Vk )V T
k +δkVk Im(Vk )T

+2δ2
k Im(Vk )Im(Vk )T

)
= Zk−1Z T

k−1

−4Re(αk )
(
(Re(Vk )+δk Im(Vk ))

× (Re(Vk )+δk Im(Vk ))T

+
(
δ2

k +1
)

Im(Vk )Im(Vk )T
)
.

We can now extract a single real solution factor for a
double iteration step, which is given by

Zk+1 =
[

Zk−1, 2
√−Re(αk )(Re(Vk )+δk Im(Vk )),

2

√
−Re(αk )

(
δ2

k +1
)

Im(Vk )
]

.

Using the fact that W0 = B ∈ Rn×m and considering
Z0 = [ ] ∈ Rn×0, we can use induction to show that we
always obtain real-valued iterates Wi and Zi when shift
parameters appear in pairs of complex conjugates. In
conclusion, the presented cases yield that real shift pa-
rameters always result in real residual and solution fac-
tors. Additionally, when a pair of complex shift param-
eters {αk ,αk+1 = αk } occurs, a double step can be per-
formed in the iteration, in order to obtain real-valued
low-rank factors.

These results allow us to formulate the final version of
the LR-ADI iteration for standard Lyapunov equations,
which we summarize in Algorithm 3. Using real low-
rank factors has two significant benefits: For one, real
values require about half as much storage as complex

Algorithm 3 LR-ADI Iteration Version 3

Input: A ∈Rn×n , B ∈Rn×m , {α1, . . . ,αs} ⊂C−, 0 < ε¿ 1
Output: Z ∈Rn×sm

1: Z0 = [ ], W0 = B , i = 1
2: while ‖W T

i−1Wi−1‖ > ε‖B TB‖ do
3: solve (A+αi I )Vi =Wi−1 for Vi

4: if Im(αi ) = 0 then
5: Wi =Wi−1 −2Re(αi )Vi

6: Zi =
[

Zi−1,
√−2Re(αi )Vi

]
7: i = i +1
8: else
9: δi = Re(αi )

Im(αi ) , βi = 2
√−Re(αi )

10: Wi+1 =Wi−1 +β2
i (Re(Vi )+δi Im(Vi ))

11: Zi+1 =
[

Zi−1, βi (Re(Vi )+δi Im(Vi )),

βi

√
δ2

i +1Im(Vi )
]

12: i = i +2
13: end if
14: end while
15: Z = Zs

values and secondly, whenever a pair of complex shift
parameters occurs, only one instead of two shifted linear
systems has to be solved within the iteration in order to
perform two steps.

3.5 Low-Rank ADI Iteration for Generalized
Lyapunov Equations

As already pointed out, we want to extend Algorithm 3
such that it can be applied to generalized Lyapunov
equations

AX E T +E X AT +BB T = 0, (15)

where E ∈ Rn×n is an invertible matrix. This type of
equation plays an important role when applying the BT
method to generalized LTI systems of the type

E ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t )+Du(t ).
(16)

We formulate equation (15) as a standard Lyapunov
equation

ÃX +X ÃT + B̃ B̃ T = 0,

with Ã := E−1 A and B̃ := E−1B . Let W̃i := EWi . We ob-
serve that applying Algorithm 3 to the transformed gen-
eralized Lyapunov equation yields the following linear
system in Line 3 of the iteration(

Ã+αi I
)

Vi =Wi−1 ⇐⇒ (A+αi E)Vi = W̃i−1.
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Algorithm 4 LR-ADI Iteration for generalized Lyapunov
equations

Input: A,E ∈ Rn×n , B ∈ Rn×m , {α1, . . . ,αs} ⊂ C−, 0 < ε¿
1
Output: Z ∈Rn×sm

1: Z0 = [ ], W0 = B , i = 1
2: while ‖W T

i−1Wi−1‖ > ε‖B TB‖ do
3: solve (A+αi E)Vi =Wi−1 for Vi

4: if Im(αi ) = 0 then
5: Wi =Wi−1 −2Re(αi )EVi

6: Zi =
[

Zi−1,
√−2Re(αi )Vi

]
7: i = i +1
8: else
9: δi = Re(αi )

Im(αi ) , βi = 2
√−Re(αi )

10: Wi+1 =Wi−1 +β2
i E(Re(Vi )+δi Im(Vi ))

11: Zi+1 =
[

Zi−1, βi (Re(Vi )+δi Im(Vi )),

βi

√
δ2

i +1Im(Vi )
]

12: i = i +2
13: end if
14: end while
15: Z = Zs

Adapting Line 5 and Line 10 of the algorithm accordingly,
results in the expressions

Wi =Wi−1 −2Re(αi )Vi ⇐⇒ W̃i = W̃i−1 −2Re(αi )EVi

and

Wi+1 =Wi−1 −β2
i (Re(Vi )+δi Im(Vi ))

⇐⇒ W̃i+1 = W̃i−1 −β2
i E(Re(Vi )+δi Im(Vi ))

where W̃0 = EW0 = EB̃ = B . Using the derived expres-
sions, we can formulate Algorithm 4, which is a slightly
altered version of Algorithm 3 and can be applied to
generalized Lyapunov equations.

3.6 Shift Parameters

A fundamental component of the iteration, which we
did not discuss yet, is the choice of the shift parame-
ters {α1, . . . ,αs}. We shortly discuss approaches for com-
puting such parameters, while focusing on generalized
Lyapunov equations.

It can be shown [17, 24] that a superlinear conver-
gence of the LR-ADI iteration can be achieved by using
shifts with a negative real part. Furthermore, shift pa-
rameters that lead to a fast convergence can be obtained
by solving the ADI shift parameter problem [27]

{α1, . . . ,αs} = argmin
{µ1,...,µs }⊂C−

(
max

λ∈Λ(A,E)

∣∣∣∣∣ s∏
k=1

λ−µk

λ+µk

∣∣∣∣∣
2)

. (17)

Since this min-max problem requires knowledge about
the spectrumΛ(A,E ), the computational effort for com-
puting exact solutions of equation (17) is too large in
most cases. Nonetheless, several approaches that pro-
vide approximate solutions to the ADI shift parameter
problem have been established. These are usually based
on computing a certain amount of Ritz values of E−1 A
and A−1E , which can then be used to estimate a domain
Ω⊂C− such thatΛ(A,E ) ⊂Ω. This allows for an approx-
imation of equation (17) [17, 24]. Alternatively, the Ritz
values are used in heuristic approaches (e.g., in [22])
where (17) is evaluated by using several combinations
of possible shift parameters.

A major drawback of these approaches is that several
relevant parameters have to be specified. For instance,
the amount of Ritz values that need to be computed in
order to obtain high-quality shifts strongly depends on
the underlying problem. A more user-friendly approach
was introduced in [11], whereas further variants of the
method have been discussed in [17]. The main idea of
the approach is to use eigenvalues generated by low-
dimensional subspaces as shift parameters, instead of
computing Ritz values of large matrices such as E−1 A.
Despite the lack of a deep theoretical understanding,
these types of shift parameters have performed well in
a variety of numerical experiments. Accordingly, we
chose to implement variants of this approach for the
pyMOR project and take a closer look at the approach
in the following paragraphs. Note that we focus solely
on variants that use the iterate Vi , which allows for a
clearer structure in the subsequent lines as well as in the
implementation.

An initial set of shift parameters is provided by

{α1, . . . ,αk1
} =Λ(B̂ T AB̂ , B̂ TEB̂)∩C−,

where the columns of B̂ form an orthonormal basis for
span{B}. Since we consider B ∈ Rn×m with m ¿ n, the
orthonormal basis can be computed in an appropriate
time frame. Additionally, it holds that B̂ T AB̂ and B̂ TEB̂
are small square matrices, which allows for solving the
underlying generalized eigenvalue problem in a negligi-
bly small period of time as well. If none of the computed
eigenvalues lie in C−, we use a randomly generated ma-
trix Q and initialize the shifts with

{α1, . . . ,αk1
} =Λ(QT AQ,QTEQ)∩C−.

Note that the authors in [11] and [17] suggest to reflect
unstable shift parameters across the imaginary axis in-
stead of computing new shifts using the matrix Q. How-
ever, the implementation of the LR-ADI iteration in
Py-M.E.S.S. is based on the variant which we stated
first. In order to present a meaningful comparison of
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the pyMOR implementation and the Py-M.E.S.S. vari-
ant in Section 5, we decided to use the approach based
on the projection with the randomly generated matrix Q
in pyMOR. After k1 steps of the iteration, new shifts can
be computed by one of the following options using the
iterates Vi :

1. Use {αk1+1, . . . ,αk2
} = Λ(Ṽ T

k1
AṼk1

,Ṽ T
k1

EṼk1
)∩C−,

with the columns of Ṽk1
as an orthonormal basis

for span{Re(Vk1
), Im(Vk1

)}.

2. Use {αk1+1, . . . ,αk2
} = Λ(Ṽk1

(u)
T

AṼk1
(u),Ṽk1

(u)
T

E

Ṽk1
(u))∩C−, with the columns of Ṽk1

(u) as an or-
thonormal basis for span{Vk1

(u)} and

Vk1
(u) := [Vk1−u , . . . ,Vk1

].

If none of these variants yield new shifts, the previous
set of shift parameters can be reused. In the case u ≥ k1,
we use Vk1

(u) := [V1, . . . ,Vk1
]. Note that in the second

approach it is possible to use the last um columns added
to the solution factor instead of using stored values of
the iterates Vi . In the case that αk1−u−1 = αk1−u , it is
wise to consider the last u(m +1) columns instead.

4 Software and Implementation
Using the rather theoretical results summarized in the
previous sections, we discuss the implementation of
the LR-ADI iteration in the following paragraphs. In the
course of this, we introduce the pyMOR framework and
briefly consider practical aspects of the implementation.

4.1 pyMOR

The software library pyMOR provides a framework for
model order reduction applications in the programming
language Python. Amongst others, reduced basis meth-
ods and system-theoretic model order reduction ap-
proaches such as balanced truncation have been im-
plemented. One of the central design goals of pyMOR
is the realization of model order reduction algorithms
such that external libraries for solving partial differential
equations (PDE) can be easily integrated into the library.
In connection to that, the implementations should be
formulated in a generic way such that the algorithms do
not have to be reimplemented for each individual PDE
solver.

In order to achieve these goals, all implementations in
pyMOR follow a strict design paradigm, which enforces
the usage of abstract interfaces for any high-dimension-
al objects (e.g., operators, vectors, discretizations, . . . )
that occur in the process of model order reduction. In
the currently discussed context, interfaces are realized

via abstract base classes (ABCs). For instance, the ABCs
VectorArrayInterface and OperatorInterface in-
dicate what kind of methods have to be provided by
Operator and VectorArray objects in pyMOR. The ex-
act behavior of these objects depends on their origin,
which is usually the corresponding PDE library. For the
PDE solvers FEniCS [14], deal.II [12], DUNE [13] and
NGSolve [19] support has already been added to pyMOR.
Accordingly, there exist implementations, so-called spe-
cializations of the underlying ABCs, that specify the be-
havior of Operator and VectorArray objects for each
of these solvers. Most importantly, algorithms that are
implemented using the previously mentioned interface
classes can afterward be executed with any suitable spe-
cialization of the underlying ABC. Thus, model order
reduction algorithms do not have to be implemented
for every single external PDE solver, but only once using
the interface classes for operators and vectors. In the
following, we refer to these implementations as abstract
implementations.

Furthermore, support for new PDE solvers can be eas-
ily added by specifying a few specializations for opera-
tors and vectors. Another benefit of the presented ap-
proach evolves around the parallelism of pyMOR’s im-
plementations. Since the specializations for the high-
dimensional objects from the PDE libraries are based
on interfaces provided by just these, the responsibility
for a parallel implementation is transferred to the exter-
nal library. Additionally, there exist operators in pyMOR,
which easily enable parallel distributed computations
with pyMOR.

4.2 Low-Rank ADI Iteration in pyMOR

In order to respect the pyMOR design paradigm intro-
duced in the previous subsection, implementations for
the library have to preserve the high level of abstrac-
tion. For the LR-ADI iteration, two abstract pyMOR com-
ponents play an important role. One of them is the
OperatorInterface with which the matrices A and E
from Algorithm 4 can be implemented. In order to deal
with the right-hand side B , the iterates Vi and Wi , as well
as the solution factor Zi , the VectorArrayInterface
can be used.

An algorithm that has already been integrated into the
pyMOR library is the Gram-Schmidt Orthonormalization
Method. The algorithm can be applied to specializations
of the VectorArrayInterface and plays an important
role when generating shift parameters, as suggested in
Section 3.6. Another question which arises in the pro-
cess of implementing the LR-ADI iteration is, how to
deal with standard and generalized Lyapunov equations,
respectively. Using the IdentityOperator provided by
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pyMOR, standard Lyapunov equations can be solved with
Algorithm 4 by simply replacing the matrix E with the
identity. When applying the IdentityOperator to an
object, it will be returned without further computations.

Besides all of the high-dimensional operations, there
exist a few properties within the algorithm which can
not be computed using abstract implementations avail-
able in pyMOR. Examples for these properties are the
eigenvalues, which are crucial in the process of gener-
ating shift parameters. Additionally, the spectral norm
needs to be computed in order to evaluate the stop-
ping criterion of the iteration. Since these computations
use small matrices (e.g., B̂ T AB̂ , B̂ TEB̂ ,W T

i Wi ∈ Rm×m ,
m ¿ n), non-abstract implementations can be used
without violating the design standards. For the men-
tioned problems, the popular libraries NumPy and SciPy
with the suitable functions numpy.linalg.norm and
scipy.linalg.eigvals can be used.

4.3 C-M.E.S.S. and Py-M.E.S.S.

M.E.S.S. [8] is the successor of the Lyapack toolbox
for MATLAB, which has been developed to solve large,
sparse matrix equations. A version of the M.E.S.S. li-
brary, written in the programming language C, is repre-
sented by C-M.E.S.S., which in particular provides an
implementation of the LR-ADI iteration. A beneficial
property of Python is that C code can be easily executed
from Python scripts. Py-M.E.S.S. takes advantage of
this property and represents a link between Python and
the C-M.E.S.S. implementation. Accordingly, the LR-
ADI iteration can either be realized using a pure pyMOR
implementation or by accessing the C-M.E.S.S. library
via Py-M.E.S.S.. The latter approach has already been
integrated into the pyMOR library. In order to be con-
sistent with the pyMOR design, C-M.E.S.S. is forced
to use the functions for multiplying matrices and solv-
ing linear systems which are provided by the operators
defined in the pyMOR library. This approach requires
transferring matrices between Py-M.E.S.S. and pyMOR
(i.e. VectorArrays) in each step of the iteration, which
potentially becomes expensive for larger dimensions.
Accordingly, we discuss a few numerical experiments
which compare the run time of a pure pyMOR approach
with the abstract Py-M.E.S.S. implementation.

5 Numerical Experiments

Since the performance of pyMOR and C-M.E.S.S. great-
ly depends on implementations of external software
components like BLAS and LAPACK, we used the same
versions of relevant software for all numerical tests. In

Table 1 – Software and versions

Software Version

Python 3.6
pyMOR Forked repository [5]
C-/Py-M.E.S.S. 1.0.0
BLAS OpenBLAS 0.2.18
LAPACK 3.6
SuiteSparse 4.4.1
NumPy 1.15.2
SciPy 1.1.0
Operating system Ubuntu 16.04

Table 2 – Hardware

Component Type

Model HP 250 G6 Notebook PC

Processor Intel® Core™ i5-7200U CPU
@ 2.50GHz, 2 701 MHz, 2 Core,
4 logical Processors,
hyper-threading activated

RAM 8.00 GB
Cache 3 072 KB

order to ensure the reproducibility of the experiments,
we summarized the versions in Table 1. Additionally,
hardware components are just as relevant for the out-
come of the experiments as the software versions. Ac-
cordingly, the used hardware is summarized in Table 2.
The experiments introduced in the following subsec-
tions were executed five times, where we consistently
considered the shortest run time for the comparisons.
The iteration terminated once the relative Lyapunov
residual specified in equation (12) was lower than 10−10.
Note that both approaches discussed in the subsequent
paragraphs require the same amount of iteration steps
and use shift parameters generated by projections using
the iterate Vi as described in Section 3.6. Additionally,
we focus on the equations introduced in (4) and (5) for
the experiments and do not use Py-M.E.S.S. directly,
but rather the adapted version, which uses pyMOR’s bind-
ings for Py-M.E.S.S.. Experiments discussed in [4]
show that using Py-M.E.S.S. directly, results in drasti-
cally shorter run times compared to the approaches pre-
sented in the following subsections. However, accessing
Py-M.E.S.S. directly does not preserve the high level
of abstraction, since Py-M.E.S.S. can not deal with
most objects created by external PDE solvers without
further modifications.
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5.1 Standard Lyapunov Equations

For the first experiment, we consider the heat equation
on a one-dimensional segment [5]

∂

∂t
T (z, t ) = ∂2

∂z2 T (z, t ), t > 0, z ∈ (0,1),

ŷ(t ) = T (1, t ),

with the output ŷ(t ), input u(t ) and the following bound-
ary conditions

∂

∂z
T (0, t ) = T (0, t )−u(t ),

∂

∂z
T (1, t ) =−T (1, t ).

Applying the finite differences method using central dif-
ferences yields the LTI system

ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t ),

defined by matrices A ∈ Rn×n , B ∈ Rn×1 and C ∈ R1×n ,
which we use to test the implementations for the LR-ADI
iteration. In the following, the values which define the
size of the system’s matrices lie between n = 2000 and
n = 300000.

In Figure 1(a), we see that the run times for both
approaches behave very similarly. Overall, the inter-
face to the Py-M.E.S.S. implementation is superior
in this experiment. The largest time difference occurs
at n = 50000 where Py-M.E.S.S. is 1.24 seconds faster
than the pure pyMOR approach. Only for n = 140000,
we can observe a better performance of the new imple-
mentation with an insignificant benefit of 0.08 seconds.
Looking at the relative run time presented in Figure 1(b),
we observe that Py-M.E.S.S. is at most 61% faster than
the pyMOR implementation. After this peak at n = 30000,
the relative run time continuously decreases.

The implementation based on Py-M.E.S.S. requires
copying the iterate Vi and the residual factor Wi in each
step of the iteration. Additionally, the solution factor
Zi is copied once after the algorithm terminates. Since
the matrix B , and thus Vi and Wi , consist of a single col-
umn in this experiment, the amount of data that needs
to be copied is relatively low. This serves as an expla-
nation for the good performance of the Py-M.E.S.S.
approach. Furthermore, an observation worth noting is
that the relative run time clearly approaches 1 for large
problem dimensions n. We can explain this behavior
by considering the cache size mentioned in Table 2: For
large n, either implementation’s performance is limited
by the amount of available memory, and thus, similar

run times are achieved by both approaches when con-
sidering large problem dimensions. Another fact that ex-
plains this observation is that the pure pyMOR approach
does not require copies, in contrast to the Py-M.E.S.S.
variant. This drawback has a large impact on the perfor-
mance, especially when considering high-dimensional
problems. Nonetheless, the question remains as to why
the implementation based on Py-M.E.S.S. performs
better in the presented experiment. Regarding the an-
swer to this question, the most relevant aspect evolves
around the parallelism in the presented implementa-
tions: The Py-M.E.S.S. variant uses a single thread
throughout the entire computation, whereas the pyMOR
implementation operates with multiple threads. Espe-
cially for small problem dimensions, the initialization
of multiple threads creates a relatively large overhead,
which outweighs the performance gained through the
parallelization in this experiment. For larger problems,
the iteration does not significantly benefit from paral-
lelization either, due to the previously mentioned fact
that the performance is limited by the available memory.
Finally, these connections serve as an explanation for
the resulting run times.

5.2 Symmetric Generalized Lyapunov
Equations

The numerical experiments in this subsection are based
on the Steel Profile benchmark from [7, 21]. In this
benchmark, an LTI system of the type

E ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t ),

occurs in the process of modeling optimal cooling of
steel profiles. For the system matrices it holds E = E T,
A = AT ∈Rn×n and B ∈Rn×7. Note that this benchmark
is only available with a few different values for n. Ac-
cordingly, we present all of the resulting run times in
Table 3.

Looking at the results, we observe that the approach
using Py-M.E.S.S. only performs better for the matrix
size n = 1357. In all of the other cases, a shorter run time
is achieved by the pure pyMOR implementation, where
the difference does not exceed 4%.

The iterates Vi and Wi have significantly more col-
umns, and thus, it requires more time to copy them.
This provides an explanation for the superiority of the
pyMOR approach compared to the Py-M.E.S.S. variant.
Note that in each step of the iteration, a fixed number of
columns is added to the solution factor Zi , which also
needs to be copied once the algorithm terminates.
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Figure 1 – Results for standard Lyapunov equations

Table 3 – Run times for symmetric generalized Lyapunov equations

n pyMOR run time [s] py-M.E.S.S. run time [s] Relative run time Iteration steps

1357 0.28 0.27 1.04 49
5177 1.26 1.29 0.98 56

20209 8.29 8.63 0.96 70
79841 78.07 79.87 0.98 77

5.3 Unsymmetric Generalized Lyapunov
Equations

In this subsection, an experiment based on the oscillator
model with ñ ∈Nmasses and three dampers introduced
in [26] is discussed. In this model, a second order LTI
system of the type

M q̈(t )+Dq̇(t )+K q(t ) = Fu(t ),

y(t ) =C1q(t )+C2q̇(t ),

with M ,D,K ∈Rñ×ñ , F ∈Rñ×m̃ and C1,C2 ∈Cp̃×ñ occurs
which can be written as an equivalent generalized first-
order LTI system of the order n = 2ñ as described in
equation (16). In our case, the matrices defining the
Lyapunov equation are given by

E =
[

I 0
0 M

]
∈R2ñ×2ñ , A =

[
0 I
−K −D

]
∈R2ñ×2ñ

and

B =
[

0
F

]
∈R2ñ×m̃ .

Other than stated in [26], the matrices F and D are de-
fined as

F =


1 0 0
1 1 0
1 1 1

1 1 1

 ∈Rñ×3

and

D = 0.02M +0.5K ∈Rñ×ñ ,

in our experiments, which allows for a more convenient
implementation of the model. Note that every entry in

1 ∈R ñ−1
3 has the value 1 and it holds ñ−1

3 ∈N due to the
special structure of the system. Furthermore, we used
values between n = 1502 and n = 300002 for the tests.

Analogous to Section 5.1, the run times for both vari-
ants behave similarly, with the significant difference that
pyMOR performs better than the Py-M.E.S.S. approach
in the experiment presented in this subsection. Espe-
cially for larger n, the pure pyMOR variant visibly (see Fig-
ure 2(a)) outperforms its alternative, where the largest
difference is achieved at n = 276002 with 7.87 seconds.
Only for the values n = 1502,3002,24002,30002, we
observe that the Py-M.E.S.S. implementation has a
shorter run time with a maximal difference of 0.048 sec-
onds.
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Figure 2 – Results for generalized Lyapunov equations

In Figure 2(b) we observe that the approach based on
Py-M.E.S.S. is approximately 3% faster than pyMOR for
the value n = 1502. Between n = 30002 and n = 300002,
there is only small fluctuations within the relative run
time where pyMOR is consistently 6% to 11% faster than
the Py-M.E.S.S. implementation.

Overall, the resulting run times can be explained once
again by considering the amount of copies that the ap-
proach based on Py-M.E.S.S. needs to perform. For
one, the matrices Vi and Wi have more columns in the
currently discussed case compared to the experiment
performed in Section 5.1. Additionally, significantly
more iteration steps were necessary in this experiment
in order to achieve convergence of the LR-ADI itera-
tion. Since copies are performed in each step of the
algorithm and the solution factor Zi , which needs to be
copied as well, becomes larger in every iteration step,
the Py-M.E.S.S.-based implementation clearly has a
disadvantage in this setting.

6 Conclusion

The LR-ADI iteration is an efficient approach to approx-
imate the solution of Lyapunov equations, which ben-
efits from low-rank formulations for the solution and
residual. Additionally, the method benefits from real
formulations for the low-rank factors via double itera-
tion steps. Regarding the pyMOR library, an implementa-
tion based on Py-M.E.S.S. only performs well for Lya-
punov equations where the matrix B has few columns,
and the amount of iteration steps needed for conver-
gence is rather low. Additionally, there are a few more
options available in Py-M.E.S.S., which enable some
fine-tuning of the LR-ADI iteration for certain problems.

Most importantly, the pure pyMOR implementation of
the LR-ADI iteration allows for solving large-scale Lya-
punov equations in pyMOR without the need for external
libraries, such as Py-M.E.S.S..

Another type of matrix equation which occurs in mod-
el order reduction and plays an important role in linear-
quadratic Gaussian balanced truncation [16] is the alge-
braic Riccati equation

ATX +X A−X BB TX +C TC = 0.

Since pyMOR relies on Py-M.E.S.S. for solving these
equations, an algorithm that approximates low-rank so-
lutions for these, using the interface-based algorithms
available in pyMOR, could be integrated in future devel-
opment.
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