On γ-hyperelliptic Weierstrass semigroups of genus $6 \gamma+1$ and 6γ

Jiryo Komeda*

Department of Mathematics, Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology, Atsugi, 243-0292, Japan
and
Akira Ohbuchi ${ }^{\dagger}$
Department of Mathematics, Faculty of Integrated Arts and Sciences Tokushima University, Tokushima, 770-8502, Japan

Let (C, P) be a pointed non-singular curve such that the Weierstrass semigroup $H(P)$ of P is a γ-hyperelliptic numerical semigroup. Torres showed that there exists a double covering $\pi: C \longrightarrow C^{\prime}$ such that the point P is a ramification point of π if the genus g of C is larger than or equal to $6 \gamma+4$. Kato and the authors also showed that the same result holds in the case $g=6 \gamma+3$ or $6 \gamma+2$. In this paper we prove that there exists a double covering $\pi: C \longrightarrow C^{\prime}$ satisfying the above condition even if $g=6 \gamma+1,6 \gamma$ and $H(P)$ does not contain 4 .

2010 Mathematics Subject Classification: 14H55, 14H30, 14J26
Key words: Weierstrass semigroup, Double cover of a curve, Rational ruled surface

1 Introduction

Let C be a complete nonsingular irreducible curve over an algebraically closed field k of characteristic 0 , which is called a curve in this paper. For a point P of C, we set
(1) $H(P)=\left\{\alpha \in \mathbb{N}_{0} \mid\right.$ there exists $f \in k(C)$ with $\left.(f)_{\infty}=\alpha P\right\}$,

[^0]which is called the Weierstrass semigroup of P where \mathbb{N}_{0} denotes the additive monoid of non-negative integers and $k(C)$ is the field of rational functions on C. A submonoid H of \mathbb{N}_{0} is called a numerical semigroup if its complement $\mathbb{N}_{0} \backslash H$ is a finite set. The cardinality of $\mathbb{N}_{0} \backslash H$ is called the genus of H, which is denoted by $g(H)$. It is known that the Weierstrass semigroup of a point on a curve of genus g is a numerical semigroup of genus g. For a numerical semigroup H we denote by $d_{2}(H)$ the set consisting of the elements h with $2 h \in H$. Then $d_{2}(H)$ is also a numerical semigroup. Let $\pi: C \longrightarrow C^{\prime}$ be a double covering of a curve with a ramification point P. Then it is proved that $d_{2}(H(P))=H(\pi(P))$. Let γ be a non-negative integer. A numerical semigroup H is said to be γ-hyperelliptic if $m_{1}, \ldots, m_{\gamma}$ are even, $m_{\gamma}=4 \gamma$ and $4 \gamma+2 \in H$ where $H=\left\{0=m_{0}<m_{1}<m_{2}<\cdots\right\}$. By Lemma 2.6 in [10] we have $g\left(d_{2}(H)\right)=\gamma$ if H is γ-hyperelliptic. We consider the following problem:

We express the condition that (C, P) is a pointed curve of genus g such that $H(P)$ is a γ-hyperelliptic numerical semigroup in $D(C, P ; g, \gamma)$. When we assume $D(C, P ; g, \gamma)$, is C a double cover of some curve such that P is its ramification point?

Torres [10] solved the problem on the condition that $g \geqq 6 \gamma+4$, namely, he showed the following:

Theorem (Torres) Let $g \geqq 6 \gamma+4$. Assume $D(C, P ; g, \gamma)$. Then C is a double cover of some curve such that P is its ramification point.

Torres's result is very important in the history of the study on Weierstrass semigroups. Buchweitz gave the first non-Weierstrass numerical semigroup H, which means that the numerical semigroup H is not attained by the Weierstrass semigroup $H(P)$ for any pointed curve (C, P). His method depends on the cohomology dimensions of the multi-folds of the canonical sheaf on a curve. As an application of the above theorem Torres [10] gave non-Weierstrass numerical semigroups which cannot be gained by the Buchweitz's method. But to construct non-Weierstrass numerical semigroups by Torres's method a non-Weierstrass numerical semigroup which is given by Buchweitz's method is needed. In [8] the authors recently found non-Wierstrass numerical semigroups which are obtained by neither using the way of Buchweitz nor using the way of Torres. The above theorem proved by Torres is used to prove the main theorem in [8]. But a nonWeierstrass numerical semigroup gained by Buchweitz's method is not needed to get new non-Weierstrass numerical semigroups. Our result in this paper is the following:

Main Theorem Let $g=6 \gamma+1$ or 6γ. For $g=6 \gamma+1$ (resp. 6γ) we suppose $\gamma \geqq 6($ resp. $\gamma \geqq 10)$. Assume $D(C, P ; g, \gamma)$. If $H(P)$ does not contain 4 , then C is a double cover of some curve such that P is its ramification point.

2 Case $g=6 \gamma+1$

Let γ be an integer with $\gamma \geqq 3$. Assume $D(C, P ; 6 \gamma+1, \gamma)$. Then $6 \gamma+2$ is a nongap at P by Lemma 2.6 in [10]. Let $\phi=\varphi_{|(6 \gamma+2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma+1}$ be the morphism corresponding to the complete linear system $|(6 \gamma+2) P|$. If ϕ is not birational, the proof of Main Theorem is done by Proof of Theorem A (iii) \Longrightarrow (i) in [10]. Assume that $\phi: C \longrightarrow C_{0}\left(\subset \mathbb{P}^{2 \gamma+1}\right)$ is a birational morphism where C_{0} is the image of C by ϕ. Then by Theorem 3.7 in [5] we obtain $6 \gamma+1=g(C) \leqq p_{a}\left(C_{0}\right) \leqq 6 \gamma+3$.

If $p_{a}\left(C_{0}\right)=g(C)$, then the morphism ϕ is étale at P. Hence, the morphism ϕ is locally isomorphic (for example, see [9]). Thus, $6 \gamma+1$ is a non-gap. By Lemma 2.2 in [10] this contradicts the assumption that $H(P)$ is γ-hyperelliptic. Therefore, we get $6 \gamma+1=g(C)<p_{a}\left(C_{0}\right) \leqq 6 \gamma+3$, which implies that $p_{a}\left(C_{0}\right)>$ $6 \gamma+1$ and $p_{a}\left(C_{0}\right)-g(C)=1$ or 2 .

We calculate the number π_{1} (see Theorem (3.15) in [5]) associated with C_{0}. We have $\left[\frac{6 \gamma+2-1}{2 \gamma+1}\right]=2$ and

$$
\begin{equation*}
\epsilon_{1}=6 \gamma+2-2(2 \gamma+1)-1=2 \gamma-1 \neq(2 \gamma+1)-1 . \tag{2}
\end{equation*}
$$

Hence, we get

$$
\begin{equation*}
\pi_{1}=\pi_{1}(6 \gamma+2,2 \gamma+1)=2 \gamma+1+2(2 \gamma-1+1)+0=6 \gamma+1 \tag{3}
\end{equation*}
$$

Since $p_{a}\left(C_{0}\right)>6 \gamma+1=\pi_{1}(6 \gamma+2,2 \gamma+1)$, by the second Castelnuovo's inequality (see Theorem (3.15) i) in [5]) there exists a surface S of degree 2γ in $\mathbb{P}^{2 \gamma+1}$ such that

$$
\begin{equation*}
\phi=\varphi_{|(6 \gamma+2) P|}: C \longrightarrow C_{0} \subset S \subset \mathbb{P}^{2 \gamma+1} \tag{4}
\end{equation*}
$$

Let $\pi: \tilde{S} \longrightarrow S$ be the minimal resolution of S. Since \tilde{S} is a rational ruled surface Σ_{e}, we have $\operatorname{Pic}(\tilde{S})=\mathbb{Z} H \oplus \mathbb{Z} F$ with $\left(H^{2}\right)=2 \gamma,(H, F)=1$ and $K_{\tilde{S}}=-2 H+(2 \gamma-2) F$, where F is a fiber and H is a hyperplane section of Σ_{e} with $\pi\left(\Sigma_{e}\right)=S \subset \mathbb{P}^{2 \gamma+1}$ (for example, see p. 121 in [1]). Let T_{e} be a minimal section of Σ_{e}. Then we have $H \sim T_{e}+m F$ where $2 m=e+2 \gamma$. From now on, $C_{0} \subset \tilde{S}$ means the proper transformation of $C_{0} \subset S$. Let $C_{0} \sim a H+b F$. Then we obtain

$$
\begin{equation*}
6 \gamma+2=\left(H, C_{0}\right)=(H, a H+b F)=2 a \gamma+b, \tag{5}
\end{equation*}
$$

which implies that $b=6 \gamma+2-2 \gamma a$. Moreover, we have
(6) $2 p_{a}\left(C_{0}\right)-2=\left(K_{\tilde{S}}+C_{0}, C_{0}\right)=((a-2) H+(b+2 \gamma-2) F, a H+b F)$
(7) $\quad=2 a(a-2) \gamma+(6 \gamma+2-2 \gamma a)(a-2)+a(8 \gamma-2 \gamma a)$

$$
\begin{equation*}
=-2 \gamma a^{2}+(14 \gamma+2) a-2(6 \gamma+2), \tag{8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
p_{a}\left(C_{0}\right)=-\gamma a^{2}+(7 \gamma+1) a-6 \gamma-1 \tag{9}
\end{equation*}
$$

If $a \leqq 2$, then $p_{a}\left(C_{0}\right) \leqq 4 \gamma+1$. If $a=3$, then $p_{a}\left(C_{0}\right)=6 \gamma+2$, which implies that $C_{0} \sim 3 H+2 F$. If $a=4$, then $p_{a}\left(C_{0}\right)=6 \gamma+3$, which implies that $C_{0} \sim 4 H-(2 \gamma-2) F$. If $a \geqq 5$, then $p_{a}\left(C_{0}\right) \leqq 4 \gamma+4$. Since $6 \gamma+2 \leqq p_{a}\left(C_{0}\right), a$ must be 3 or 4 .

Lemma $A \gamma$-hyperelliptic numerical semigroup of genus larger than or equal to $3 \gamma+2$ with $\gamma \geqq 3$ cannot be attained by the Weierstrass semigroup of any point on a trigonal curve.

Proof. Let C be a trigonal curve and $\pi: C \longrightarrow \mathbb{P}^{1}$ a unique covering of degree 3. Let P be a point of C such that $H(P)$ is γ-hyperelliptic.

Assume that P is a total ramification point of π. Then the minimum positive integer in $H(P)$ is 3 , which implies that $\gamma=0$. This is a contradiction.

Assume that P is a ramification point of π with ramification number 2 . Then by Coppens [2], [3] and Kato-Horiuchi [6] there exists an integer n with $(g-1) / 3 \leqq$ $n \leqq g / 2$ such that $H(P)$ is either a $(2 n+1)$-semigroup or a $(2 n+2)$-semigroup where an m-semigroup means that the minimum positive integer in the numerical semigroup is m. In view of $\gamma>0$ we see that $H(P)$ is a $(2 n+2)$-semigroup. More explicitly, the semigroup $H(P)$ is equal to

$$
\text { (10) }\{0<2 n+2<2 n+4<\cdots<2 n+2(g-2 n-1)<2 g-2 n \longrightarrow\}
$$

where for an integer m the symbol $m \longrightarrow$ means the consequent integers larger than or equal to m. Hence, we have $d_{2}(H(P))=\{0, n+1 \longrightarrow\}$, which implies that $g\left(d_{2}(H(P))=n\right.$. By Lemma 2.6 in Torres [10] we have $g\left(d_{2}(H)\right)=\gamma$, because $H(P)$ is γ-hyperelliptic. In view of $(g-1) / 3 \leqq n=\gamma$ we get $g \leqq 3 \gamma+1$, which contradicts $g \geqq 3 \gamma+2$.

Assume that P is a non-ramification point of π. If P is not a Weierstrass point, then we have $H(P)=\{0, g+1 \longrightarrow\}$. If g is even, then $\gamma=0$, which is a contradiction. If g is odd, then we have $\gamma=1$. This is a contradiction. We may assume that P is a Weierstrass point. By Kim [7] we obtain

$$
\begin{equation*}
H(P)=\{0, b, \ldots, b+(s-g), s+2 \longrightarrow\}, \tag{11}
\end{equation*}
$$

where we set $s=\max \{m \mid m P$ is special $\}$. Let $s=g$. Then we have

$$
\begin{equation*}
H(P)=\{0, b, g+2 \longrightarrow\} . \tag{12}
\end{equation*}
$$

If g is odd (resp. even), then we have $\gamma \leqq 1$ (resp. $\gamma \leqq 2$), which contradicts $\gamma \geqq 3$. Hence, we may assume that $s-g>0$. Then we obtain

$$
\begin{equation*}
H(P)=\{0, b, b+1, \ldots, b+(s-g), s+2 \longrightarrow\} . \tag{13}
\end{equation*}
$$

Since $H(P)$ is γ-hyperelliptic, we get $\gamma \leqq 1$, which is a contradiction.
Hence, we may assume that $a=4$, which implies that $C_{0} \sim 4 H-(2 \gamma-2) F$ and $p_{a}\left(C_{0}\right)=6 \gamma+3$, which implies that $p_{a}\left(C_{0}\right)-g(C)=2$.

We will show that the minimal resolution $\pi: \tilde{S} \longrightarrow S$ is isomorphic. It suffices to show that the hyperplane section H is very ample. Since a general member H of $\left|T_{e}+m F\right|$ is irreducible, we have $m \geqq e$. Assume that H is not very ample. Then we get $m=e$, which implies that $e=2 \gamma$, because $2 m=e+2 \gamma$. Moreover, we have

$$
\begin{array}{r}
C_{0} \sim 4 H-(2 \gamma-2) F \sim 4\left(T_{e}+m F\right)-(2 \gamma-2) F \\
\quad=4 T_{e}+(4 m-2 \gamma+2) F=4 T_{e}+(6 \gamma+2) F . \tag{15}
\end{array}
$$

Since C_{0} is irreducible, we obtain

$$
\begin{equation*}
0 \leqq 6 \gamma+2-4 e=6 \gamma+2-8 \gamma=2-2 \gamma . \tag{16}
\end{equation*}
$$

This is a contradiction, because $\gamma \geqq 3$. Hence S is the rational ruled surface.
Case 1: Assume that $\gamma \geqq 4$ and C_{0} has distinct two singularities. Let $\phi(P)=$ $P_{0} \in C_{0}$.

If P_{0} is not a singular point, then $\phi: C \longrightarrow C_{0}$ is étale at P, because ϕ is birational. Thus, $6 \gamma+1$ is a non-gap. This is a contradiction.

We may assume that P_{0} is a double point of C_{0}. Let $\rho: V \longrightarrow S=\Sigma_{e}$ be the blow-up at P_{0} and \tilde{C}_{0} its proper transform of C_{0}. We have $\rho^{*} C_{0}=\tilde{C}_{0}+2 E$ where E is an exceptional divisor. Moreover, we obtain $0=\left(\rho^{*} C_{0}, E\right)=\left(\tilde{C}_{0}, E\right)+$ $2(E, E)=\left(\tilde{C}_{0}, E\right)-2$, which implies that $\left(\tilde{C}_{0}, E\right)=2$. Let F_{1} be a fiber of Σ_{e} such that $P_{0} \in F_{1}$. Then $\rho^{*} F_{1}-E$ and E intersect transversally. Hence \tilde{C}_{0} and $\rho^{*} F_{1}-E$ intersect at \tilde{P}_{0} with multiplicity 1 where \tilde{P}_{0} is the point of \tilde{C}_{0} over P_{0}. Let $\mu: V \longrightarrow \Sigma_{\theta}$ be the contraction of $\rho^{*} F_{1}-E$ where Σ_{θ} is a rational ruled surface with $\theta=e-1$ and $e+1$ if $P_{0} \notin T_{e}$ and $P_{0} \in T_{e}$ respectively. Here T_{e} denotes a minimal section of Σ_{e}. Then $\mu\left(\tilde{C}_{0}\right)$ is smooth at $P_{1}=\mu\left(\tilde{P}_{0}\right)$. Consider the linear system $\delta_{P_{0}}=\left\{D \in|H| \mid D \ni P_{0}\right\}$ on Σ_{e}. Then we have $\operatorname{dim} \delta_{P_{0}}=\operatorname{dim}|H|-1=2 \gamma+1-1=2 \gamma$. We consider the linear system $\rho^{*} \delta_{P_{0}}-E$ on V, which is $\mu^{*} \eta$ for some linear system η on Σ_{θ} with $\operatorname{dim} \eta=2 \gamma$, because

$$
\begin{equation*}
\left(\rho^{*} \delta_{P_{0}}-E, \rho^{*} F_{1}-E\right)=\left(\rho^{*}\left(T_{e}+m F\right)-E, \rho^{*} F_{1}-E\right)= \tag{17}
\end{equation*}
$$

(18) $\left(T_{e}+m F, F_{1}\right)+(E, E)=\left(T_{e}, F_{1}\right)+\left(m F, F_{1}\right)-1=1+0-1=0$.

Then we get

$$
\begin{equation*}
\left.\left(\rho^{*} \delta_{P_{0}}-E\right)\right|_{\tilde{C}_{0}}=(6 \gamma+2) \tilde{P}_{0}-2 \tilde{P}_{0}=6 \gamma \tilde{P}_{0} \tag{19}
\end{equation*}
$$

because $\left.E\right|_{\tilde{C}_{0}}=2 \tilde{P}_{0}$. Consider the morphism $\varphi_{|6 \gamma P|}: C \longrightarrow \mathbb{P}^{2 \gamma}$. Then the image $\varphi_{|G \gamma P|}(C)$ is contained in S^{\prime} which is the image of the morphism $f_{1}: \Sigma_{\theta} \longrightarrow$ $\mathbb{P}^{2 \gamma}$ corresponding to η. Let H^{\prime} is a hyperplane section which determines the
morphism $f_{1}: \Sigma_{\theta} \longrightarrow \mathbb{P}^{2 \gamma}$. Then we obtain $H^{\prime} \sim T_{\theta}+m^{\prime} F^{\prime}$ where T_{θ} and F^{\prime} are a minimal section and a fibre of Σ_{θ} respectively. We note that

$$
\begin{array}{r}
C_{0} \sim 4 H-(2 \gamma-2) F \sim \\
4\left(T_{e}+m F\right)-(2 \gamma-2) F=4 T_{e}+(4 m-(2 \gamma-2)) F \tag{21}
\end{array}
$$

The irreducibility of C_{0} implies that

$$
\begin{equation*}
4 m-(2 \gamma-2)-4 e=4(m-e-1)-(2 \gamma-6) \geqq 0 \tag{22}
\end{equation*}
$$

Since $\gamma \geqq 4$, we get $m^{\prime}-\theta>0$, because $m^{\prime}-\theta=m-e$ or $m-e-1$. Hence, H^{\prime} is very ample. Thus, f_{1} is an embedding, which implies that Σ_{θ} and the image S^{\prime} are isomorphic. Thus, we regard as $\mu\left(\tilde{C}_{0}\right) \subset S^{\prime}$. The image of P by $\varphi_{|6 \gamma P|}$ is smooth, because $\mu\left(\tilde{C}_{0}\right)$ is smooth at $P_{1}=\mu\left(\tilde{P}_{0}\right)$. Hence the morphism $\varphi_{|6 \gamma P|}: C \longrightarrow \mathbb{P}^{2 \gamma}$ is étale at P. Therefore, $6 \gamma-1$ is a non-gap. This is a contradiction.

Case 2 : Assume that $\gamma \geqq 6$ and C_{0} has only one singularity. We may assume that P_{0} is a double point such that there is an infinitely near singularity to P_{0}. Let H be the hyperplane section of Σ_{e} whose pullback to C is $(6 \gamma+2) P$.

Case 2-i): We consider the case where H is irreducible. Let F_{1} be a fiber on Σ_{e} with $F_{1} \ni P_{0}$. We have $\left(H, F_{1}\right)=1$. Let $\rho: S_{1} \longrightarrow \Sigma_{e}$ be the blow-up at P_{0} and E its exceptional divisor. We get

$$
\begin{equation*}
\left(\rho^{*} F_{1}-E, \rho^{*} H-E\right)=\left(H, F_{1}\right)+\left(E^{2}\right)=1-1=0 \tag{23}
\end{equation*}
$$

which implies that $\left(\rho^{*} H-E\right) \cap\left(\rho^{*} F_{1}-E\right)=\emptyset$, because H is irreducible. Since there is an infinitely near singularity to P_{0}, we get $\rho^{*} C_{0}=C_{1}+2 E$ and $C_{1} \cap E=$ $\left\{P_{1}\right\}$ where C_{1} is the proper transform of C_{0}. Since $p_{a}\left(C_{0}\right)-g(C)=2$, there is no infinitely near point to P_{1}, hence the blow-up of C_{1} at P_{1} is non-singular. Let $\phi_{0}: C_{1} \longrightarrow C_{0}$ be the blow-up at P_{0}. There exists a morphism $\phi_{1}: C \longrightarrow C_{1}$ with $\phi=\varphi_{|(6 \gamma+2) P|}=\phi_{0} \circ \phi_{1}$. Then we have $\phi(P)=P_{0}$ and $\phi_{1}(P)=P_{1}$. Since the pullback of H to C is $(6 \gamma+2) P$, we have $\rho^{*} H \cap C_{1}=\left\{P_{1}\right\}$ and $P_{1} \in \rho^{*} H-E$. Hence, $\left(\rho^{*} H-E\right) \cap\left(\rho^{*} F_{1}-E\right)=\emptyset$ implies that $P_{1} \notin \rho^{*} F_{1}-E$. Consider the blow-up $\rho_{1}: S_{2} \longrightarrow S_{1}$ at P_{1}. Let E_{1} be its exceptional divisor. Then the total transformation and the proper transformation of $\rho^{*} F_{1}-E$ coincide. We have $\rho_{1}^{*} C_{1}=C_{2}+2 E_{1}$ where C_{2} is the proper transform of C_{1} of ρ_{1}. Let $\phi_{2}: C \longrightarrow C_{2}$ be the morphism with $\phi_{1}=\left.\rho_{1}\right|_{C_{2}} \circ \phi_{2}$. We denote by $P_{2} \in C_{2}$ the smooth point over P_{1}. Let $\mu_{1}: S_{2} \longrightarrow \Sigma$ be the contraction of $\rho_{1}^{*}\left(\rho^{*} F_{1}-E\right)$ and $\mu: \Sigma \longrightarrow \Sigma_{\theta}$ the contraction of $\rho_{1}^{*} E-E_{1}$. Moreover, we obtain
(24) $\phi_{2}^{*}\left(\left.\left(\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}\right)\right|_{C_{2}}\right) \sim(6 \gamma+2) P-2 P-2 P=(6 \gamma-2) P$.

It follows from $\left(\rho^{*} H-E\right) \cap\left(\rho^{*} F_{1}-E\right)=\emptyset$ that

$$
\begin{equation*}
\left(\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}\right) \cap \rho_{1}^{*}\left(\rho^{*} F_{1}-E\right)=\emptyset . \tag{25}
\end{equation*}
$$

Moreover, we get
(26) $\left(\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}, \rho_{1}^{*} E-E_{1}\right)=\left(\rho^{*} H-E, E\right)+\left(E_{1}, E_{1}\right)=0$.

Hence the linear system $\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}$ defines a morphism $f_{2}: \Sigma_{\theta} \longrightarrow \mathbb{P}^{2 \gamma-1}$. Let H^{\prime} be a hyperplane section defining the morphism f_{2} and $H^{\prime} \sim T_{\theta}+m^{\prime} F^{\prime}$ where T_{θ} and F^{\prime} are a minimal section and a fiber on Σ_{θ} respectively. We have $m^{\prime}-\theta=m-e$ or $m-e-1$ or $m-e-2$. Since C_{0} with $C_{0} \sim 4 H-(2 \gamma-2) F_{1} \sim$ $4 T_{e}+(4 m-2 \gamma+2) F_{1}$ is irreducible, we get

$$
\begin{align*}
0 \leqq 4 m-2 \gamma+2-4 e= & 4(m-e-2)-(2 \gamma-10) \tag{27}\\
& \leqq 4\left(m^{\prime}-\theta\right)-(2 \gamma-10), \tag{28}
\end{align*}
$$

which implies that $4\left(m^{\prime}-\theta\right) \geqq 2(\gamma-5)$. Since $\gamma \geqq 6$, we have $m^{\prime}-\theta>0$. Hence f_{2} is an embedding. Thus, the image of $\varphi_{|(6 \gamma-2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma-1}$ is contained in a rational ruled surface Σ_{θ}. The image P_{2} of P by $\varphi_{|(6 \gamma-2) P|}$ is a smooth point. Hence, $6 \gamma-3$ is a non-gap at P. This is a contradiction.

Case 2-ii): We assume that H is reducible. We set $H=A+B$. Then we have $1=(H, F)=(A, F)+(B, F)$ where F is a fiber on Σ_{e}. Since for any $D \geqq 0$ we have $(D, F) \geqq 0$, we may assume that $(A, F)=1$ and $(B, F)=0$. Hence, we may set $B=F_{1}+F_{2}+\cdots+F_{\alpha}$ and $A \sim T_{e}+(m-\alpha) F$. Since $\left.(A+B)\right|_{C_{0}}=(6 \gamma+2) P_{0}$ and $\left(C_{0}, F_{i}\right)=(4 H-(2 \gamma-2) F, F)=4$, we have $F_{i} \cap C_{0}=\left\{P_{0}\right\}$ and $\left.F_{i}\right|_{C_{0}}=4 P_{0}$. Thus, we have $F_{1}=\ldots=F_{\alpha}=F$ and $\left.F\right|_{C_{0}}=4 P$ for any $i=1,2, \ldots, \alpha$. Hence, we obtain $h^{0}(4 P)=2$. Since $H(P)$ is γ-hyperelliptic, we must have

$$
\begin{equation*}
m_{1}=4, m_{2}=8, \ldots, m_{\gamma}=4 \gamma \tag{29}
\end{equation*}
$$

where $H(P)=\left\{0<m_{1}<m_{2}<\cdots<m_{\gamma}<\cdots\right\}$. Hence, $H(P)$ is a 4 semigroup.

Indeed, there is a pointed curve (C, P) with a γ-hyperelliptic 4 -semigroup $H(P)$ such that $\varphi_{|(6 \gamma+2) P|}$ is a birational morphism from C to its image.

Remark. We apply Theorem 22 in [4] to the case where $n=4$ and $s=4 \gamma+2$. Then by the theorem the linear system $|(4 \gamma+2) P|$ is simple. Hence, $|(6 \gamma+2) P|$ is simple.

3 Case $g=6 \gamma$

Let γ be an integer with $\gamma \geqq 4$. Assume $D(C, P ; 6 \gamma, \gamma)$. Consider the morphism $\phi=\varphi_{|(6 \gamma-2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma-1}$. Let \tilde{C} be the normalization of the image $C_{0}=\phi(C)$. If the morphism $\tilde{\phi}: C \longrightarrow \tilde{C}$ is of degree t, then we get

$$
\begin{equation*}
2 \gamma-1 \leqq \frac{6 \gamma-2}{t} \tag{30}
\end{equation*}
$$

which implies that $t \leqq 3$. Since $6 \gamma-2$ cannot be divided by 3 , we get $t=1$ or 2 . We may assume that $t=1$, that is to say, $\tilde{\phi}$ is birational. Then by Castelnuovo's bound in [5] we obtain $6 \gamma=g \leqq p_{a}\left(C_{0}\right) \leqq 6 \gamma+3$. If $p_{a}\left(C_{0}\right)=g(C), 6 \gamma-3$ is a non-gap, which is a contradiction. Therefore, we get $6 \gamma=g(C)<p_{a}\left(C_{0}\right) \leqq$ $6 \gamma+3$, which implies that $p_{a}\left(C_{0}\right)>6 \gamma$ and $p_{a}\left(C_{0}\right)-g(C)=1$ or 2 or 3 .

The number $\pi_{1}=\pi_{1}(6 \gamma-2,2 \gamma-1)$ is $3(2 \gamma-1)+3(0+1)+0=6 \gamma$. By the second Castelnuovo's inequality in [5] there exists a surface S of degree $2 \gamma-2$ in $\mathbb{P}^{2 \gamma-1}$ such that

$$
\begin{equation*}
\phi=\varphi_{|(6 \gamma-2) P|}: C \longrightarrow C_{0} \subset S \subset \mathbb{P}^{2 \gamma-1} \tag{31}
\end{equation*}
$$

Let $\pi: \tilde{S}=\Sigma_{e} \longrightarrow S$ be the minimal resolution of S. We have

$$
\begin{equation*}
\operatorname{Pic}(\tilde{S})=\mathbb{Z} H \oplus \mathbb{Z} F \text { with }\left(H^{2}\right)=2 \gamma-2,(H, F)=1 \tag{32}
\end{equation*}
$$

and $K_{\tilde{S}} \sim-2 H+(2 \gamma-4) F$, where F, H and T_{e} are as in Case $g=6 \gamma+1$. Then we have $H \sim T_{e}+m F$ where $2 m=e+2 \gamma-2$. From now on, $C_{0} \subset \tilde{S}$ means the proper transformation of $C_{0} \subset S$. Let $C_{0} \sim a H+b F$. Then we obtain

$$
\begin{equation*}
6 \gamma-2=\left(H, C_{0}\right)=(H, a H+b F)=a(2 \gamma-2)+b, \tag{33}
\end{equation*}
$$

which implies that $b=6 \gamma+2 a-2-2 \gamma a$. Moreover, we have

$$
\begin{array}{r}
2 p_{a}\left(C_{0}\right)-2=\left(K_{\tilde{S}}+C_{0}, C_{0}\right)=((a-2) H+(b+2 \gamma-4) F, a H+b F) \tag{34}\\
=(a-2) a(2 \gamma-2)+(a-2) b+(b+2 \gamma-4) a \\
=-2(\gamma-1) a^{2}+2(7 \gamma-4) a-2(6 \gamma-2),
\end{array}
$$

which implies that

$$
\begin{equation*}
p_{a}\left(C_{0}\right)=-(\gamma-1) a^{2}+(7 \gamma-4) a-6 \gamma+3 . \tag{37}
\end{equation*}
$$

If $a \leqq 2$, then $p_{a}\left(C_{0}\right) \leqq 4 \gamma-1$. If $a=3$, then $p_{a}\left(C_{0}\right)=6 \gamma$. If $a=4$, then $p_{a}\left(C_{0}\right)=6 \gamma+3$. If $a \geqq 5$, then $p_{a}\left(C_{0}\right) \leqq 4 \gamma+8$. Since $6 \gamma+1 \leqq p_{a}\left(C_{0}\right), a$ must be 4. Thus, we obtain $C_{0} \sim 4 H-(2 \gamma-6) F$ and $p_{a}\left(C_{0}\right)=6 \gamma+3$. We note that $p_{a}\left(C_{0}\right)-g(C)=3$.

We can show that the minimal resolution $\pi: \tilde{S} \longrightarrow S$ is isomorphic. Indeed, the same proof as in Case $g=6 \gamma+1$ works well if we replace $e=2 \gamma-2$ and $2 m=e+2 \gamma$ by $e=2 \gamma-4$ and $2 m=e+2 \gamma-2$ respectively. We get a contradiction, because $\gamma \geqq 4$.

Case 1: Assume that $\gamma \geqq 6$ and C_{0} has distinct three singularities. We may assume that P_{0} is a double point. We replace $\varphi_{|(6 \gamma+2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma+1}$ and $C_{0} \sim 4 H-(2 \gamma-2) F$ by $\varphi_{|(6 \gamma-2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma-1}$ and $C_{0} \sim 4 H-(2 \gamma-6) F$ in Case 1 of Case $g=6 \gamma+1$ respectively. Then it follows that $6 \gamma-5$ is a non-gap. This is a contradiction.

Case 2: Assume that $\gamma \geqq 8$ and C_{0} has distinct two singularities. We may
assume that P_{0} is a double point such that there is an infinitely near singularity to P_{0}. Let H be the hyperplane section of Σ_{e} whose pullback to C is $(6 \gamma-2) P$.

We consider the case where H is irreducible. We replace $\varphi_{|(6 \gamma+2) P|}: C \longrightarrow$ $\mathbb{P}^{2 \gamma+1}$ and $C_{0} \sim 4 H-(2 \gamma-2) F$ by $\varphi_{|(6 \gamma-2) P|}: C \longrightarrow \mathbb{P}^{2 \gamma-1}$ and $C_{0} \sim 4 H-(2 \gamma-$ 6) F in Case 2-i) of Case $g=6 \gamma+1$ respectively. Then it follows that $6 \gamma-7$ is a non-gap. This is a contradiction.

If H is reducible, by the same proof as that of the case where $g=6 \gamma+1$, the semigroup $H(P)$ contains 4.

Case 3: Assume that C_{0} has only one singularity. Let H be the hyperplane section of Σ_{e} as in Case 2. We may assume that H is irreducible.

Case 3-i): Assume that $\gamma \geqq 10$ and P_{0} is a double point. Let $F, \rho: S_{1} \longrightarrow \Sigma_{e}$, $E, P_{1}, \rho_{1}: S_{2} \longrightarrow S_{1}, E_{1}, C_{2}$ and $\phi_{2}: C \longrightarrow C_{2}$ be as in Case 2 of Case $g=6 \gamma+1$. We denote by $P_{2} \in C_{2}$ the infinitely near singularity to P_{1}. Let $\rho_{2}: S_{3} \longrightarrow S_{2}$ be the blow-up at P_{2} and E_{2} its exceptional divisor. Let C_{3} be the proper transformation of C_{2}. Let $\phi_{3}: C \longrightarrow C_{3}$ be the morphism with $\phi_{2}=\left.\rho_{2}\right|_{C_{2}} \circ \phi_{3}$. We denote by $P_{3} \in C_{3}$ the nonsingular point over P_{2}. Let $\mu_{1}: S_{2} \longrightarrow \Sigma_{1}$ be the contraction of $\rho_{2}^{*} \rho_{1}^{*}\left(\rho^{*} F-E\right), \mu_{2}: \Sigma_{1} \longrightarrow \Sigma_{2}$ the contraction of $\rho_{2}^{*}\left(\rho_{1}^{*} E-E_{1}\right)$ and $\mu_{3}: \Sigma_{2} \longrightarrow \Sigma_{\theta}$ the contraction of $\rho_{2}^{*} E_{1}-E_{2}$. We note that Σ_{θ} is a rational ruled surface with invariant θ. Moreover, we obtain

$$
\begin{align*}
& \phi_{3}^{*}\left(\left.\left(\rho_{2}^{*} \rho_{1}^{*} \rho^{*} H-\rho_{2}^{*} \rho_{1}^{*} E-\rho_{2}^{*} E_{1}-E_{2}\right)\right|_{C_{3}}\right) \tag{38}\\
& \sim(6 \gamma-2) P-2 P-2 P-2 P=(6 \gamma-8) P . \tag{39}
\end{align*}
$$

It follows from $\left(\rho^{*} H-E\right) \cap\left(\rho^{*} F-E\right)=\emptyset$ that

$$
\begin{equation*}
\left(\rho_{2}^{*} \rho_{1}^{*} \rho^{*} H-\rho_{2}^{*} \rho_{1}^{*} E-\rho_{2}^{*} E_{1}-E_{2}, \rho_{2}^{*} \rho_{1}^{*}\left(\rho^{*} F-E\right)\right)=0 . \tag{40}
\end{equation*}
$$

Moreover, we get

$$
\begin{array}{r}
\left(\rho_{2}^{*} \rho_{1}^{*} \rho^{*} H-\rho_{2}^{*} \rho_{1}^{*} E-\rho_{2}^{*} E_{1}-E_{2}, \rho_{2}^{*}\left(\rho_{1}^{*} E-E_{1}\right)\right. \\
=\left(\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}, \rho_{1}^{*} E-E_{1}\right)=0 \tag{42}
\end{array}
$$

and

$$
\begin{align*}
& \left.\left(\rho_{2}^{*} \rho_{1}^{*} \rho^{*} H-\rho_{2}^{*} \rho_{1}^{*} E-\rho_{2}^{*} E_{1}-E_{2}, \rho_{2}^{*} E_{1}-E_{2}\right)\right) \tag{43}\\
& \quad=\left(\rho_{1}^{*} \rho^{*} H-\rho_{1}^{*} E-E_{1}, E_{1}\right)+\left(E_{2}, E_{2}\right)=0 .
\end{align*}
$$

$$
\begin{array}{r}
0 \leqq 4 m-(2 \gamma-6)-4 e \\
=4(m-e-3)-(2 \gamma-18) \leqq 4\left(m^{\prime \prime}-\theta\right)-(2 \gamma-18), \tag{46}
\end{array}
$$

which implies that $4\left(m^{\prime \prime}-\theta\right) \geqq 2(\gamma-9)$. Since $\gamma \geqq 10$, we have $m^{\prime \prime}-\theta>0$. Hence f_{3} is an embedding. Thus, the image C_{3} of $\varphi_{|(6 \gamma-8) P|}: C \longrightarrow \mathbb{P}^{2 \gamma-4}$ is contained in a rational ruled surface Σ_{θ}. The image P_{3} of P by $\varphi_{|(6 \gamma-8) P|}$ is a smooth point. Hence, $6 \gamma-9$ is a non-gap at P. This is a contradiction.

Case 3-ii): Assume that $\gamma \geqq 5$ and C_{0} has a triple ordinary point. We may assume that P_{0} is a triple point of C_{0}. We use the same notation in Case 1 of Case $g=6 \gamma+1$. Then we have $\left(\tilde{C}_{0}, E\right)=3$. Since $\gamma \geqq 5, H^{\prime}$ is base point free. Moreover, $\left.\left(\rho^{*} \delta_{P_{0}}-E\right)\right|_{\tilde{C}_{0}}=(6 \gamma-5) \tilde{P}_{0}$. Therefore, $6 \gamma-5$ is a non-gap. This is a contradiction.

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves Volume I, Springer-Verlag, New York, 1985.
[2] M. Coppens, The Weierstrass gap sequences of the total ramification points of trigonal coverings of \mathbb{P}^{1}, Indag. Math. 47 (1985), 245-270.
[3] M. Coppens, The Weierstrass gap sequences of the ordinary ramification points of trigonal coverings of \mathbb{P}^{1} : Existence of a kind of Weierstrass gap sequence, J. Pure Appl. Algebra 43 (1986), 11-25.
[4] M. Coppens, Weierstrass points with two prescribed nongaps, Pacific Journal of Mathematics 131 (1988), 71-104.
[5] D. Eisenbud and J. Harris, Curves in projective space, Les presses de l'université de Montréal, 1982.
[6] T. Kato and R. Horiuchi, Weierstrass gap sequences at the ramification points of trigonal Riemann surfaces, J. Pure Appl. Algebra 50 (1988), 271285.
[7] S. J. Kim, On the existence of Weierstrass gap sequences on trigonal curves, J. Pure Appl. Algebra 63 (1990), 171-180.
[8] J. Komeda, Double coverings of curves and non-Weierstrass semigroups, Communications in Algebra 41 (2013), 312-324.
[9] D. Mumford, The Red Book of Varieties and Schemes, Springer Lecture Notes 1358, 1999.
[10] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994), 39-58.

[^0]: *E-mail: komeda@gen.kanagawa-it.ac.jp
 ${ }^{\dagger}$ E-mail: ohbuchi@tokushima-u.ac.jp
 This work was supported by JSPS KAKENHI Grant Numbers 15K04830, 15K04822.

