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Let (C,P ) be a pointed non-singular curve such that the Weierstrass5

semigroup H(P ) of P is a γ-hyperelliptic numerical semigroup. Torres6

showed that there exists a double covering π : C −→ C ′ such that the7

point P is a ramification point of π if the genus g of C is larger than or8

equal to 6γ + 4. Kato and the authors also showed that the same result9

holds in the case g = 6γ + 3 or 6γ + 2. In this paper we prove that there10

exists a double covering π : C −→ C ′ satisfying the above condition even11

if g = 6γ + 1, 6γ and H(P ) does not contain 4.12
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ruled surface15

1 Introduction16

Let C be a complete nonsingular irreducible curve over an algebraically closed17

field k of characteristic 0, which is called a curve in this paper. For a point P of18

C, we set19

H(P ) = {α ∈ N0| there exists f ∈ k(C) with (f)∞ = αP},(1)20
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which is called the Weierstrass semigroup of P where N0 denotes the additive1

monoid of non-negative integers and k(C) is the field of rational functions on2

C. A submonoid H of N0 is called a numerical semigroup if its complement3

N0\H is a finite set. The cardinality of N0\H is called the genus of H, which4

is denoted by g(H). It is known that the Weierstrass semigroup of a point5

on a curve of genus g is a numerical semigroup of genus g. For a numerical6

semigroup H we denote by d2(H) the set consisting of the elements h with7

2h ∈ H. Then d2(H) is also a numerical semigroup. Let π : C −→ C ′ be a8

double covering of a curve with a ramification point P . Then it is proved that9

d2(H(P )) = H(π(P )). Let γ be a non-negative integer. A numerical semigroup10

H is said to be γ-hyperelliptic if m1, . . . , mγ are even, mγ = 4γ and 4γ + 2 ∈ H11

where H = {0 = m0 < m1 < m2 < · · · }. By Lemma 2.6 in [10] we have12

g(d2(H)) = γ if H is γ-hyperelliptic. We consider the following problem:13

We express the condition that (C, P ) is a pointed curve of genus g such that14

H(P ) is a γ-hyperelliptic numerical semigroup in D(C, P ; g, γ). When we assume15

D(C, P ; g, γ), is C a double cover of some curve such that P is its ramification16

point?17

Torres [10] solved the problem on the condition that g = 6γ + 4, namely, he18

showed the following:19

Theorem (Torres) Let g = 6γ + 4. Assume D(C, P ; g, γ). Then C is a double20

cover of some curve such that P is its ramification point.21

Torres’s result is very important in the history of the study on Weierstrass semi-22

groups. Buchweitz gave the first non-Weierstrass numerical semigroup H , which23

means that the numerical semigroup H is not attained by the Weierstrass semi-24

group H(P ) for any pointed curve (C, P ). His method depends on the coho-25

mology dimensions of the multi-folds of the canonical sheaf on a curve. As26

an application of the above theorem Torres [10] gave non-Weierstrass numerical27

semigroups which cannot be gained by the Buchweitz’s method. But to construct28

non-Weierstrass numerical semigroups by Torres’s method a non-Weierstrass nu-29

merical semigroup which is given by Buchweitz’s method is needed. In [8] the30

authors recently found non-Wierstrass numerical semigroups which are obtained31

by neither using the way of Buchweitz nor using the way of Torres. The above32

theorem proved by Torres is used to prove the main theorem in [8]. But a non-33

Weierstrass numerical semigroup gained by Buchweitz’s method is not needed to34

get new non-Weierstrass numerical semigroups. Our result in this paper is the35

following:36

Main Theorem Let g = 6γ + 1 or 6γ. For g = 6γ + 1 (resp. 6γ) we suppose37

γ = 6 (resp. γ = 10). Assume D(C, P ; g, γ). If H(P ) does not contain 4, then38

C is a double cover of some curve such that P is its ramification point.39
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2 Case g = 6γ + 11

Let γ be an integer with γ = 3. Assume D(C,P ; 6γ+1, γ). Then 6γ+2 is a non-2

gap at P by Lemma 2.6 in [10]. Let φ = ϕ|(6γ+2)P | : C −→ P2γ+1 be the morphism3

corresponding to the complete linear system |(6γ+2)P |. If φ is not birational, the4

proof of Main Theorem is done by Proof of Theorem A (iii)=⇒(i) in [10]. Assume5

that φ : C −→ C0(⊂ P2γ+1) is a birational morphism where C0 is the image of C6

by φ. Then by Theorem 3.7 in [5] we obtain 6γ + 1 = g(C) 5 pa(C0) 5 6γ + 3.7

If pa(C0) = g(C), then the morphism φ is étale at P . Hence, the morphism8

φ is locally isomorphic (for example, see [9]). Thus, 6γ + 1 is a non-gap. By9

Lemma 2.2 in [10] this contradicts the assumption that H(P ) is γ-hyperelliptic.10

Therefore, we get 6γ +1 = g(C) < pa(C0) 5 6γ +3, which implies that pa(C0) >11

6γ + 1 and pa(C0) − g(C) = 1 or 2.12

13

We calculate the number π1 (see Theorem (3.15) in [5]) associated with C0.14

We have

[
6γ + 2 − 1

2γ + 1

]
= 2 and15

ε1 = 6γ + 2 − 2(2γ + 1) − 1 = 2γ − 1 6= (2γ + 1) − 1.(2)16

Hence, we get17

π1 = π1(6γ + 2, 2γ + 1) = 2γ + 1 + 2(2γ − 1 + 1) + 0 = 6γ + 1.(3)18

Since pa(C0) > 6γ+1 = π1(6γ+2, 2γ+1), by the second Castelnuovo’s inequality19

(see Theorem (3.15) i) in [5]) there exists a surface S of degree 2γ in P2γ+1 such20

that21

φ = ϕ|(6γ+2)P | : C −→ C0 ⊂ S ⊂ P2γ+1.(4)22

Let π : S̃ −→ S be the minimal resolution of S. Since S̃ is a rational ruled23

surface Σe, we have Pic(S̃) = ZH ⊕ ZF with (H2) = 2γ, (H, F ) = 1 and24

KS̃ = −2H + (2γ − 2)F, where F is a fiber and H is a hyperplane section of Σe25

with π(Σe) = S ⊂ P2γ+1 (for example, see p.121 in [1]). Let Te be a minimal26

section of Σe. Then we have H ∼ Te + mF where 2m = e + 2γ. From now on,27

C0 ⊂ S̃ means the proper transformation of C0 ⊂ S. Let C0 ∼ aH + bF . Then28

we obtain29

6γ + 2 = (H, C0) = (H, aH + bF ) = 2aγ + b,(5)30

which implies that b = 6γ + 2 − 2γa. Moreover, we have31

2pa(C0) − 2 = (KS̃ + C0, C0) = ((a − 2)H + (b + 2γ − 2)F, aH + bF )(6)32

= 2a(a − 2)γ + (6γ + 2 − 2γa)(a − 2) + a(8γ − 2γa)(7)33

= −2γa2 + (14γ + 2)a − 2(6γ + 2),(8)34
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which implies that1

pa(C0) = −γa2 + (7γ + 1)a − 6γ − 1.(9)2

If a 5 2, then pa(C0) 5 4γ + 1. If a = 3, then pa(C0) = 6γ + 2, which implies3

that C0 ∼ 3H + 2F . If a = 4, then pa(C0) = 6γ + 3, which implies that4

C0 ∼ 4H − (2γ − 2)F . If a = 5, then pa(C0) 5 4γ + 4. Since 6γ + 2 5 pa(C0), a5

must be 3 or 4.6

Lemma A γ-hyperelliptic numerical semigroup of genus larger than or equal to7

3γ + 2 with γ = 3 cannot be attained by the Weierstrass semigroup of any point8

on a trigonal curve.9

Proof. Let C be a trigonal curve and π : C −→ P1 a unique covering of degree10

3. Let P be a point of C such that H(P ) is γ-hyperelliptic.11

Assume that P is a total ramification point of π. Then the minimum positive12

integer in H(P ) is 3, which implies that γ = 0. This is a contradiction.13

Assume that P is a ramification point of π with ramification number 2. Then14

by Coppens [2], [3] and Kato-Horiuchi [6] there exists an integer n with (g−1)/3 515

n 5 g/2 such that H(P ) is either a (2n + 1)-semigroup or a (2n + 2)-semigroup16

where an m-semigroup means that the minimum positive integer in the numerical17

semigroup is m. In view of γ > 0 we see that H(P ) is a (2n + 2)-semigroup.18

More explicitly, the semigroup H(P ) is equal to19

{0 < 2n + 2 < 2n + 4 < · · · < 2n + 2(g − 2n − 1) < 2g − 2n −→}(10)20

where for an integer m the symbol m −→ means the consequent integers larger21

than or equal to m. Hence, we have d2(H(P )) = {0, n + 1 −→}, which implies22

that g(d2(H(P )) = n. By Lemma 2.6 in Torres [10] we have g(d2(H)) = γ,23

because H(P ) is γ-hyperelliptic. In view of (g−1)/3 5 n = γ we get g 5 3γ +1,24

which contradicts g = 3γ + 2.25

Assume that P is a non-ramification point of π. If P is not a Weierstrass26

point, then we have H(P ) = {0, g + 1 −→}. If g is even, then γ = 0, which is a27

contradiction. If g is odd, then we have γ = 1. This is a contradiction. We may28

assume that P is a Weierstrass point. By Kim [7] we obtain29

H(P ) = {0, b, . . . , b + (s − g), s + 2 −→},(11)30

where we set s = max{m | mP is special}. Let s = g. Then we have31

H(P ) = {0, b, g + 2 −→}.(12)32

If g is odd (resp. even), then we have γ 5 1 (resp. γ 5 2), which contradicts33

γ = 3. Hence, we may assume that s − g > 0. Then we obtain34

H(P ) = {0, b, b + 1, . . . , b + (s − g), s + 2 −→}.(13)35
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Since H(P ) is γ-hyperelliptic, we get γ 5 1, which is a contradiction. 21

Hence, we may assume that a = 4, which implies that C0 ∼ 4H − (2γ − 2)F2

and pa(C0) = 6γ + 3, which implies that pa(C0) − g(C) = 2.3

We will show that the minimal resolution π : S̃ −→ S is isomorphic. It4

suffices to show that the hyperplane section H is very ample. Since a general5

member H of |Te+mF | is irreducible, we have m = e. Assume that H is not very6

ample. Then we get m = e, which implies that e = 2γ, because 2m = e + 2γ.7

Moreover, we have8

C0 ∼ 4H − (2γ − 2)F ∼ 4(Te + mF ) − (2γ − 2)F(14)9

= 4Te + (4m − 2γ + 2)F = 4Te + (6γ + 2)F.(15)10

Since C0 is irreducible, we obtain11

0 5 6γ + 2 − 4e = 6γ + 2 − 8γ = 2 − 2γ.(16)12

This is a contradiction, because γ = 3. Hence S is the rational ruled surface.13

Case 1: Assume that γ = 4 and C0 has distinct two singularities. Let φ(P ) =14

P0 ∈ C0.15

If P0 is not a singular point, then φ : C −→ C0 is étale at P , because φ is16

birational. Thus, 6γ + 1 is a non-gap. This is a contradiction.17

We may assume that P0 is a double point of C0. Let ρ : V −→ S = Σe be18

the blow-up at P0 and C̃0 its proper transform of C0. We have ρ∗C0 = C̃0 + 2E19

where E is an exceptional divisor. Moreover, we obtain 0 = (ρ∗C0, E) = (C̃0, E)+20

2(E, E) = (C̃0, E) − 2, which implies that (C̃0, E) = 2. Let F1 be a fiber of Σe21

such that P0 ∈ F1. Then ρ∗F1 − E and E intersect transversally. Hence C̃0 and22

ρ∗F1 − E intersect at P̃0 with multiplicity 1 where P̃0 is the point of C̃0 over23

P0. Let µ : V −→ Σθ be the contraction of ρ∗F1 − E where Σθ is a rational24

ruled surface with θ = e − 1 and e + 1 if P0 6∈ Te and P0 ∈ Te respectively.25

Here Te denotes a minimal section of Σe. Then µ(C̃0) is smooth at P1 = µ(P̃0).26

Consider the linear system δP0 = {D ∈ |H| | D 3 P0} on Σe. Then we have27

dim δP0 = dim |H|−1 = 2γ+1−1 = 2γ. We consider the linear system ρ∗δP0−E28

on V , which is µ∗η for some linear system η on Σθ with dim η = 2γ, because29

(ρ∗δP0 − E, ρ∗F1 − E) = (ρ∗(Te + mF ) − E, ρ∗F1 − E) =(17)30

(Te + mF,F1) + (E, E) = (Te, F1) + (mF,F1) − 1 = 1 + 0 − 1 = 0.(18)31

Then we get32

(ρ∗δP0 − E)|C̃0
= (6γ + 2)P̃0 − 2P̃0 = 6γP̃0,(19)33

because E|C̃0
= 2P̃0. Consider the morphism ϕ|6γP | : C −→ P2γ. Then the image34

ϕ|6γP |(C) is contained in S ′ which is the image of the morphism f1 : Σθ −→35

P2γ corresponding to η. Let H ′ is a hyperplane section which determines the36



6

morphism f1 : Σθ −→ P2γ. Then we obtain H ′ ∼ Tθ + m′F ′ where Tθ and F ′ are1

a minimal section and a fibre of Σθ respectively. We note that2

C0 ∼ 4H − (2γ − 2)F ∼(20)3

4(Te + mF ) − (2γ − 2)F = 4Te + (4m − (2γ − 2))F.(21)4

The irreducibility of C0 implies that5

4m − (2γ − 2) − 4e = 4(m − e − 1) − (2γ − 6) = 0.(22)6

Since γ = 4, we get m′ − θ > 0, because m′ − θ = m − e or m − e − 1. Hence,7

H ′ is very ample. Thus, f1 is an embedding, which implies that Σθ and the8

image S ′ are isomorphic. Thus, we regard as µ(C̃0) ⊂ S ′. The image of P by9

ϕ|6γP | is smooth, because µ(C̃0) is smooth at P1 = µ(P̃0). Hence the morphism10

ϕ|6γP | : C −→ P2γ is étale at P . Therefore, 6γ − 1 is a non-gap. This is a11

contradiction.12

Case 2 : Assume that γ = 6 and C0 has only one singularity. We may assume13

that P0 is a double point such that there is an infinitely near singularity to P0.14

Let H be the hyperplane section of Σe whose pullback to C is (6γ + 2)P .15

Case 2−i): We consider the case where H is irreducible. Let F1 be a fiber on16

Σe with F1 3 P0. We have (H, F1) = 1. Let ρ : S1 −→ Σe be the blow-up at P017

and E its exceptional divisor. We get18

(ρ∗F1 − E, ρ∗H − E) = (H,F1) + (E2) = 1 − 1 = 0(23)19

which implies that (ρ∗H −E) ∩ (ρ∗F1 −E) = ∅, because H is irreducible. Since20

there is an infinitely near singularity to P0, we get ρ∗C0 = C1 +2E and C1∩E =21

{P1} where C1 is the proper transform of C0. Since pa(C0) − g(C) = 2, there is22

no infinitely near point to P1, hence the blow-up of C1 at P1 is non-singular. Let23

φ0 : C1 −→ C0 be the blow-up at P0. There exists a morphism φ1 : C −→ C124

with φ = ϕ|(6γ+2)P | = φ0 ◦ φ1. Then we have φ(P ) = P0 and φ1(P ) = P1. Since25

the pullback of H to C is (6γ+2)P , we have ρ∗H∩C1 = {P1} and P1 ∈ ρ∗H−E.26

Hence, (ρ∗H − E) ∩ (ρ∗F1 − E) = ∅ implies that P1 6∈ ρ∗F1 − E. Consider the27

blow-up ρ1 : S2 −→ S1 at P1. Let E1 be its exceptional divisor. Then the total28

transformation and the proper transformation of ρ∗F1 − E coincide. We have29

ρ∗
1C1 = C2 +2E1 where C2 is the proper transform of C1 of ρ1. Let φ2 : C −→ C230

be the morphism with φ1 = ρ1|C2 ◦ φ2. We denote by P2 ∈ C2 the smooth point31

over P1. Let µ1 : S2 −→ Σ be the contraction of ρ∗
1(ρ

∗F1 − E) and µ : Σ −→ Σθ32

the contraction of ρ∗
1E − E1. Moreover, we obtain33

φ∗
2((ρ

∗
1ρ

∗H − ρ∗
1E − E1)|C2) ∼ (6γ + 2)P − 2P − 2P = (6γ − 2)P.(24)34

It follows from (ρ∗H − E) ∩ (ρ∗F1 − E) = ∅ that35

(ρ∗
1ρ

∗H − ρ∗
1E − E1) ∩ ρ∗

1(ρ
∗F1 − E) = ∅.(25)36
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Moreover, we get1

(ρ∗
1ρ

∗H − ρ∗
1E − E1, ρ

∗
1E − E1) = (ρ∗H − E, E) + (E1, E1) = 0.(26)2

Hence the linear system ρ∗
1ρ

∗H−ρ∗
1E−E1 defines a morphism f2 : Σθ −→ P2γ−1.3

Let H ′ be a hyperplane section defining the morphism f2 and H ′ ∼ Tθ + m′F ′
4

where Tθ and F ′ are a minimal section and a fiber on Σθ respectively. We have5

m′− θ = m− e or m− e−1 or m− e−2. Since C0 with C0 ∼ 4H − (2γ−2)F1 ∼6

4Te + (4m − 2γ + 2)F1 is irreducible, we get7

0 5 4m − 2γ + 2 − 4e = 4(m − e − 2) − (2γ − 10)(27)8

5 4(m′ − θ) − (2γ − 10),(28)9

which implies that 4(m′− θ) = 2(γ− 5). Since γ = 6, we have m′− θ > 0. Hence10

f2 is an embedding. Thus, the image of ϕ|(6γ−2)P | : C −→ P2γ−1 is contained in11

a rational ruled surface Σθ. The image P2 of P by ϕ|(6γ−2)P | is a smooth point.12

Hence, 6γ − 3 is a non-gap at P . This is a contradiction.13

Case 2−ii): We assume that H is reducible. We set H = A + B. Then we14

have 1 = (H, F ) = (A,F ) + (B, F ) where F is a fiber on Σe. Since for any15

D = 0 we have (D,F ) = 0, we may assume that (A,F ) = 1 and (B,F ) = 0.16

Hence, we may set B = F1 + F2 + · · · + Fα and A ∼ Te + (m − α)F . Since17

(A + B)|C0 = (6γ + 2)P0 and (C0, Fi) = (4H − (2γ − 2)F, F ) = 4, we have18

Fi ∩ C0 = {P0} and Fi|C0 = 4P0. Thus, we have F1 = . . . = Fα = F and19

F |C0 = 4P for any i = 1, 2, . . . , α. Hence, we obtain h0(4P ) = 2. Since H(P ) is20

γ-hyperelliptic, we must have21

m1 = 4,m2 = 8, . . . , mγ = 4γ,(29)22

where H(P ) = {0 < m1 < m2 < · · · < mγ < · · · }. Hence, H(P ) is a 4-23

semigroup. 224

Indeed, there is a pointed curve (C,P ) with a γ-hyperelliptic 4-semigroup25

H(P ) such that ϕ|(6γ+2)P | is a birational morphism from C to its image.26

Remark. We apply Theorem 22 in [4] to the case where n = 4 and s = 4γ + 2.27

Then by the theorem the linear system |(4γ + 2)P | is simple. Hence, |(6γ + 2)P |28

is simple.29

3 Case g = 6γ30

Let γ be an integer with γ = 4. Assume D(C,P ; 6γ, γ). Consider the morphism31

φ = ϕ|(6γ−2)P | : C −→ P2γ−1. Let C̃ be the normalization of the image C0 = φ(C).32

If the morphism φ̃ : C −→ C̃ is of degree t, then we get33

2γ − 1 5 6γ − 2

t
,(30)34
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which implies that t 5 3. Since 6γ − 2 cannot be divided by 3, we get t = 1 or 2.1

We may assume that t = 1, that is to say, φ̃ is birational. Then by Castelnuovo’s2

bound in [5] we obtain 6γ = g 5 pa(C0) 5 6γ + 3. If pa(C0) = g(C), 6γ − 3 is3

a non-gap, which is a contradiction. Therefore, we get 6γ = g(C) < pa(C0) 54

6γ + 3, which implies that pa(C0) > 6γ and pa(C0) − g(C) = 1 or 2 or 3.5

The number π1 = π1(6γ − 2, 2γ − 1) is 3(2γ − 1) + 3(0 + 1) + 0 = 6γ. By the6

second Castelnuovo’s inequality in [5] there exists a surface S of degree 2γ − 27

in P2γ−1 such that8

φ = ϕ|(6γ−2)P | : C −→ C0 ⊂ S ⊂ P2γ−1.(31)9

Let π : S̃ = Σe −→ S be the minimal resolution of S. We have10

Pic(S̃) = ZH ⊕ ZF with (H2) = 2γ − 2, (H, F ) = 1(32)11

and KS̃ ∼ −2H +(2γ−4)F, where F , H and Te are as in Case g = 6γ +1. Then12

we have H ∼ Te + mF where 2m = e + 2γ − 2. From now on, C0 ⊂ S̃ means the13

proper transformation of C0 ⊂ S. Let C0 ∼ aH + bF . Then we obtain14

6γ − 2 = (H, C0) = (H, aH + bF ) = a(2γ − 2) + b,(33)15

which implies that b = 6γ + 2a − 2 − 2γa. Moreover, we have16

2pa(C0) − 2 = (KS̃ + C0, C0) = ((a − 2)H + (b + 2γ − 4)F, aH + bF )(34)17

= (a − 2)a(2γ − 2) + (a − 2)b + (b + 2γ − 4)a(35)18

= −2(γ − 1)a2 + 2(7γ − 4)a − 2(6γ − 2),(36)19

which implies that20

pa(C0) = −(γ − 1)a2 + (7γ − 4)a − 6γ + 3.(37)21

If a 5 2, then pa(C0) 5 4γ − 1. If a = 3, then pa(C0) = 6γ. If a = 4, then22

pa(C0) = 6γ + 3. If a = 5, then pa(C0) 5 4γ + 8. Since 6γ + 1 5 pa(C0), a must23

be 4. Thus, we obtain C0 ∼ 4H − (2γ − 6)F and pa(C0) = 6γ + 3. We note that24

pa(C0) − g(C) = 3.25

We can show that the minimal resolution π : S̃ −→ S is isomorphic. Indeed,26

the same proof as in Case g = 6γ + 1 works well if we replace e = 2γ − 2 and27

2m = e + 2γ by e = 2γ − 4 and 2m = e + 2γ − 2 respectively. We get a28

contradiction, because γ = 4.29

Case 1: Assume that γ = 6 and C0 has distinct three singularities. We30

may assume that P0 is a double point. We replace ϕ|(6γ+2)P | : C −→ P2γ+1 and31

C0 ∼ 4H − (2γ − 2)F by ϕ|(6γ−2)P | : C −→ P2γ−1 and C0 ∼ 4H − (2γ − 6)F in32

Case 1 of Case g = 6γ + 1 respectively. Then it follows that 6γ − 5 is a non-gap.33

This is a contradiction.34

Case 2: Assume that γ = 8 and C0 has distinct two singularities. We may35
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assume that P0 is a double point such that there is an infinitely near singularity1

to P0. Let H be the hyperplane section of Σe whose pullback to C is (6γ − 2)P .2

We consider the case where H is irreducible. We replace ϕ|(6γ+2)P | : C −→3

P2γ+1 and C0 ∼ 4H− (2γ−2)F by ϕ|(6γ−2)P | : C −→ P2γ−1 and C0 ∼ 4H− (2γ−4

6)F in Case 2-i) of Case g = 6γ + 1 respectively. Then it follows that 6γ − 7 is5

a non-gap. This is a contradiction.6

If H is reducible, by the same proof as that of the case where g = 6γ +1, the7

semigroup H(P ) contains 4.8

Case 3: Assume that C0 has only one singularity. Let H be the hyperplane9

section of Σe as in Case 2. We may assume that H is irreducible.10

Case 3-i): Assume that γ = 10 and P0 is a double point. Let F , ρ : S1 −→ Σe,11

E, P1, ρ1 : S2 −→ S1, E1, C2 and φ2 : C −→ C2 be as in Case 2 of Case g = 6γ+1.12

We denote by P2 ∈ C2 the infinitely near singularity to P1. Let ρ2 : S3 −→ S213

be the blow-up at P2 and E2 its exceptional divisor. Let C3 be the proper14

transformation of C2. Let φ3 : C −→ C3 be the morphism with φ2 = ρ2|C2 ◦ φ3.15

We denote by P3 ∈ C3 the nonsingular point over P2. Let µ1 : S2 −→ Σ1 be the16

contraction of ρ∗
2ρ

∗
1(ρ

∗F − E), µ2 : Σ1 −→ Σ2 the contraction of ρ∗
2(ρ

∗
1E − E1)17

and µ3 : Σ2 −→ Σθ the contraction of ρ∗
2E1 − E2. We note that Σθ is a rational18

ruled surface with invariant θ. Moreover, we obtain19

φ∗
3((ρ

∗
2ρ

∗
1ρ

∗H − ρ∗
2ρ

∗
1E − ρ∗

2E1 − E2)|C3)(38)20

∼ (6γ − 2)P − 2P − 2P − 2P = (6γ − 8)P.(39)21

It follows from (ρ∗H − E) ∩ (ρ∗F − E) = ∅ that22

(ρ∗
2ρ

∗
1ρ

∗H − ρ∗
2ρ

∗
1E − ρ∗

2E1 − E2, ρ
∗
2ρ

∗
1(ρ

∗F − E)) = 0.(40)23

Moreover, we get24

(ρ∗
2ρ

∗
1ρ

∗H − ρ∗
2ρ

∗
1E − ρ∗

2E1 − E2, ρ
∗
2(ρ

∗
1E − E1)(41)25

= (ρ∗
1ρ

∗H − ρ∗
1E − E1, ρ

∗
1E − E1) = 0(42)26

and27

(ρ∗
2ρ

∗
1ρ

∗H − ρ∗
2ρ

∗
1E − ρ∗

2E1 − E2, ρ
∗
2E1 − E2))(43)28

= (ρ∗
1ρ

∗H − ρ∗
1E − E1, E1) + (E2, E2) = 0.(44)29

Hence the linear system ρ∗
2ρ

∗
1ρ

∗H − ρ∗
2ρ

∗
1E − ρ∗

2E1 − E2 defines a morphism f3 :30

Σθ −→ P2γ−4. Let H ′′ be a hyperplane section defining the morphism f3 and31

H ′′ ∼ Tθ + m′′F ′′ where Tθ and F ′′ are a minimal section and a fiber on Σθ32

respectively. We have m′′ − θ = m − e or m − e − 1 or m − e − 2 or m − e − 3.33

Since C0 ∼ 4Te + (4m − 2γ + 6)F is irreducible, we get34

0 5 4m − (2γ − 6) − 4e(45)35

= 4(m − e − 3) − (2γ − 18) 5 4(m′′ − θ) − (2γ − 18),(46)36
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which implies that 4(m′′ − θ) = 2(γ − 9). Since γ = 10, we have m′′ − θ > 0.1

Hence f3 is an embedding. Thus, the image C3 of ϕ|(6γ−8)P | : C −→ P2γ−4 is2

contained in a rational ruled surface Σθ. The image P3 of P by ϕ|(6γ−8)P | is a3

smooth point. Hence, 6γ − 9 is a non-gap at P . This is a contradiction.4

Case 3-ii): Assume that γ = 5 and C0 has a triple ordinary point. We may5

assume that P0 is a triple point of C0. We use the same notation in Case 1 of6

Case g = 6γ + 1. Then we have (C̃0, E) = 3. Since γ = 5, H ′ is base point free.7

Moreover, (ρ∗δP0 − E)|C̃0
= (6γ − 5)P̃0. Therefore, 6γ − 5 is a non-gap. This is8

a contradiction.9
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