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Abstract: We proposed metal-insulator (MI) and metal-insulator-

metal (MIM) structures of titanium dioxide (TiO2) sandwiched by gold 

nanoparticles (AuNPs) layer and gold sputtered thin film (only for the 

MIM film) to couple localized plasmon mode of AuNP with multi-

reflection mode and/or cavity resonator mode of TiO2. The optical 

extinctions of MI and MIM with differing TiO2 thickness were studied 

theoretically by finite-element method simulation and experimentally 

by optical spectrometry. The extinction peaks of MI and MIM shifted 

by exchanging the surrounding medium from air to TiO2. The 

interference of TiO2 in MI structure also affected the extinction spectra 

showing the oscillation along the spectrum of AuNP in TiO2. Then, the 

extinction degree of MIM was higher than that of MI because of the 

coupling between cavity resonance mode with localized plasmon 

mode and interband transition in AuNPs. In addition, the cross section 

of MI and MIM films were observed by scanning electron microscopy. 

The surface of thinner film was rough because TiO2 heterogeneously 

grew from AuNP. The irregular growth of TiO2 might have induced the 

wide-range extinction in 300-2500 nm after Au thin film deposition. 

The transient absorption spectra using a femtosecond laser were also 

carried out under the condition of 800 nm for excitation laser and 950 

nm for probe laser. The long-lived electron (~1 ns) was observed in 

thick MIM film as a result of hot electron transfer from the gold 

nanostructure in the film. 

1. Introduction

Titanium dioxide (TiO2) is promising for applications in areas such 

as optics,[1] opto-electronics,[2] and photochemistry.[3,4] 

Especially, TiO2 is well known as photocatalytic materials that 

absorb ultraviolet (UV) [3,5] and it is promising a dye-sensitized 

solar cell, self-cleaning exterior and cleaning wastewater 

applications.[2,6,7] Although TiO2 single crystal is transparent 

from visible to infrared (IR) range, the powder form of TiO2 has 

white color due to its scattering light and, thus, commercially 

available as white pigment in cosmetics, paints, papers, and 

inks.[8] In addition, TiO2 film, if the film thickness is the same as 

the wavelength of light, shows interference colors and 

commercially available as an optical color filter. To utilize the 

sunlight effectively, it is necessary to extend the absorbance of 

TiO2 from the ultra-violet (UV) region to the visible and IR regions. 

One of the technologies achieving this is to combine the TiO2 with 

gold nanoparticles (AuNPs).  

AuNPs also draw researchers’ attention in the area of 

plasmonics.[9–15]  Au in bulk form absorbs blue and green light 

and reflects other visible light, which results in a shining golden 

color. On the other hand, AuNPs strongly interact with light that 

originates from the excitation of collective oscillation of their 

surface charges named as localized surface plasmon resonance 

(LSPR). The excited AuNP creates hot charge carriers, which 

partially give their energy to the lattice for nano-heating [16–18] 

or transfer to neighbor materials if exceeding chemical potential 

barriers. TiO2 is especially suitable as the neighbor material 

because of an optical absorbance band difference and its 

photocatalytic characterizations. 

Nanocomposites of TiO2 and Au are promising for 

applications in areas such as photocatalyst,[19,20] plasmonic 

biosensing,[21,22] and solar energy harvesting.[23–26] In earlier 

studies, TiO2 nanocrystals were integrated with AuNPs, which 

enhanced the absorption of visible light due to its LSPR 

absorption.[27] Some studies focused on the development of 

AuNP/TiO2 nanocomposites in powder form.[23,24] Other 

synthetic approach such as a sol-gel method [28] was reported 

for nanocomposite thin film. In addition, metal-insulator-metal 

(MIM) structure of Au-TiO2-Au fabricated by dry process has been 

recently reported as an efficient light absorber and photocurrent 

generators.[21,22,29,30] In the system, the localized plasmon 

mode of AuNP was coupled with photonic mode of 

TiO2.[20,31,32] In the study, we fabricated the AuNPs colloidal 

self-assembly on glass to act not only as localized plasmonic 

nano structure but also as optically flat semi-transparent layer. 

Also, the thin Au-film (<20 nm in thickness) was sputtered on MI 

film because of its semi-transparency without LSPR. 

There are some fabrication techniques for Au 

nanostructures; Au thin film is grown by vapor growth such as 

physical deposition and sputtering method, and Au nano-particles, 

nano-cubes, and nano-rods are grown by solution growth named 

as seed mediated method.[33–35] In this study, multilayer nano-
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structured films of TiO2 sandwiched by AuNPs and Au thin film 

were prepared on a glass substrate. AuNPs were prepared by 

citrate reduction method and deposited onto silane treated glass 

substrate. Then, TiO2 films of 130-800 nm in thickness were 

deposited by magnetron sputtering method. Au thin film was 

deposited on the TiO2 layer by sputtering method to achieve MIM 

structure. Extinction spectra of the films were explored from the 

reflection and the transmission spectra, which were measured 

with an UV-visible-near infrared (UV-Vis-NIR) spectrometer. The 

extinction of the films was also studied with a finite-element 

method (FEM) simulation of wave optics. The MI and MIM 

structures of the films, which affect the light scattering of the film, 

were investigated by scanning electron microscopy (SEM). 

Femtosecond transient absorption spectra were also evaluated 

for the MIM films to characterize the behaviors of hot electrons in 

the film under 800 nm excitation. 

 

2. Results and Discussion 

2.1 Design and numerical results of MI and MIM structures 

Main Extinction spectra of the films were first theoretically 

studied by FEM simulation with COMSOL multiphysics.[36] 

Figure 1 shows the schematic diagrams of proposed models of 

TiO2-AuNP (MI) and Au thin film-TiO2-AuNP (MIM) structure. 

AuNP of 40 nm in diameter was placed on a glass and covered 

by TiO2. The thickness of TiO2, d, was changed from 0 (AuNP 

surrounded by air) to 800 nm. The MI film was sandwiched by 

surrounding air and glass layers whose thickness were set to the 

same. The size of total calculation box was set to 100 × 100 × 

3000 nm3. The x-y plane had a periodic boundary condition, which 

indicated that the particle density of AuNPs was set to 100 units 

per µm2. A monochromatic incident light ranged from 400 to 2500 

nm in wavelength, I0, was inserted from bottom with a power of 1 

W/m. Reflected light (R, red arrow) and transmitted light (T, blue 

arrow) were calculated with frequency modulation method in a 

wave optics module of COMSOL. Then the optical extinction, E, 

was calculated from the relationship of E = (I0 –T – R)/I0. To 

propose the MIM composite film, Au thin film with a thickness of 

14 nm was set at the interface between the TiO2 and the air layers 

as shown in Fig.1(b). The optical properties of AuNP and Au film 

were subjected to Lemarchand model [37] In the previous study, 

TiO2 was grown on a glass surface and characterized as bronze 

phase by X-ray diffraction analysis.[38] Because the bronze 

phase has the simlar structure with anatase and we chose the 

dielectric model of Kischkat in this study [39]. 

 

Figure 1. Schematic diagrams of (a) the MI and (b) the MIM structure models 

used in this study. In each model, surrounding air was taken into account. The 

film layer TiO2 was located between the glass and the air. An AuNP of 40 nm in 

diameter in the TiO2 layer with a thickness of d was set at a gap distance of h 

from the glass surface. The optical reflectance (R, red arrow) and transmittance 

(T, blue arrow) as a function of frequency were calculated assuming that the 

initial light, I0, inserted from the bottom into the films. 

For instance, transmittance (T), reflectance (R), and 

extinction (E) spectra of the MI and the MIM structure models for 

the TiO2 layers of 800 nm in thickness are shown in Fig. 2. The 

calculated T and R oscillated with the wavelength and had a 

distinctive peaks in the wavelength range of 600 to 800 nm. In 

previous studies, it was reported that the dual mode splitting was 

attributed to the strong interaction between the plasmonic 

resonance and the cavity resonance.[20,31,32] Comparing Fig. 

2(a) with 2(b), the calculated T and R of MIM were smaller than 

those of MI structure in the range of 400-600 nm. This is due to 

the absorbance Au-film and thus the calculated E of MIM resulted 

in becoming larger.  

 

Figure 2. Simulation results of optical transmittance (T), reflection (R), and 

extinction (E) spectra of the (a) MI and (b) MIM structure models with TiO2 film 

thickness of 800 nm. 

To further study, the extinction curves for a variety of TiO2 

layer thickness were put together in Fig. 3. The overlapped 

extinction curves seemed to be coalesced into a large peak, which 

had a peak wavelength of about 630 nm and almost the same 

maximum value (~0.8) in spite of MI and MIM structures. For 

comparison, the calculated extinction curves of AuNP surrounded 

in air (red dotted curve) and in TiO2 (black dashed curve) are also 

drawn in Figs. 3(a) and 3(b). The extinction curves, which were 
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calculated from FEM simulation, agreed well with the results of 

Mie scattering theory.[40–42] As shown in Fig. 3(a), the extinction 

curve of MI structure was oscillated along the dashed curve. This 

indicates that the extinction of AuNP was enhanced by 

exchanging its surrounding medium from air to TiO2 and was 

oscillated by the multi-reflection from TiO2 layer. The extinction at 

a thickness of 100 nm was smaller than the other spectra because 

the TiO2 layer might be too thin to oscillate owing to multi-

reflection. Compared to the spectra of MI structure models, the 

overlapped extinction curves of MIM was larger. As shown in Fig. 

3(b), the minimum of the overlapped extinction was approximated 

by the curve of Au-film. This indicates that the Au-film acted more 

of a resonant mirror than an optical absorber. Moreover, at 

wavelengths more than 900 nm, the extinction remained between 

0.1 and 0.3. This is caused by the interband transition of Au-film 

and the strong interaction between the plasmonic resonance of 

AuNP and the cavity resonance of TiO2. To conclude the FEM 

simulation, the MI film show the coupling of the LSPR shift by 

changing the surrounding medium from air to TiO2 with the multi 

reflection in the TiO2 film. On the other hand, the MIM films 

increased their extinction in the wide region of 400-2500 nm. The 

absorption of Au-film was dominant in 400-600 nm, and besides, 

the coupling of the plasmonic resonance of AuNP with the cavity 

resonance might be dominant. 

  

 

Figure 3. Calculated extinction spectra of (a) the MI and (b) the MIM structure 

models. For comparison, the calculated extinction spectra of AuNP in air (red 

dotted curve) and in TiO2 (black dashed curve) are also drawn in the figures. 

Blue dotted curve in (b) is the simulated extinction of Au-film on glass excluding 

AuNP and TiO2. 

2.2 Experimental results and discussion 

Figure 4(a) shows an optical image and optical extinction of 

AuNPs on a glass.  The AuNPs were pink and had the extinction 

peak at 539 nm due to LSPR. The AuNP of 40 nm in diameter had 

the absorbance peak at 520 nm in a solution. This red shift was 

supposed to be caused by changing from solution to air and 

aggregating AuNPs during drying on a glass. Figure 2(b) shows 

optical images of the MI and MIM film. The left half of the sample 

was masked after sputtering TiO2 on AuNP, and sputtered Au for 

fabricating the MIM films. The color of MI film was blue or purple, 

which changed depending on the thickness of TiO2 layer. The MI 

film was so transparent that we can clearly see grids drawn on the 

paper through the film. On the other hand, the MIM film was so 

dark as to blind the grids. 

 Figures 4(c)-4(f) show FE-SEM images of the side view of 

fabricated films. In the previous study, the sputtered TiO2 film on 

glass was characterized as bronze phase and changed to 

anatase phase after thermal treatment.[38] In the study, the film 

phase was considered to be bronze phase because the films were 

fabricated without thermal treatment. As shown in Fig. 4(c), the 

MI film was rough when the TiO2 was 130 nm in thickness, though 

the film was flat without AuNP as shown in Fig. 4(e). The 

sputtered TiO2 seemed to nucleate heterogeneously from an 

AuNP and grew perpendicularly to the substrate with a columnar 

form as shown in Fig. 4(d) and 4(f). The line density of AuNP was 

1-2 units per 130 nm and then the widths of TiO2 became thicker 

from 50 to 150 nm during the growth of TiO2 from 130 nm to 400 

nm. In addition, the head of the TiO2 columnar were rounded and 

this induced the surface roughness of MI and MIM films.  

 

 

Figure 4. (a) Extinction curve of AuNP mono-layer on glass. The inset 
photograph is a glass covered by AuNPs. (b) Photograph of the fabricated MI 
and MIM films on a glass. (c-f) SEM images of (c) MI, (d) MIM, and (e) IM (w/o 
AuNP) films with TiO2 thickness of 130 nm and (f) MIM film with TiO2 thickness 
of 400 nm. Cross-section of the sample was obtained by cutting the glass 
substrate from the bottom. 

Next, steady-state optical properties of MI and MIM films 

were investigated. Figure 5(a) and 5(b) show the reflectance and 

the transmittance of MI films with different TiO2 thickness 
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measured by optical spectrometry. As shown in Fig. 5(a), the 

wavelength of transmittance edges of MI film shifted from 320 to 

380 nm as the thickness of TiO2 layer increased from 130 to 800 

nm. Since the wavelength of transmittance edge were longer than 

that of absorbance edge of glass, the wave length shift in the 

transmittance edge might be due to the bandgap change of TiO2 

layer. The transmittance oscillated in the case that the TiO2 was 

thicker than 400 nm.  On the other hand, the reflectance oscillated 

in all wavelength range and the oscillation period shortened when 

the TiO2 became thicker. This result indicates that the MI film 

showed the multi interference of TiO2. Figure 5(c) shows the 

extinction The peak appearing in wavelengths of 600-800 nm 

described in Fig. 3 was observed in Fig. 5(c), too. However, the 

intensity was not as large as the simulation result. As shown in 

Fig. 4(c), the rough surface of MI produced a scattering light, 

which was responsible for the resonance in TiO2 layer. In addition, 

AuNP’s size distribution may be responsible for the extinction 

decrease. 
The extinction spectra for MIM films were shown in Fig. 5(d). 

Compared to the MI films, the MIM film provided a higher 
extinction and oscillated with a larger amplitude in the visible light 
region. The results were identified in the computational results, 
which suggests that the high extinction of MIM film is due to the 
interband transition of AuNP and Au-film. In addition, the MIM 
films with the TiO2 layer thickness of 130 and 200 nm showed a 
higher extinction in an infrared region, which remained more than 
60% at a wavelength of 1000 nm. The simulation results in Fig. 
3(b) indicated that the MIM film showed the extinction oscillated 
between 10-30 % at 1000-2500 nm. The reason for the difference 
between the experimental and computational extinction spectra 
was supposed to be due to the surface condition of MI and MIM 
films. As shown in Fig. 4(c)-4(f), The irregularity of Au-film provide 
the localized surface plasmon (LSP) with retrograded SPPs. This 
might be the reason why the unexpected near-IR (NIR) extinction 
was observed. 
 

 

 

 Figure 5. The spectrum curves of (a) transmittance, (b) reflectance, and (c) 

extinction of MI film with differing TiO2 thicknesses. (d) The extinction spectra of 

MIM film. The black dashed curve was the FEM simulation result of AuNP 

surrounded by TiO2, which was replotted from Fig. 3. 

Finally, time-resolved spectroscopy was utilized to 

characterize the optical response of the MIM films under 800 nm 

excitation. Note that 800 nm light is hardly absorbed in all the MI 

films, so here we observe carrier dynamics exciting newly induced 

optical transitions by forming the MIM structures.  

Figure 6 shows the transient absorption intensities of MIM 

films of different TiO2 thickness. When the TiO2 was relatively thin 

(130 nm and 200 nm in TiO2 thickness), the absorbance signal 

immediately fell down and recovered mostly within 10 ps. This is 

supposed to be assigned to plasmon band bleaching as reported 

by Link et al. previously[43]. In previous transient absorption 

studies of AuNPs, it was reported that the signal of transient 

bleaching recovers owing to electron-phonon and phonon-

phonon relaxation with molecules in the surrounding medium with 

lifetimes of the order of 1~4 and 100 ps, respectively. Since the 

large extinction values (> 60%) at the probe wavelength of 950 

nm are obtained in a broad NIR band (see Fig. 5(d)) and the pump 

wavelength corresponds to a part of the same band, the decay 

process of the bleaching is assigned to the electron-phonon 

relaxation.  

On the contrary, when the TiO2 thickness increased, the 

contribution of bleaching is almost hidden and instead the positive 

signals became dominant having slow decay to the sub-

nanosecond scale. The positive signals were also observed 

during the cooling process at the wavelength close to the LSP 

peak.[44] However, this lifetime is less than 100 ps, which was 

shorter than that measured in this study. Du et al. reported that 

the electron injection mechanism in gold-TiO2 nanoparticle 

system under the condition of 550 nm in a pump laser.[45] They 

have observed appearance of positive IR signals assigned to the 

conductive electrons in TiO2. Plasmon-induced electron transfer 

was within 50 fs and charge recombination (back electron transfer 

from TiO2 to AuNP) was in the sub-nanosecond time scale. 

Similar dynamics is observed by Bian et al. with NIR probe [46] 

Therefore, we assign the positive transient absorption to electrons 

injected from gold in the MIM structures.  

The transient absorption time profiles were fitted with two 

components binominal exponential model, that is; 
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y = A1 exp (−
𝑥−𝑥0

𝜏1
) + 𝐴2 exp (−

𝑥−𝑥0

𝜏2
) + 𝑦0, 

where A{1,2}  and τ{1,2}  represent the amplitude and lifetime of 

electron-phonon and phonon-phonon interactions if only cooling 

process of gold is observed.[43] The total amplitude y depending 

on the time x was fitted by mean square method. The resulted 

curves are drawn in Fig. 6 and the parameter of τ1 and τ2 were 

summarized in Table 1. The short τ1 (< 5 ps) was obtained in the 

relatively thin TiO2 films (130 and 200 nm), while τ2 components 

were not clearly recognized. Fitting procedure was applied only 

for decaying part after the signal maximum for thick TiO2 films 

(400 and 800 nm) to analyze the lifetimes of injected electrons. 

Because of measured time range up to 1 ns, the estimated 

lifetimes longer than ~500 ps are not reliable, but surely indicates 

the presence of long-lived electrons in these films in addition to 

the component with τ1  of 70 ps for the 800-nm thickness film. 

Positive electron signals and negative bleaching signals decaying 

in the order of 100 ps may cancel each other for the thin TiO2 films. 

 For our MIM films, we suppose that the optical excitation at 

the wavelength of 800 nm was also found to be the LSP band of 

AuNPs conjugated with SPPs along the interface of TiO2 and 

AuNPs. This excitation mode resulted in generation of conductive 

electrons in TiO2, which can be beneficial for future applications 

such as solar cells, photo-detection, photocatalysis and 

photoelectrochemical sensing in the NIR range.   

 

 

Figure 6. Transient absorption spectra of MIM films with different TiO2 thickness. 

Conclusions 

The MI films were fabricated by growing TiO2 on AuNPs-coated 

glass with sputtering, and the MIM films by growing Au film on the 

MI films with sputtering. The MI films showed blue or purple color 

with transparency. The extinction of MI had the peak between 600 

and 800 nm and oscillated along that of AuNP in TiO2, which was 

assigned the coupling of the LSPR shift by changing the 

surrounding medium from air to TiO2 with the multi reflection in 

the TiO2 film. On the other hand, the MIM films showed a high 

extinction and a high amplitude in the whole wavelength region 

between 300 and 2500 nm, not only 600-800 nm. The absorption 

of Au-film was dominant in 400-600 nm, and besides, the coupling 

of the plasmonic resonance of AuNP with the cavity resonance 

might be dominant. We concluded that the extinction spectra in 

this study were determined from three factors; (1) LSPR change 

of AuNP surroundings from air to TiO2, (2) TiO2 film thickness to 

enhance the extinction of AuNP, and (3) surface morphology of 

Au thin film. Femtosecond transient absorption revealed that the 

MIM films are capable of charge generation in the TiO2 

semiconductor part under 800 nm excitation. 

 

 

Table 1. Parameters of τ1 and τ2 with different TiO2 film thickness. 

TiO2 

thickness 

130 nm  200 nm  400 nm  800 nm 

τ1 (ps) 1.8808 1.9465 4.2165 68.664 

τ2 (ps)   1861.7 861.88 

 

Experimental Section 

AuNPs with a diameter of 40 nm were synthesized by citrate reduction in 

an aqueous solution. A stock solution was prepared by dissolving 

HAuCl4·2H2O (1 g, Kishida Chemicals, 99.9%) in doubly distilled water (10 

mL) to render a 0.25 M HAuCl4 aqueous solution. An aliquot of this solution 

(100 mL) was heated to boiling temperature before adding 10 mg/mL 

aqueous trisodium citrate (1 mL, Wako Pure Chemicals) under vigorous 

stirring. Afterwards, the solution was stirred for 15 min without heating and 

then boiled for an additional 15 min. The resulting colloidal AuNPs were 

assembled on cover slip surfaces (Matsunami, borosilicate glass) 

functionalized with 3-aminopropyltrimethoxysilane (APTMS, Wako Pure 

Chemicals, > 98%). Specifically, glass substrates (18 ×18 × 0.5 mm3) were 

silanized in the presence of mixture of 40 mL ethanolic APTMS for 1 h at 

60 ℃. The APTMS-functionalized surfaces were rinsed four times 

successively with ethanol and distilled water before being placed in an 

AuNP solution for 12 to 18 h at 10 ℃. The coated substrates were washed 

with distilled water and dried.  

Next, TiO2 was deposited on the substrate by direct current (DC) facing-

target sputtering method. The targets were Ti metal plates (99.9 % purity). 

The AuNPs-coated glass substrate was set perpendicular to the plates in 

a vacuum bell jar. The pressure in the bell jar was once decreased below 

1.53 × 10-4 Pa and increased at 1.6 Pa by flowing the mixture of Ar and O2 

gases at an Ar/O2 gas flow ratio of 3:2. The total gas flow rate was kept 

constant at 4.2 sccm. The Ar/O2 plasma was generated by two DC power 

supplies with a voltage of 490 ± 10 V applied to the Ti targets, respectively. 

The thickness of sputter-deposition film was varied by changing the 

deposition time while keeping the plasma-generating conditions. 

Au thin film was deposited on the MI film using ion sputtering coater 

(Hitachi E-1010). The Au target (63 mm in diameter) was set to face the 

sample. The sputtering pressure in the vacuum chamber was kept at 10 

Pa in Ar atmosphere. The coating time and discharge current were 250 s 

and 15 mA, respectively, to fabricate Au film of 15 nm thickness. 

Optical properties of the films were evaluated by a UV-Vis-NIR 

spectrometer (JASCO V-770). Reflectance (R) and transmittance (T) 

spectra were measured using the accessory of specular reflectance 
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accessory (JASCO SLM-907) and film holder (JASCO VTA-752) with a 

light incident angle of 5°. The wavelength range was 300-800 nm for the 

MI films and 300-2500 nm for the MIM film. The optical extinction (E) was 

estimated from the relationship of E = I0 – T – R, as in the case of the 

simulation models described above. Cross sections of MI and MIM films 

were investigated by scanning electron microscopy (FE-SEM, Hitachi S-

4700). Cross-section of the sample was obtained by cutting the glass 

substrate from the bottom. 

Femtosecond transient absorption spectra were also evaluated for the 

MIM films. Some experimental details were described previously [23]. The 

light source for pump and probe was a femtosecond titanium sapphire 

laser with a regenerative amplifier (Hurricane, Spectra Physics, 1.0 mW, 

500 Hz). The pump laser of 800 nm in wavelength went through the sample 

after entering the decay stage to change the pulse distance to achieve a 

time delay. The probe beam was obtained by inducing into a white-light 

continuum generation device. The probe laser transmitted the sample and 

detected at 950 nm with optical spectrometer. Transient absorption 

intensity was calculated from the pulse intensity of the probe with and 

without excitation, typically using thousands of pulses. The sample of MIM 

films were placed in air during the measurements. 
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