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Abstract

Measurement of oxygen uptake during exercise ( _VO2) is currently non-accessible to most

individuals without expensive and invasive equipment. The goal of this pilot study was to

estimate cycling _VO2 from easy-to-obtain inputs, such as heart rate, mechanical power out-

put, cadence and respiratory frequency. To this end, a recurrent neural network was trained

from laboratory cycling data to predict _VO2 values. Data were collected on 7 amateur

cyclists during a graded exercise test, two arbitrary protocols (Prot-1 and -2) and an “all-out”

Wingate test. In Trial-1, a neural network was trained with data from a graded exercise test,

Prot-1 and Wingate, before being tested against Prot-2. In Trial-2, a neural network was

trained using data from the graded exercise test, Prot-1 and 2, before being tested against

the Wingate test. Two analytical models (Models 1 and 2) were used to compare the predic-

tive performance of the neural network. Predictive performance of the neural network was

high during both Trial-1 (MAE = 229(35) mlO2min-1, r = 0.94) and Trial-2 (MAE = 304(150)

mlO2min-1, r = 0.89). As expected, the predictive ability of Models 1 and 2 deteriorated from

Trial-1 to Trial-2. Results suggest that recurrent neural networks have the potential to predict

the individual _VO2 response from easy-to-obtain inputs across a wide range of cycling

intensities.

1 Introduction

Aerobic metabolism, measured universally via oxygen uptake ( _VO2) [1], is the principal mech-

anism by which humans generate energy from ingested foodstuffs for life. Physical activity

demands additional O2 to working muscles, which is matched by O2 delivery from the cardio-

pulmonary system to limit reliance on the less efficient anaerobic pathways. The _VO2 kinetics,

the maximal _VO2 attainable (i.e. _VO2MAX) and the _VO2 required for sub-maximal activities,
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are highly related to health, fitness and exercise performance [2,3]. Direct measurement of

_VO2 requires expensive, invasive and fragile instrumentation, such as metabolimeters [4]. As a

consequence, the study of exercising _VO2 is mostly confined to laboratories and clinics. Dur-

ing outdoor activities, wearing and carrying a metabolimeter can put the athletes and the

instrumentation in danger. Therefore, estimating _VO2 without reliance on a metabolimeter

would be highly useful for a number of performance assessment applications.

Typically, when a metabolimeter is not available, the steady value of _VO2 (i.e. _VO2ss) is esti-

mated from heart rate (HR). However, this methodology has limitations [5]. For example, for

very low and very high intensity exercises, the HR= _VO2 relationship is not linear. Further-

more, heart rate is affected by a high day-to-day variability [6]. However, another method we

might use to directly estimate _VO2 is through its relationship with mechanical power output

(P). Indeed, cycling exercise is a repetitive and easily testable activity in which the mechanical

power output can be measured directly and reliably using a power meter [7] and even esti-

mated using simple energetic relationships [8].

However, like heart rate, _VO2 does not respond promptly to mechanical power output vari-

ations and _VO2 dynamics must be taken into account [9]. The three distinct phases involved

with _VO2 dynamics include: 1) a cardio-dynamic phase-I, 2) a fundamental phase-II and 3) a

slow phase-III component. Whilst phase-I and II are always present in responses to step-

changes in the workload, the phase-III only becomes discernible at heavy and severe exercise

intensities [10]. If the _VO2 dynamic is considered to be linear (this assumption has been ques-

tioned multiple times [11–13]), a first-order model can be used to roughly approximate the

_VO2 at the next instant k+1 (i.e. _VO2(k+1)) from _VO2 and mechanical power output (in

Watt) at the current instant k (i.e. _VO2ðkÞ and P(k)) (Fig 1A):

_VO2 kþ 1ð Þ ¼
ðPðkÞ � Gþ _VO2R �

_VO2ðkÞÞΔtðkÞ
τ

þ _VO2 kð Þ

where G is the _VO2 “gain” [14], _VO2R is the resting _VO2 [15] and Δt(k) is the time that sepa-

rates the two instants k and k+1. This formulation has some shortcomings, e.g.: 1) changes of

G and τ across exercise intensity domains [16] (or with transitions from greater baseline inten-

sities [17]) and cadences (ω) [18], 2) prolonged exercise affects the relationship between G and

P [19] and 3) _VO2 response to exercise is affected by recent exercise history [20]. Such a

description can be improved including those features known to be relevant or related to _VO2,

e.g.: current and past values of mechanical power output, pedalling cadence, heart rate and

respiratory frequency (RF).

The problem of forecasting _VO2 data starting from observations of other variables taken

sequentially in time can be considered as a time series prediction problem. Analytical equa-

tions of the dynamics have limited capacity to accurately model such complex data without

requiring very large and complex formulations. An alternative approach may be found among

the artificial intelligence technologies [21]. Particularly, machine learning algorithms can be

used to learn from data and individuate patterns of variation between variables (Fig 1B). A

machine learning algorithm that considers time sequences can be implemented by means of

the so-called artificial neural networks, a biologically-inspired computational system that

mathematically formalizes the connections among and within layers of artificial neurons [22].

Artificial neurons receive one or more inputs and sums them to provide an output. Inside the

neuron, each input is weighted, and the sum is passed through a non-linear activation func-

tion. Given a sufficient number of layers and neurons, a neural network can always be trained
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(i.e. the weights of the neural network are calibrated) to approximate a real relation between

inputs and outputs [23].

Examples of the application of artificial intelligence to time series problems include finan-

cial time series forecasting [24], as well as arrhythmia detection from ECG signals [25]. Recur-

rent neural network and, in particular long-short term memory [26], are suited for time series

forecasting problems and sequences [27]. Unlike feed-forward neural network, recurrent neu-

ral networks make use of an internal memory to process sequence of inputs. This is a very

important property when the prediction of the neural network depends on the historical con-

text of inputs.

With respect to the field of cycling performance, for example, an artificial intelligence

approach has been proposed for training data processing [28]. In the field of exercise physiol-

ogy, a neural network has been developed [29] to model the heart rate versus mechanical

power output relationship. With this neural network, it was possible to find the heart rate asso-

ciated with the anaerobic threshold non-invasively in soccer players. In _VO2 data estimation,

Laitinen & Rasanen [30] used a neural network to estimate _VO2 in children with congenital

heart disease from inputs like heart rate and blood pressure. However, the accuracy attained

suggested that the predictive power of their neural network was “insufficient” at that time. In

2017, Gonzalez et al., [31] presented an accurate mathematical description for _VO2 dynamics

during high-intensity variable cycling exercise, and the same authors suggested that a neural

network could “perform even better” than their analytical model [32]. More recently,

machine-learning has been used [33] to predict _VO2 accurately during walking and with dif-

ferent daily activities [34], including cycling [35].

In light of the promises of the artificial intelligence technologies [21], the purpose of this

pilot study was to predict the individual response of _VO2 during high-intensity cycling exer-

cise starting from easy-to-obtain inputs. We hypothesised that a recurrent neural network

could provide accurate individualised predictions across a variety of exercise conditions. To

Fig 1. A schematization of the analytical equations approach (A) and artificial intelligence (AI) approach (B) is given. A:

the current value of the power (P) and oxygen uptake ( _VO2) (i.e. P(k) and _VO2 (k) respectively) are used in a formula

(i.e. Δe-t/τ, with Δ calculated as the difference between the _VO2 steady state _VO2ss and the current _VO2) to forecast

future values of _VO2 (i.e. _VO2ðk þ 1Þ). B: In an AI approach to the time-series problem, current (k) and past values (k-1,

k-2, . . . k-n) of heart rate (HR), P and cadence (ω) are used to forecast future values _VO2ðk þ 1Þ.

https://doi.org/10.1371/journal.pone.0229466.g001
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highlight the potential of this methodology, we compared the predictive accuracy of the neural

network with a first-order _VO2 kinetics equation and a previously published higher-order model.

2 Methods

2.1 Experimental data

Seven recreational cyclists (6 males, Table 1) participated in the study and visited the labora-

tory on three separate occasions. The ethics committee of the Department of Neurological and

Movement Sciences of the University of Verona approved the study.

The participants gave informed consent and the research was conducted in accordance

with the declaration of Helsinki. All tests were performed on an electromagnetically-braked

bicycle ergometer (Excalibur Sport, Lode). Measurements of mechanical power output and

pedalling cadence were collected continuously. Respiratory measurements, such as _VO2 and

respiratory frequency were collected using breath-by-breath methods from an automated

open-circuit gas analyser (Quark CPET, Cosmed). Immediately before every test session, the

gas analyser and the flow meter were calibrated. Invalid breaths (i.e. those lying outside the

ranges of respiratory frequency b/min 2–90 (min-max); ventilation (L) 0.100–10000, FeO2%

(%) 5–20; FeCO2 (%) 1–10) were automatically removed in real-time by the CPET software.

Heart rate was recorded continuously (beat-by-beat) during the test with a heart rate monitor

incorporated into the gas analyser. Heart rate was interpolated and provided at the breath-by-

breath time sequence by the metabolimeter.

During the first visit, participants underwent a graded exercise test (GXT) for aerobic

assessment. _VO2 and respiratory frequency data were averaged over 4 min at rest, to give a

resting metabolic rate ( _VO2R) and resting respiratory frequency (RFR) respectively. Partici-

pants warmed up for 10 minutes at 85 W and freely chosen pedalling frequency. The graded

exercise test started at a workload of 100 W for 4 min and, subsequently, the workload

increased by 40 W every 4 min until exhaustion. The pedalling cadence during the test was

kept constant at 90 rpm, using a monitor that provided participants with visual feedback. The

peak power output (PPO) of the test was determined using the power of the last completed

stage and the time of the last uncompleted stage [36]. The _VO2MAX and the maximal respiratory

frequency RFMAX were defined as the highest value of _VO2 and respiratory frequency regis-

tered during the test over a 20-s rolling average [37]. The first ventilatory threshold (VT1) was

determined from visual inspection of: 1) the first disproportionate increase in minute ventila-

tion (VE); 2) an increase in VE= _VO2 with no increase in VE= _VCO2 (where _VCO2 is the

exhaled volume of CO2); 3) an increase in end-tidal O2 with no consequent fall in end-tidal

CO2 tensions. The second ventilatory threshold (VT2) was determined from: 1) the second

disproportionate increase in minute ventilation; 2) the first systematic increase in VE= _VCO2;

3) the first systematic decrease in end-tidal CO2 tension[38,39]. To account for the differences

that exists in the _VO2 versus power output relationships from graded versus constant exercise

[9], the power values expected to elicit the _VO2 associated with the first and second ventilatory

thresholds were estimated using the equations established by Kuipers et al. [40]. We are aware

Table 1. Participants’ characteristics: Mean (SD) of the weight, the maximal oxygen uptake ( _VO2MAX), the peak power output (PPO) and the three intensity-levels

adopted in the second and third tests (P1, P2 and P3).

Weight _VO2MAX PPO P1 P2 P3

Mean 76.0 (6.6) kg 4443 (720) mlO2min-1 335 (44) W 109 (21) W 246 (42) W 304 (43) W

https://doi.org/10.1371/journal.pone.0229466.t001
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that graded exercise testing protocols can influence the _VO2 versus power output relationship

[41], hence reducing the validity of the specific power values associated with first and the sec-

ond ventilatory threshold, i.e.: PVT1 and PVT2, respectively. PVT1 and PVT2 were obtained con-

sidering the power output of the previously completed stage and the time of the completed

stage when the ventilatory threshold occurred (e.g. 18 min = 240 W; 220 W (16 min) + 2 min/

4min x 40 W).

Three different mechanical power output levels were defined for every participant as fol-

lows: moderate intensity P1 = 0.5�PVT1, heavy intensity P2 = 0.5�(PVT2-PVT1)+ PVT1 and severe

intensity P3 = 0.5�(PPO-PVT2) + PVT2 (Table 1). After a recovery period of 1 hour, participants

performed a 30” Wingate test (WG) on a mechanically braked cycle ergometer (Ergomedic

894-Ea, Monark). During this test, the highest mechanical power PMAX and the maximal

cadence ωMAX were determined.

During the second and third visit to the laboratory, athletes performed a warm-up for 10

min at a constant power of 85 W and rested for 4 minutes, before performing two different

protocols on separate days. The first protocol (Test 1) consisted of a constant mechanical

power output of 100 W for 4 minutes, followed by three repetitions of three constant bouts of

4 minutes at P2, P3 and P1 (please see the additional material for a graphical representation of

the protocol). The second protocol (Test 2) started with a linear increase in the mechanical

power output (i.e. a ramp) from P1 to P3 in 4 min. The initial ramp was followed by: a 1-min

bout at P3, a 4-min bout at P1, a 1-min ramp from P1 to P2, a constant bout of 3 min at P2, a

4-min bout at P1, a 2-min ramp from P1 to P2, a constant bout of 2 min at P2 and a 4-min bout

at P1 (please see the additional material for a graphical representation of the protocol). These

two arbitrary protocols were designed to elicit different _VO2 dynamics behaviours and facili-

tate the convergence of the parameter estimation.

2.2 Dataset preparation

Metabolic and power data were synchronized in time in a post-processing phase. Particularly,

mechanical power output and pedalling cadence signals were resampled to meet the same

breath-by-breath frequency of the cardiopulmonary data. Data were normalized between 0

and 1, to facilitate convergence during parameter optimization [42]. _VO2 data was set to 1 if it

matched _VO2MAX and 0 if it matched _VO2R. Respiratory frequency data was set to 1 if it

matched RFMAX and to 0 if it matched RFR. Mechanical power output data was set to 1 if it

matched PPO and 0 if it matched zero, while pedalling cadence data was set to 1 if it matched

ωMAX and 0 if it matched zero.

Past input values were included and used for predicting the output values. As a result, the

input x and the output y for our machine learning algorithms became:

x ¼ ½Pk� n;ωk� n;HRk� n;RFk� n; . . . ;Pk� 1;ωk� 1;HRk� 1;RFk� 1;Pk;ωk;HRk;RFk�

y ¼ ½ _VO2kþ1�

Therefore, the shape of the input was nx4, while the shape of the output was 1x1. This

means that every single exercise provided several samples equal to the total number of breath

N minus the number of past inputs n (i.e. N-n). While N was determined by the duration of

the exercises, a value of n = 70 breaths was proposed as a good estimate of the time-depen-

dence decay between the output and past values of inputs. This implied that the machine learn-

ing algorithms could hypothetically learn about relationships between inputs and outputs

lasting across 70 breaths. This number was chosen because it provided the best combination

between computational time and prediction accuracy.
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The entire dataset was split into 2 sub-datasets: the training set and the test set. The training

set included 3 of the 4 tests performed by every cyclist and was used to adjust the weights of

the neural network. The test set included the remaining test and was used to confirm the actual

predictive power of the neural network. In a first Trial (Trial 1), the training set included the

graded exercise test, Wingate test and Test 2, while the test set included Test 1. In a second

Trial (Trial 2), the training set included the graded exercise test, Test 1 and Test 2, while the

test set included the Wingate test.

2.3 Neural network design

An artificial intelligence regressor was developed and used to predict values of _VO2. The neu-

ral network was coded and implemented using Python (ver. 3.6, Python Software Foundation),

a high-level programming language for general-purpose programming. In particular, the

open-source library called Keras was adopted to specifically design and test the neural net-

work. The neural network was created using a Tensorflow backend with cuda support (2xNVi-

dia GT750M i74xxx). A summary of the model is given in Table 2.

The neural network was composed with long-short term memory neurons [26], best suited

for time-series analyses and sequence detection [27]. A total of 3 long-short term memory lay-

ers of 32 neurons each were formed, plus 1 hidden layer of 10 neurons and 1 output layer of 1

neuron. The neural network was trained with a stochastic gradient method (adagrad) that

optimises a categorical cross entropy loss. The training dataset entries were shuffled and the

whole dataset was crossed in 20 epochs. The weights were initialized as random values, while

biases were initialised as random positive values. The batch size (that defines the number of

samples propagated in the neural network) was set to 10.

There are no specific and scientifically proven steps to be followed in the design of the neu-

ral network. However, we know that the choice of the number of layers, the number of neu-

rons, the number of epochs and the batch size affect the accuracy of the output and the

computational time. Therefore, to select these parameters, we proceeded by trial and error,

until the best combination of accuracy and computational time was found. The final architec-

ture with 3 long-short term memory layers, has been shown to work well in other time-series

classification problems using physiological data [43].

2.4 The analytical models

Two models for _VO2 data prediction were used to test the relative predictive power of the neu-

ral network. The two candidate models were chosen as they have been already tested during

the prediction of _VO2 data from mechanical power output data in cycling [32].

Parameters of the models were calculated using a particle swarm optimization algorithm

[44], with the goal of finding those model parameters that could lead to the best match with

Table 2. A total of 21717 parameters have been included in the LSTM NN designed in this study. Three LSTM lay-

ers of 32 neurons were used with 1 hidden layer of 10 feed-forward neurons and 1 output layer of 1 neuron. Input

shape for LSTM layers were determined form the batch size (10), the number of past inputs considered in the time

series (70) and the number of neurons of the layer.

Layer (type) Output shape N parameters

LSTM 1 10x70x32 4736

LSTM 2 10x70x32 8320

LSTM 3 10x32 8320

Dense 1 10x10 330

Dense 2 10x1 11

https://doi.org/10.1371/journal.pone.0229466.t002
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experimental data (in the least square sense). The number of iterations was fixed at 250, a

number that was found to provide stable solution in a reasonable amount of time. The particle

swarm optimization algorithm was implemented and run in the Matlab (ver. 2017a, Math-

works) numerical environment as follows:

1. Model 1: the _VO2 dynamics were approximated using the equation offered in the

Introduction.

2. Model 2: the complete description of this model can be found in the original article [31].

Dynamics equations of the model are reported in the Appendix using a formulation best

suited for spreadsheets.

2.5 Statistics

To assess the prediction ability of the different models, a residual analysis was conducted.

Residuals were calculated as the difference between the experimental _VO2 values and the out-

put _VO2 values predicted by the models. Mean absolute error (MAE) and root mean squared

error (RMSE) of the residuals were calculated. A regression analysis of the residuals provided a

Pearson’s correlation coefficient r and variance explained R2 statistic from the fit of each out-

put. A Bland-Altman analysis [45] was used to assess the level of agreement between measured

and predicted data. The mean bias and the limits of agreement at 95% of probability LA95%

were calculated. The bias was significant if the equality line fell outside the confidence intervals

CI95% of the mean bias for the sample. The confidence limits of the mean bias were calculated

with the significance level set to 0.05. Additionally, best practice suggested we define a priori a

significant and meaningful level of maximal acceptable limits. This limit was set to 200 mlO2-

min-1, which, in our experience, is comparable with the magnitude of the typical noise under-

lying _VO2 measurements at high exercise intensities.

An autocorrelation analysis calculated the strength of the relationship between a residual

and residuals at prior time steps. An autocorrelation consistently falling outside the confidence

bands meant that the model failed to incorporate important relationships between the current

output and past values of the inputs. Confidence bands were calculated with a significance

level set to 0.05 [46].

3 Results

Training the neural network required approximately 30 min (PC equipped with 2xTitan

i75900), while Model 1 and 2 calibration (particle swarm optimization) required 10 min and

20 min respectively (MacBook Pro, 2.8 GHz Intel Core i7). Testing the models required few

seconds for every simulation.

In trial 1, after the particle swarm optimization, mean values of the parameters of Model 1

were: G = 10.07 (0.85) mlO2min-1W-1 and τ = 45 (3) s. Values for Model 2 are reported in the

Appendix. For the neural network and Models 1 and 2, results of the residual and Bland-Alt-

man analyses are presented collectively in Table 3 for both the experimental Trials. The per-

formances of the neural network in Trial 1 and 2 are shown in Fig 2A and 2B for a

representative participant.

The residual analysis in Trial 1 shows that the predictive power of the neural network was

significantly superior to that of the other models, as seen by the smaller mean absolute error

and root mean square error and higher correlation coefficient and variance explained

(Table 3). For both our neural network and Models 1 and 2, the Bland-Altman analysis for the
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measured versus predicted _VO2 showed no proportional error rate, with differences unrelated

to the magnitude of the measurement error. In the case of the neural network the bias was not

significant. For model 1, the equality line fell outside the confidence intervals of the mean bias

of the sample and outside the limits of 200 mlO2min-1. Model 2 performed slightly better than

Model 1: the equality line fell outside the confidence intervals of the mean bias of the sample

but inside the limits of 200 mlO2min-1. For the neural network, the autocorrelation analysis

suggested that there was no significant autocorrelation between observations and lagged obser-

vations. In fact, autocorrelation consistently stayed within the confidence bands. In the case of

Model 1 and 2, the autocorrelation fell outside the confidence bands for the initial portion of

the signal.

Table 3. Results are reported for the residual and the Bland-Altman analyses for the three different models (AI reg. (i.e. our AI regressor), model 1 (i.e. the first-

order model) and 2 (i.e. the Gonzalez’s model)). In Trial 1 we compared predicted and experimental data during a variable high-intensity exercise. In Trial 2 we com-

pared predicted and experimental data during a brief 30” “all-out” Wingate test.

Trial Model MAE RMSE r R2 Bias LA95% CI95% Abs. range

1 AI reg. 5.3 (1.1) 7.3 (1.5) 0.94 (0.02) 0.89 (0.04) 1.7 (2) 13.4 (3.3) 1.7 66 (73)

Model 1 7.9 (1.4) 10 (1.6) 0.83 (0.06) 0.7 (0.1) -5 (2) 15 (2.4) 1.4 -264 (79) ��

Model 2 6.2 (1.3) 8.3 (1) 0.9 (0.04) 0.81 (0.07) -2.7 (2.1) 15 (2) 1.6 -114 (62)�

2 AI reg. 7.2 (4.6) 11 (6.4) 0.89 (0.09) 0.8 (0.15) -3.6 (5) 20 (9.5) 3.8 -124 (139)

Model 1 9 (2.4) 12.7 (3.2) 0.75 (0.09) 0.58 (0.13) -6.2 (1) 21.4 (7) 1 -277 (50)��

Model 2 10.8 (3.7) 15 (4.3) 0.48 (0.25) 0.28 (0.21) -8.7 (2.9) 23 (7.7) 2.1 -377 (75)��

Mean (SD) values are reported. MAE is the mean average error in % _VO2MAX, RMSE is the root mean square error given in % _VO2MAX, r is the correlation coefficient, R2

is the corresponding variance explained, the bias is given in % _VO2MAX, the limits of agreement LA95% are given in % _VO2MAX, the confidence intervals CI95% are given in

% _VO2MAX, the absolute range is calculated from the individual characteristics and provided in mlO2min-1. The predicted _VO2 values were significantly biased if the

equality line fell outside the confidence intervals of the mean bias of the sample (�) or outside the limits of 200 mlO2min-1 (��).

https://doi.org/10.1371/journal.pone.0229466.t003

Fig 2. A) The performance of the regressor is shown for a single representative athlete. Experimental data (circles) of oxygen uptake ( _VO2) are reported. Predicted

values of _VO2 (solid line) are superimposed on experimental data. In this example, MAE was 0.028 _VO2MAX (i.e. 164 mlO2min-1), with a RMSE of 0.04 _VO2MAX (i.e. 229

mlO2min-1). B) The performance of the regressor is shown for a single representative athlete during a WG test. Experimental data (circles) of oxygen uptake ( _VO2) are

reported. Predicted values of _VO2 (solid line) are superimposed on experimental data. In this example MAE was 0.03 _VO2MAX (i.e. 176 mlO2min-1), with a RMSE of 0.05
_VO2MAX (i.e. 294 mlO2min-1). Please see the S1 Material for the other individuals’ responses.

https://doi.org/10.1371/journal.pone.0229466.g002
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During Trial 2, residual analysis highlighted that the neural network could accurately pre-

dict the actual _VO2 data both during the ascending and descending phases of the _VO2 evolu-

tion. On the contrary, both Models 1 and 2 did not predict the additional _VO2 required after

high-intensity exercises. This is confirmed by the high values of correlation coefficient and var-

iance explained for the predictions of the neural network (Table 3). Bland-Altman analysis

suggested that, in the case of the regressor, the bias was not significant. On the other hand, for

Model 1, the equality line fell outside the confidence intervals of the mean bias of the sample

and outside the limits of 200 mlO2min-1. Model 2 performed slightly worse: the equality line

fell outside the confidence intervals of the mean bias of the sample and outside the limits of

200 mlO2min-1. Bland-Altman analysis suggested that, in the case of Models 1 and 2, the biases

were significant. The autocorrelation analysis for the predicted values of the neural network

showed that there was no significant autocorrelation between observations and lagged obser-

vations. When predictions were made with Models 1 and 2, autocorrelation analysis

highlighted that the other models failed to incorporate important relationships between cur-

rent _VO2 and past input values. In fact, a consistent portion of the autocorrelation lied outside

the confidence bands.

4 Discussion

We hypothesized that a recurrent neural network approach could be successfully used to accu-

rately predict individual cycling _VO2 data from easy-to-collect inputs [21]. In fact, the

mechanical power output and the pedalling cadence are both easily collectable by portable

power-meters [7]). Indeed, heart rate and respiratory frequency are both measurable with

chest belts [47,48] and have already been successfully used by Beltrame et. al. [49] for the pre-

diction of _VO2 from wearable sensors.

The ability of neural networks to model complex data was already known and other more

basic learners could have been used (e.g. k-nearest-neighbour or support vector machine).

While simpler learners like Hammerstein-Wiener models have been already tested [32,50], we

are not aware of any existing example of the application of k-nearest-neighbour or support

vector machine methods in the prediction of _VO2 during high-intensity cycling.

However, the major innovation of our neural network lies in the long histories of values of

the inputs (reflected in the number of input neurons). Latinen & Rasanen [30] used a neural

network with 14 input neurons, one hidden layer of 4 neurons and one output neuron for

_VO2. Beltrame et al. [33] used a neural network with 7 input neurons, one hidden layer of 11

neurons and one output neuron. Both studies only used current inputs and not past values.

Beltrame et al. [49] used only 1 sec of lag to include “dynamic changes” of heart rate. Very

recently, Borror et. al. [35] presented a neural network that can predict cycling _VO2 in cycling,

with a workflow similar to ours. They included body mass, mechanical power output, ped-

alling cadence and heart rate as inputs. However, in their work, no past input values are passed

to the neural network, and the heart rate dynamics is only considered by means of its “time

derivative”. In our neural network, there were 3 hidden layers of 32 long-short term memory

neurons each, one hidden layer of 10 neurons and one output neuron. The neurons adopted

were long-short term memory neurons, particularly suited for time-series analysis [26]. To the

best of our knowledge, we are the first to apply recurrent neural networks to the prediction of

cycling _VO2.

The predictive power of the neural network was very high during Trial 1, as measured and

predicted _VO2 showed a nearly perfect agreement (MAE = 229 (35) mlO2min-1, r = 0.94). The

performances of models 1 and 2, although inferior, were still good in Trial 1 (MAE = 355 (86)
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mlO2min-1, r = 0.83 and 273 (49) mlO2min-1, r = 0.9 for model 1 and 2 respectively). This

means that the performances of our neural network and Models 1 and 2 were very close. How-

ever, a robust model should predict _VO2 data across a wide range of scenarios. To this end, we

tested our models using a short “all-out” sprint effort (Wingate test). Importantly, Models 1

and 2 were not designed specifically for the Wingate test and have a limited number of param-

eters that can be tuned. However, the neural network, due to the considerable number of

parameters used, can work well across a wider range of exercising scenarios. In fact, the num-

ber of parameters used may limit the number of physiological mechanisms that can be mathe-

matically described.

In Model 1, a single phase is included and characterised by the parameter τ. The time-con-

stant τ and the oxygen gain G, in Model 1, are constant across all the exercising intensities.

Therefore, it becomes difficult to predict experimental values of _VO2 during brief “all-out”

exercises [51]. In Model 2, the parameter TI (see Appendix) has been included to account for

the delayed _VO2 component that sum to the principal element. However, if the time duration

of the exercise is shorter than TI (e.g. the Wingate test lasts 30”), then this additional compo-

nent is not activated. In Model 2, the high number of parameters affected the confidence of

parameter estimation and this is confirmed by the large variability of the parameter estimates.

Mean and standard deviation of the variables found with our experimental data, were compati-

ble to those reported in the original article [31] (Appendix).

On one hand, the high predictive power of the neural network, although reduced, was remark-

ably conserved during Wingate test (Trial 2: MAE = 304(150) mlO2min-1, r = 0.89). This means

that the dataset that we used to train the neural network (in terms of duration of the exercises) for

every participant, was large enough to provide good predictive power. Further studies are needed

to establish the minimal amount of data that should be used to train a neural network and retain a

high predictive ability. On the other hand, the performances of Models 1 and 2 deteriorated dur-

ing Wingate test (Trial 2: MAE = 391(71) mlO2min-1, r = 0.75 and MAE = 463(112) mlO2min-1,

r = 0.48 for the Model 1 and 2 respectively). It can be noticed (Fig 2B) that a small lag is present

between the _VO2 measurements and predictions. This might be because two of the inputs used

by the neural network (i.e. respiratory frequency and heart rate) did not promptly react to abrupt

changes in power output. However, an autocorrelation analysis showed that our neural network

could incorporate relevant relationships between current _VO2 and past input values, whereas

Models 1 and 2 could not. Due to the reduced number of parameters of Model 1 and 2, the pre-

dictive power does not heavily depend on the amount of data used to calibrate the parameters.

We suggest that the performance of the analytical models, although inferior, is guaranteed even if

smaller datasets are used for their calibration. We did not investigate the influence of the dimen-

sion of the training set on the performance of the neural network, but we believe that the perfor-

mance would deteriorate with smaller and smaller training datasets. This is a first limitation of a

neural network approach: we rely on large datasets.

The second main limitation of the neural network method lies in its “black box” approach.

In fact, it is unlikely we can understand how the non-linearities of the _VO2 dynamics are rep-

resented inside the neural network. Additionally, our exercises were carried out in the labora-

tory environment and they were limited in time (max duration ~1400 s). In practical settings

(e.g. training and races), a cardiovascular drift could mislead our estimations. The use of long-

short term memory neurons makes it difficult to understand the variables that contribute the

most to the total estimation. In our study, the pedalling cadence was kept constant, so it is

likely that the contribution of this variable may be limited in our study. As well, respiratory fre-

quency indicating the ventilatory response to exercise has an important link with _VO2, while

heart rate has additional known associations with exercising _VO2 [5,52].
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Even though we investigated a few different exercising conditions (i.e. moderate, heavy and

severe intensity and “all-out” efforts), we should the results of this pilot study with caution. In

fact, more work is needed before this algorithm could be embedded in a portable system able

to estimate cycling _VO2 in real-time: the verification of the predictive ability of the neural net-

work on a larger sample (7 cyclists is a small sample) and on different environmental condi-

tions (e.g. outdoor). Also, including input parameters like body mass, gender and fitness level,

may provide in the future even better predictive outcomes for the estimation of the aerobic

performance. Importantly, the ability of the neural network in predicting the _VO2 values for

an individual who was not included in the training dataset, has yet to be assessed.

5 Conclusions

In the context of forecasting _VO2 values, the results of our pilot study suggested that a recur-

rent neural network can use great quantities of information from other mechanical (such as

mechanical power output and pedalling cadence) and physiological markers (such as heart

rate and respiratory frequency), as well as past input values, to attain accurate predictions of

cycling _VO2. Results suggest that this algorithm has the potential to be, in the next future,

embedded in a portable system and to provide real-time assessment of individual cycling _VO2

during training or racing.

Appendix

Dynamics equations of Model 2 (see [31,53]) are reported with a formulation that can be read-

ily implemented in a spreadsheet. The main difference between this model and Model 1 is that

phase-II (“fast” phase) and III (“slow” phase) of _VO2 dynamics are considered in this model.

Gonzalez et al. included these two additional phases with two delayed components that

become active only after a given period. The principal governing equation is:

_VO2ðkþ 1Þ ¼ _VO2R þ
_VO2 IIðkþ 1Þ þ _VO2 IIIðkþ 1Þ

Where _VO2II is the principal _VO2 component that is active after TII and is characterized by

a time-constant τII.

_VO2 II kþ 1ð Þ ¼
ðAIIðkÞ � _VO2 IIðkÞÞDt

tII
þ _VO2 II kð Þ

Where AII(k) can be computed as:

AIIðkÞ ¼ minðs � PðkÞ; _VO2MAX �
_VO2RÞ

Where s is the gain for the fast phase. _VO2III is the slow component of _VO2 that activates

after TIII and is characterized by a time constant τIII.

_VO2 III kþ 1ð Þ ¼
ðAIIIðkÞ � _VO2 IIIðkÞÞDt

tIII
þ _VO2 III kð Þ

Where AIII(k) can be computed as:

AIIIðkÞ ¼
_VD � eð� ðPc� PðkÞÞ=DÞ; PðkÞ � Pc

_VO2MAX �
_VO2R � AIIðkÞ; PðkÞ > Pc

(

Where Pc is a “critical power” threshold.
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In trial 1, after PSO, the values of the parameters were (mean(SD)): _VD = 397(398) mlO2-

min-1, Pc = 359(39) W, Δ = 79(72) W, s = 8.67(0.49) mlO2min-1W-1, τI = 43(1.38) s, τII = 199

(52) s, TI = 10(6.72) s, TII = 113(27) s. In trial 2, after PSO, the values of the parameters were:

_VD = 779(445) mlO2min-1, Pc = 383(15) W, Δ = 64(34) W, s = 9.03(0.9) mlO2min-1W-1, τI =

42(1.7) s, τII = 183(30) s, TI = 11(4.5) s, TII = 103(34) s.
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