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Since their conception 50 years ago, molecularly imprinted polymers (MIPs) have seen extensive
development both in terms of synthetic routes and applications. Cells are perhaps the most chal-
lenging target for molecular imprinting. Although early work was based almost entirely around
microprinting methods, recent developments have shifted towards epitope imprinting to
generate MIP nanoparticles (NPs). Simultaneously, the development of techniques such as solid
phase MIP synthesis has solved many historic issues of MIP production. This review briefly de-
scribes various approaches used in cell imprinting with a focus on applications of the created
materials in imaging, drug delivery, diagnostics, and tissue engineering.

The Drive To Recognize and Interact with Cells

The vital functions of organisms are governed by specific crosstalk between cells which ultimately
relies on macromolecular interplay. Dysfunctional molecular interactions at the cellular level are often
responsible for cell malfunctioning and consequent onset of disease [1]. Biomimetic tools that
explore molecular interactions have been used for cell imaging, improving drug delivery, tissue en-
gineering, and diagnostics [2]. However, the design of such tools is not easy because of the complex
nature of molecular interactions and the lack of affordable generic protocols for the development of
supramolecular receptors with ordered systems of functional groups that mimic natural molecules.
The present review focuses on MIPs as an alternative to biomimetics and biosimilars. We discuss
here the historical foundations and recent technological advances for the preparation of MIPs suit-
able for cell recognition, and frontier applications to cells and cell biology, highlighting the achieve-
ments, current limitations, and future trends.

MIPs: The Concept

MIPs are recognition materials prepared by a template-assisted synthesis [3,4]. The imprinting pro-
cess, schematized in Figure 1, comprises polymerization of the monomers and the crosslinker in
the presence of a target molecule that acts as a template. Driven by thermodynamics, the template
interacts with the monomers to form a prepolymerization complex that is stabilized by molecular in-
teractions, and that is later 'frozen’ by polymerization. As a result, molecular impressions of the tem-
plate are stamped into the formed polymeric material, thereby creating specific binding sites capable
of recognizing the template and its analogs.

MIPs are robust and possess affinity and selectivity for the template comparable with that of natural
receptors. Small molecules, peptides, nucleic acids, proteins, cells, and viruses have been imprinted,
confirming the versatility of the MIP approach [5-7]. Given recent progress in the development of MIP
NPs (nanoMIPs) [8,9], this technology has become suitable for frontier applications in the domain of
life science and medicine.

The Development of Whole-Cell Imprinted MIPs

Although the molecular imprinting of small molecules, peptides, and even proteins is well estab-
lished, with many examples in the literature, patents, and even commercial products (e.g., SupelMIP®
by Sigma-Aldrich, www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spe/
supelmip.html), the Holy Grail of MIP technology is the imprinting of complex template structures
such as whole cells. These MIPs would have a broad range of applications, including use in environ-
mental and clinical assays, targeted therapeutics and imaging, cell separation, and tissue culture.
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Figure 1. Schematic of the Concept of Molecular Imprinting.

The template (blue triangle) and the functional monomers (green) interact in solution forming a pre-polymerization
complex. The addition of the crosslinker and of the initiators yield to the synthesis of the molecularly imprinted
polymer (MIP; yellow). At the completion of the process, the template is removed from the MIP by washing
steps. The stamped recognition cavities are complementary to the template and ready for its binding.

Over the past two decades much effort has been expended towards the successful achievement
of this goal, with successful examples such as cell imprinting using stamping of the whole cells [7].
The proof of concept was performed by Vulfson and colleagues in 1996 [10,11]. This involved
cell lithography for the preparation of polymers with affinity for bacteria. Since then, microcontact
printing (see Glossary) has seen extensive development, as well as alternative strategies such as
the preparation of MIPs from self-assembling silica NPs, and the use of cell epitopes in place of
whole cells.

Microcontact Stamping

Microcontact stamping, otherwise referred to as microprinting, is the most frequently explored
technique for generating MIPs using whole cells as templates [7]. It involves deposition of the target
cells onto a flat solid support layer and then topping them with monomers or a soft polymer such as
prepolymerized polyurethane (PU). The polymer is then cured, sandwiching cells between the sup-
port layer and the formed polymer (Figure 2). Whole-cell MIPs exhibited shape, size, and functional
selectivity for the cell templates [11,12]. A key example of cell-recognizing MIPs is the use of im-
printed polyvinylpyrrolidone (PVP) for the selection of erythrocyte subtypes [13]. Developed MIPs
have shown outstanding selectivity towards erythrocyte subgroups A1 and A2, even though both
types expose the same antigens on the surface and differ solely in the density of glycolipids on
the respective cells. From these results it was concluded that, in contrast to antibodies, whose
recognition ability relies on the presence of a defined antigen on the cell surface, MIPs instead
are able to interact with the entire cell surface, and show sensitivity to quantitative differences in
surface chemistry [14]. A broad range of targets and materials have already been imprinted using
this approach, including bacteria, mammalian cells, and yeast; key examples are reported in
Table 1 [15,16].
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Glossary

Atom transfer radical polymeri-
zation (ATRP): a reversible deac-
tivation method for radical poly-
merization that is suitable for
forming carbon-carbon bonds
with a transition metal catalyst.
ATRP permits a high degree of
control over the composition and
architecture of macromolecules,
ultimately providing polymeric
materials with highly specific and
uniform characteristics.
Electrochemical sensor: accord-
ing to the International Union

of Pure and Applied Chemistry
(IUPAC) definition and classifica-
tion, electrochemical sensors are
a category of chemical sensors
that couple the receptor part of
the device to an electrochemical
transducer. The transducer trans-
forms the analytical information
originating from the analyte—
electrode electrochemical inter-
action into a measurable electrical
signal.
Electrochemiluminescence
biosensor: a biosensor that mea-
sures the emission of visible light
as the result of an electrochemical
reaction. Electro-
chemiluminescent molecules, af-
ter becoming electronically
excited, release visible electro-
magnetic energy when returning
to their relaxed state. In the
biosensor, the light-emitting
molecules that interact with the
analyte of interest are introduced
into the solution, the amount of
emitted light is measured, and
this can be correlated with the
quantity of analyte in the sample.
Electropolymerization: polymeri-
zation of electroactive monomers
under the influence of an electric
current. The method is straight-
forward for obtaining polymer
films with a specified thickness by
controlling the number of cycles
orthe current thatis applied to the
electrode.

Epitopes: also known as antigenic
determinants, epitopes are the
part of an antigen that are recog-
nized by the immune system.
Idiotypic peptide: a molecular
arrangement of amino acids that
is unique to the antigen-binding
site of a particular antibody. The
molecular structure and confor-
mation of an antibody confers its
antigen specificity.



Microcontact stamping has been successfully exploited for cell recognition, cell selection, and
sensing (Table 1). Microcontact stamping has also provided surfaces suitable for controlled cell
growth. Interestingly, comparison of cells grown on flat and imprinted surfaces showed that MIP sur-
faces promoted higher expression levels of adhesion proteins, confirming that the MIP substrate
elicits a biochemical response in the growing cell [17-19].

Microcontact printing can be performed using both organic and inorganic polymers. Commercial
ready-to-use organic polymers such as polystyrene (PS), polyacrylate, polyvinylpyrrolidone (PVP),
polyacrylamide, PU, and Epon1002F have been used to generate imprinted surfaces for Bacillus ce-
reus [20]. The best performance was achieved with PU and Epon1002F. This is an important result
because it allows self-synthesized polymers to be replaced by well-characterized commercial mate-
rials, allowing this technique to be used by nonspecialists in polymer synthesis.

More recently, Dulay and colleagues assessed the ability of a polydimethylsiloxane (PDMS) layer
created by microcontact stamping of bacterial cells to distinguish between living and inactivated cells
[21]. These polymers showed significantly higher affinity for inactivated cells prepared using the same
technique as that used for polymer imprinting [14,17]. Because of the synthetic limitations of PDMS,
the authors moved to organosiloxane polymers generated by sol-gel chemistry. The broad selection
of available silanes made it possible to benefit from a plethora of functionalities while retaining op-
tical transparency and mechanical resistance [21]. Although the mechanical stability of inorganic ma-
terials is usually higher than that of their organic counterparts, it is important to consider that the me-
chanical stress which cells undergo during the stamping procedure might be damaging for more
delicate targets such as human cells.

A superior strategy in cell imprinting lies in generating a polymer layer using cells as a template, and then
using this as a mould to generate a second polymer layer. This layer can then act as a 'master mould’ that
can be used as a template instead of cells. This may improve the ease, reproducibility, and safety of mak-
ing imprinted polymer layers because no living cells are needed after the first imprint [18].

Cell recognition can also be achieved by imprinting sections of the cell membrane. Charged proteins
exposed on the cell membrane play a key role in cell adhesion, proliferation, interaction, and localiza-
tion. Bao and colleagues reported a novel method to produce bacteria-imprinted polymers by exploiting
bacterial surface-charge heterogeneity using charged methacrylate ethyl trimethyl ammonium chloride
and 3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate fixed in a polymer network by sur-
face-initiated atom transfer radical polymerization (ATRP) [22]. The charge distribution on the imprinted
cavities complemented the charge distribution of the bacterial surface, allowing stronger electrostatic-
mediated recognition. Borovicka and colleagues generated 'colloid antibodies’ by coating microbial
cells with a silica shell that was subsequently fragmented to create complementary shell fragments
[23,24]. The authors demonstrated that recognition is mediated not only by the size and shape of the
imprints but also by electrostatic interactions and the surface charge of the microbial cells.

A sophisticated whole-cell imprinting approach was developed by Alexander and colleagues, who
exploited bacterial redox systems to induce copper-mediated ATRP of cationic 2-(methacryloy-
loxy)-N,N,N-trimethylethanaminium chloride and zwitterionic 2-(N-3-sulphopropyl-N,N-dimethyl
ammonium) ethyl methacrylate at the surface of Escherichia coli and Pseudomonas aeruginosa cells,
thus generating polymers directly in situ at the surface of the microorganisms [25]. The cells also
doubled as a solid phase to isolate high-affinity from low-affinity polymer products, similar to the
technique pioneered by Piletsky and colleagues [8,26-27]. A click-chemistry reaction was used to
attach fluorescent reporters onto the polymers allowing simultaneously binding and visualization
of the pathogens (Figure 3).

Epitope Imprinting
The whole-cell imprinting approach produces a shape-recognition material that might not be optimal
when the goal is to recognize a specific type of human cell, for example, to distinguish or locate
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Microcontact printing: a method
of transferring patterns from
various materials such as poly-
mers, proteins, nanoparticles
(NPs), etc. onto another surface.
Typically, a polydimethylsiloxane
(PDMS) stamp is dipped into a
solution of the material to be
patterned and is brought into
contact with the surface. Transfer
of micrometer/nanometer-sized
patterns is possible by this
technique.

Quartz crystal microbalance
(QCM) sensor: also known as an
acoustic sensor, QCM sensors are
based on a piezoelectric material,
or quartz crystal resonator, to
which a frequency is applied. The
receptor, in other words the se-
lective MIP, is usually deposited
on the surface of the quartz crystal
resonator. The QCM measures
the mass variation per unit area by
measuring the change in fre-
quency of the quartz crystal reso-
nator. The resonance is perturbed
by the addition or removal of an
analyte at the surface of the
acoustic resonator.
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As an example, yeast cells were imprinted with prepolymerized polyurethane (PU) matrix [12,121]. As is typical for microcontact stamping, a stamp

containing the microorganisms (made by preparing a ‘sandwich’ of cells between glass and Teflon) was pressed into a prepolymer mixture which was

then cured, and the resulting cavities exhibit hexagonal, honeycomb-like packing [122]. (Left) The surface of quartz crystal is coated with PU and
stamped with immobilized Saccharomyces cerevisiae, creating imprints that can rebind the template species. (Right) A tapping mode atomic force
microscopy (AFM) image of the imprinted polyurethane layer after exposure to a S. cerevisiae solution. Reprinted, with permission, from [12].

cancer cells in a tissue or organ. Given the high plasticity of mammalian cells, shape recognition alone
does not always offer the level of discrimination required for success. Moreover, MIPs intended for
cell recognition in vivo should have the size of natural macromolecules (nanometers) to be suitable
for circulation within vessels, within the lymphatic system, and for intracellular space diffusion,
whereas the imprint of a whole cell inevitably results in a micrometer size. For all these reasons, alter-
native imprinting approaches needed to be proposed. In this case, attention should focus on partic-
ular molecular components on the cell surface such as proteins, lipids, saccharides, and their
derivatives.

Saccharides

For targeting glycomoieties that are typically present at the cell surface, imprinting was performed
by stamping portions of the glycoarchitecture in a process analogous to epitope imprinting [28].
Monosaccharides such as sialic acid and mannose have been used most frequently as representative
targets [29-33]. In another example, Kinoshita and colleagues created core-shell imprinted gold NPs
bearing thermoresponsive N-isopropylacrylamide (NIPAm) imprinted with E. coli O157 lipopolysac-
charide [34]. The target bacteria bound to the NPs with excellent selectivity (>15) relative to other
types of E. coli. NanoMIPs prepared using a solid-phase approach with immobilized trisaccharide
of the blood-type B antigen were able to distinguish between erythrocytes of different blood types
[35]. Similarly, MIPs for glycans were able to differentiate between different types of cancer cells [34].

Proteins

Proteins of cell membranes are obvious targets for cell imprinting. Imprinting of entire proteins
or corresponding peptide epitopes is a well-established technique [28,37]. For example, whole
proteins were imprinted in the preparation of a fibronectin (FN)-imprinted polysiloxane membrane
in which silanes were used as functional monomers and a calcium alginate hydrogel membrane
provided the substrate. The FN-imprinted polysiloxane membrane provided improved cell
adhesion and favorable cell growth for mouse fibroblasts (L929) [38]. Unfortunately, most
membrane proteins are prohibitively expensive, and for this reason are rarely used as templates in
molecular imprinting. A much more exploitable concept is to imprint a small peptide sequence, or
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Type of cell  Biological imprinted
target

Bacteria E. coli

Mammalian Cardiomyocytes

cells
Ishikawa endometrial
adenocarcinoma cells

Yeast Yeast cells

Algae Algae

Material used

Gold-coated microbeads
with Nafion + polypyrrole
(PPy)-imprinted layer

Polypyrrole (PPY)

Polypyrrole (PPY)

Polydimethylsiloxane
(PDMS)

Polymethacrylate and

polystyrene (PS)

Polyurethane (PU)

Sol-gel

Poly(ethylene-co-vinyl

alcohol)

Application

Cell sorting; sensing

Sensor; quartz cwstal
microbalance (QCM)

Sensor; QCM for food
poisoning detection

Cell differentiation

Cell culture
Cancer development

mechanisms

Proof of principle
QCM and optical

sensors

Proof of principle of

cell discrimination

Cell culture

Biofuel production

Table 1. List of Materials Stamped by Microcontact Printing Technique and Their Uses

Key observations

Escherichia coli-shaped
cavity of Ka 1.1;
discrimination of E. coli,
Acinetobacter calcoaceticus,

and Serratia marcescens

Discrimination of E. coli,
Pseudomonas aeruginosa,
Bacillus subtilis,
Staphylococcus aureus,

A. calcoaceticus, and

S. marcescens

Discrimination of E. coli
0O157:H7, Salmonella
enterica, Vibrio
parahaemolyticus, and

S. aureus

The MIP drives the
differentiation of pluripotent
cells into the desired specific

subtypes

Cells grown on imprinted
surfaces expressed more

adhesion proteins

PU MIPs proved to be
sensitive coatings for planar
waveguides and mass-
sensitive devices for the
selective detection of various

microorganisms

Discriminated between
different strains of yeast;
little or no nonspecific

binding

The imprinted matrix
improved overall energy
production, demonstrating
the mechanical/physical
effect of the topographical
environment on the
metabolism/growth of the

cells

epitope, that is characteristic of a particular protein and exposed on its surface. Owing to the
extreme complexity of the proteome, finding such epitopes is a difficult task. A short summary pro-
vides an outline of the strategy currently used in the rational selection of epitopes for molecular

imprinting (Boxes 1 and 2).
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Figure 3. Cell Detection Using Molecularly Imprinted Polymers (MIPs).

(A,B) Bacteria induce polymerization in monomer suspensions to generate MIPs. (C) Polymers are recovered from the suspensions to generate templated
and nontemplated fractions. (D) Incubation of polymers with bacteria results in low binding of cells to nontemplated MIPs or (E) where a polymer templated
with one cell type (shown in orange) is incubated with a cell (shown in green) of another type. (F) Addition of a polymer, templated by one cell type, with its
own ‘matched’ cell population results in the formation of large polymer—cell clusters. (G) Labeling the cells in situ via pro-fluorescent markers, which react
with cell surface-bound polymers containing ‘clickable’ residues. Adapted, with permission, from [25].

A recent example of epitope imprinting employed the peptide arginylglycylaspartic acid (RGD)
that has a well-known function in cell adhesion. An RGD-imprinted surface was successfully designed
to anchor RGD and consequently cells [39]. In another example, the progastrin-releasing peptide
was used as template for molecular imprinting of zeolite-chitosan-TiO, microspheres for dot-blot
immunoassays with multiple native antigens for the rapid serodiagnosis of human lung cancer [40].

An epitope imprinting approach was exploited to generate amoxicillin delivery systems aimed at
Helicobacter pylori [41,42]. In this system, the primary template was a modified epitope sequence
of Lpp20, a membrane lipoprotein specific to H. pylori. The modification used lipophilic chain conju-
gation to ensure that the template was at the NP surface during the inverse microemulsion polymer-
ization process.

Similarly, cancer cells overexpressing epidermal growth factor receptor (EGFR) have been successfully
targeted by imprinting NIPAm-based MIPs with an EGFR epitope [43]. The resulting MIPs were able
to discriminate between cells with different levels of EGFR expression. These MIPs were prepared by im-
mobilizing the template peptide on glass beads before polymerization. Using this solid-phase
approach, it was possible to remove low-affinity polymers and monomers via a low-temperature washing
step, and high-affinity MIPs could be easily separated from template molecules (Figure 4).

To conclude, two approaches continue to dominate cell imprinting: microprinting and epitope
imprinting. A range of organic and inorganic polymers have been employed to imprint bacterial

6 Trends in Biotechnology, xx, Vol. xxx, No. xxx



Box 1. Rational Selection of Linear Epitope Templates

Which Bioinformatics Resources Are Available and When To Use Them

A peptide can be a ‘signature’ for the whole protein. Such a peptide, thatis an idiotypic peptide (i.e., is unique),
isan ideal target for imprinting. In addition to cost-associated considerations, imprinting of only a small portion
of the protein bypasses problems associated with unfolding during the imprinting process, and generates a
material with imprinted stereochemical images of the target peptide. The selection of a signature peptide from
a protein is enabled by the access to free web-curated repositories of proteomics information, namely websites
where all the known protein sequences are stored (e.g., NCBI, UniProt) [123].

Finding a unique peptide sequence within the targeted protein is facilitated by sequence alignment and com-
parison tools provided by the databases. Following submission of the sequence comparison query, the pro-
gram scores the goodness of the alignment between the compared sequences [124], and the selection of
the unique peptide has been named ‘rational’ to indicate that objective goodness criteria are applied in
form of a score [28]. The steps for the identification of the epitope are: the target protein sequence is selected,
cut in silico into peptides by choosing a suitable cutting agent (e.g., trypsin); peptides that are too small are
discarded (matches to very small peptides can be found at high frequency and thus lack uniqueness), whereas
peptides of significant length (8-15 amino acids) are aligned to the whole protein sequence database. The best
peptide epitope is that which, when aligned towards the whole database of protein sequences, has the best
match (highest score, S) with the parental protein, and has the lowest E value (value indicating the number
of distinct alignments, with a score equivalent to S, that occur in the database by chance).

How To Use Them

(i) From the Website www.uniprot.org/

Search for the target protein sequence; copy the sequence in FASTA canonical format.
(i) From the Website web.expasy.org/peptide_cutter/

Paste the FASTA sequence into the appropriate box; select the desired cleavage method (enzymes, chemi-
cals); select ‘Table of sites, sorted sequentially by amino acid number’ and cleave the protein; select peptides
not shorter than 8-10 (idiotypic sequences) and not longer than 15 residues (avoid secondary structures).
(i) From the Website http://blast.ncbi.nlm.nih.gov/Blast.cgi

Select ‘protein blast’. Enter one by one the sequences of the selected peptides in the appropriate box and set
the following parameters before running: *Database, non-redundant protein sequences (nr); *Organism, e.g.,
Homo sapiens; *Algorithm, blastp (protein-protein BLAST). Record the identity value, the total score, and the E
value of each peptide; choose the peptide with the highest total score and the lowest E value.

(iv) From the Website http://web.expasy.org/protparam/

Enter the sequence of the selected peptide/peptides in the appropriate box to calculate the parameters:
molecular weight, isoelectric point, number of negatively and positively charged residues, GRAVY (grand
average of hydropathy) index.

and mammal cells successfully. Although microprinting is perfectly suited for producing cell-specific
surfaces, epitope imprinting can be used to produce nanoMIPs that are able to address cell targets
in vivo.

Applications of Cell Imprinting
Cell Concentration and Separation

Most successful examples of the use of cell-imprinted MIPs in cell separation are related to capturing
and separating bacteria. The possibility of separating different strains of bacteria by electrophoresis
was demonstrated in 2006 [44]. Imprinted gel granules were synthesized from acrylamide and N,N'-
methylenebisacrylamide in the presence of E. coli as a template. The electrophoretic migration of
the gels was affected by the presence of the template, and showed good discrimination between
E. coliMRE-600 and E. coli BL21. Specific capturing of Deinococcus radiodurans, E. coli, Sphaerotilus
natans, and Bacillus subtilis by imprinted films was achieved by Cohen and colleagues [45]. Surface-
imprinted PU films were used for selective capturing of methanotrophs from paddy soil [46]. The use
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Box 2. Rational Selection of Structured Epitopes as the Template

What Bioinformatic Resources Are Available and When To Use Them

When the target protein is exposed at the cell surface, the epitope might protrude out of the membrane in a
fixed and defined orientation. Using directional peptides (e.g., circular peptides) instead of linear ones is
another strategy to ultimately improve MIP selectivity [37,125]. Moreover, it might occur that peptides, despite
associated with high uniqueness scores, may not be accessible for binding because they are hidden in the
protein core, are masked by the membrane, or are associated with other proteins and glycocomponents.

The positioning of the chosen epitope on the protein 3D structure is a prerequisite for successful imprinting.
Database tools allow protein structures to be viewed in 3D, and permit the epitope to be localized in the pro-
tein structure. Experimental, literature, and predicted information collated in protein—protein interaction da-
tabases (e.g., http://string-db.org; www.ebi.ac.uk/intact/) allow epitope choice to be finalized by restricting
the selection to epitopes that are accessible on the surface (and thus are available for binding) and to epitopes
that are not involved in functional association with other proteins or binding partners.

How To Use Them

(i) From the Website www.uniprot.org/

Search the target protein sequence identification number (ID).
(i) From the Website http://uniprot.org/uniprot/

Add appropriate |D/protvista. Enter the Uniprot ID of the target protein in the Uniprot database; in the Display

click on Feature viewer then select peptides by using the following two options:

(A) On Structural features: Turn; select a turn and click on it to view its location on the 3D structure; identify the
tryptic peptide that contains the desired turn by clicking on Proteomics and on the Unique peptide
sequence.

(B) On Antigenic sequences: select an antibody-binding sequence among those marked on the sequence of
the target protein; define a unique tryptic peptide within the antigenic sequence clicking on Proteomics
and on the Unique peptide sequence.

of virulent bacteria during the production of the cell-imprinted polymer thin films and the cell capture
process bears an obvious and persistent risk of infection, which could be a major hurdle for the im-
plementation of this method. A successful attempt was made to remove the potential biohazard
risk by using inactivated bacteria to imprint poly(dimethylsiloxane) films with inactivated Mycobacte-
rium smegmatis [14].

MIPs have also been used for spore capture and concentration in an integrated biological detection
system for Bacillus anthracis [47]. The binding assay showed strong spore-binding and a robust
imprinting effect that accounted for 25% additional binding over nonimprinted controls. This process
was rapid, taking only 30 minutes.

In a different example, cell adhesion was improved by imprinting with FN and the cell adhesion pep-
tide Arg-Gly-Asp-Ser [48,49]. Template-enhanced adhesion of fibroblasts, MC3T3-E1, and L929 cells
was observed after 24 h (Figure 5).

Tissue Engineering

Numerous studies have previously indicated that stem cell fate is regulated by a combination of
intrinsic (e.g., specific transcription factors) and extrinsic mechanisms invoked by the local microen-
vironment [50,51]. Stem cells sense different mechanical cues that guide the rearrangement of
adhesion proteins and the cytoskeleton, which in due course affect intracellular processes [52].
The predictive design of tissue scaffolds is difficult owing to limited understanding of the microen-
vironment patterns that guide cell differentiation. Molecular imprinting may offer a solution to this
problem.
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Figure 4. Schematic Representation of the Automated Synthesis of Nanoscale Molecularly Imprinted Polymers (NanoMIPs) Using an Immobilized

Template (Melamine).
Reprinted, with permission, from [8]. Abbreviation: NP, nanoparticle.

In one study, tissue-specific substrates were prepared by imprinting mature and dedifferentiated
chondrocytes. Rabbit adipose-derived mesenchymal stem cells seeded on cell-imprinted substrates
were driven to adopt the specific characteristics of the cell types used as templates for cell imprinting
[53]. In addition to residual cellular fragments present on the template surface, the imprinted topog-
raphy of the templates played a role in stem cell differentiation. In a similar study, mature human
keratinocyte cells were used for imprinting of PDMS. Human adipose-derived stem cells (ADSCs)
seeded onto cell-imprinted substrates were driven to adopt the specific shape and characteristics
of keratinocytes [54]. The observed morphology of the ADSCs grown on the keratinocyte casts was
noticeably different from that of stem cells cultivated on the stem cell-imprinted substrates. The au-
thors speculated that mechanical deformation caused by cell-imprint interaction may induce signal
transduction by affecting the arrangement of chromatin inside the stem cell nucleus. ADSCs, semifi-
broblasts, and tenocytes were differentiated, redifferentiated, and transdifferentiated, respectively,
into chondrocytes after being cultured for 2 weeks on chondrocyte-imprinted PDMS substrates [55].
A similar effect was also observed when ADSCs were cultured on keratinocyte-imprinted substrates
[54] or on chondrocyte- or fibroblast-imprinted substrates [53]. Although the aim of these studies was
to develop an efficient and cheap approach for regenerative medicine and wound healing, it is likely
that MIP-guided cell differentiation can be used on a large scale for growing more complex tissues,
and potentially whole organs.

The advantage of using molecular imprinting in guiding cell differentiation lies in the relatively simple
procedure for creating topographical cell fingerprints for directed tissue growth. There is also an op-
portunity to use MIPs in the clinic to enrich for cell populations: for example, to separate leukocytes by
aphaeresis, to enrich for hematopoietic stem cells, or to aid repopulation of the immune system in
multiple sclerosis patients who have undergone immunoablation treatment [56-58]. In these applica-
tions, MIPs have to compete with antibody-binding methods such as fluorescence-activated and
magnetic-activated cell sorting [59]. It should be noted that, in most cases, the selective recognition
ability of nanoMIPs is at least comparable with that of antibodies [60]; in addition, the possibility to
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Figure 5. L929 Cell Adhesion on Bovine Serum Albumin (BSA)- (Left) and Fibronectin (FN)-Imprinted (Right)
Substrates.
Reprinted, with permission, from [48].

produce fluorescent nanoMIPs and/or core-shell magnetic nanoMIPs is well recorded [61], and MIP
technology is therefore sufficiently mature for the challenge.

Drug Delivery

A current trend in pharmacology is evidenced by the increasing number of FDA-approved NP
formulations, amounting to ~50 in 2017 [62]. Currently, several types of NP-based drug carriers are
available on the market. These are based on solid dispersion (Gris-PEG, Sandimmune, Intelence,
etc.), self-emulsifying drug delivery systems (Neoral®, Agenerase, Aptivus, etc.), or nanocrystals
(NanoCrystal®, Rapamune, Megace® ES) [63]. The polymer architecture of NPs dictates drug loading
efficacy, drug-release rate, and biodistribution [64]. NPs smaller than 8 nm are cleared rapidly from
the bloodstream by the renal system, whereas NPs larger than 200 nm are sequestered by the mono-
nuclear phagocytic system in the liver and spleen [65,66]. NanoMIPs represent an entirely new com-
pound class which can now be deployed to address both extracellular protein targets (as an alterna-
tive to biological antibodies) and potentially to currently intractable intracellular proteins [67].
Potentially nanoMIPs can assist with increasing the half-life of a drug within the body, increasing
drug payload, facilitating targeted drug delivery, improving drug permeability through cell mem-
branes, and offering the possibility of oral delivery.

One particularly important subject in NP research is the oral delivery of macromolecules. The main
mechanism for NP transport is adsorptive endocytosis [68]. Summarizing numerous absorption
studies, there seems to be agreement that the optimum size of NPs for drug delivery via the oral route
is 10-100 nm [69]. The extent of systemic appearance of this type of NP after gastrointestinal absorp-
tion has been reported to be 10-15% [70]. NanoMIPs, in contrast to antibodies and aptamers, are
capable of penetrating cell membranes by endocytosis, and can even reach nuclei [67,71]. The
same mechanism is used for oral delivery of drugs assisted by nanoMIPs. In one such example, nano-
MIPs were generated by precipitation polymerization and were used for the oral delivery of insulin via
a transmucosal oral route (Figure 6) [72]. Ongoing work compares intravenous and oral delivery of
nanoMIPs and theirimpact on the clearance of NPs through kidney and bile. The nanoMIPs were suc-
cessfully excreted in both urine and feces (Figure 7).

Given their size and the large number of functional groups available for entrapment/conjugation of
drug molecules, nanoMIPs have great potential as drug carriers. Most papers published on this topic
describe entrapping drug molecules in the bulk of polymers. The delivered/released quantity of
drugs varies from 0.5-180 pg per mg of NPs, depending on the drug type and the synthetic protocol
used for nanoMIP preparation [71,73-75]. The imprinting process ensures a 2-3-fold increase in the
quantity of entrapped drugs compared with nonimprinted particles [75]. The half-time drug release
in these experiments varied from 2-20 h based on the polarity of the drug and its affinity for the
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Figure 6. Schematic of the Transport of Insulin-Loaded Molecularly Imprinted Polymer (MIP) Nanoparticles
across Intestinal Epithelial Cells Following Oral Administration and Insulin Release by Endocytosis and
Transcytosis through Enterocytes.

Reprinted, with permission, from [72].

polymer carrier. This is significantly shorter than the circulation time of synthetic particles demon-
strated in clinical trials, which is under 12 days [76]. The average result obtained for nanoMIP circula-
tion in the body is 7 days, which is an improvement compared with the circulation of small drug mol-
ecules [77].

Targeted drug delivery originates from the ability of MIPs to interact specifically with cell receptors.
Most therapeutic agents (90% or more) will inevitably be concentrated in reticuloendothelial organs
such as the liver and spleen as a result of clearance by mononuclear phagocytes [78]. Active target-
ing is being explored as a method to achieve spatial localization of drugs in diseased organs while
eliminating off-target adverse effects in normal tissue. The ligands used to modify NPs include an-
tibodies, their fragments, proteins, peptides, and aptamers [79]. NanoMIPs can also be decorated
with specific ligands to achieve a targeting effect. Thus, nanoMIPs containing folic acid showed a
greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells)
in comparison with nonfolate NPs and free paclitaxel, with half-maximal inhibitory concentrations
(IC50s) of 4.9 + 0.9, 7.4 £+ 0.5, and 32.8 + 3.8 nM, respectively [74]. Sialic acid-coated nanoMIPs
with S-nitrosothiols were used for nitric oxide release as chemotherapy agents [80]. Specific target-
ing of cancer cells was achieved by nanoMIPs imprinted with an EGFR epitope [81]. In a similar way,
senescent cells were targeted by dasatinib-bearing nanoMIPs imprinted with an epitope of the
senescence marker B2M [82]. NanoMIPs loaded with drugs were able to specifically kill senescent
cells, and showed a significantly greater level of binding within the organs of older animals. Tar-
geted delivery can be achieved using external factors such as a magnetic field [77]. In this work,
nanoMIPs with magnetic cores were prepared via coprecipitation polymerization in the presence
of olanzapine as a template, and were used for magnetic field-guided drug delivery of olanzapine
to rat brain.

So far, most examples related to drug delivery describe drug loading through binding to imprinted
sites on the polymer matrix. This may not be the most desirable way because the NPs produced typi-
cally release their drug cargo too quickly, within 4-7 h. Covalent attachment of drugs through
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Figure 7. Representative lllustration of Nanoparticles (NPs) Detected in Urine by Scanning Electron Microscopy (SEM).
NPs were prepared by the solid phase approach using vancomycin as a template.

cleavable linkers would be preferred. This approach follows similar trends in drug conjugation to an-
tibodies [83-85].

In a rare example, nanoMIPs themselves were used as a drug [84]. In this work, nanoMIPs, imprinted
with the quorum-signaling peptide SNGLDVGKAD, prevented the translocation of pneumococci
from lungs to blood and improved the survival rate of infected mice.

In a very interesting example of a theranostic application, amphiphilic lipopolysaccharides derived
from P. aeruginosa were used as a template in the preparation of nanoMIPs by the inverse emulsion
method [87]. Fluorescent nanoMIPs labeled with IR-783 showed selective recognition of target bac-
teria in keratitis and meningitis models (Figure 8). P. aeruginosa-targeted nanoMIPs encapsulated
with a photosensitizer (methylene blue) were also used for in vitro photodynamic therapy. Compared
with nonimprinted NPs, an almost two orders of magnitude difference in cell counting was noted,
indicating the higher efficacy of nanoMIPs against bacteria after laser exposure. The nanoMIPs formu-
lation was very stable, showing similar performance after 6 months of storage.

There are several issues to be resolved and questions to answer before practical application of nano-
MIPs in drug delivery can be considered: how safe are nanoMIPs? Should nanoMIPs be biodegrad-
able? How do the properties of nanoMIPs influence their biodistribution and clearance? What is
the best way to conjugate drugs to nanoMIPs? How can nanoMIPs be produced on a large scale
and in accordance with quality-control guidelines such as Good Laboratory Practice?

So far nanoMIPs have been tested mainly in vitro. Cell viability tests using NIH-3T3 cells and human
embryonic kidney cells (HEK293) suggested that the developed material did not present any detect-
able cytotoxicity at <100 pg.ml~" nanoMIP concentrations [71,77,88]. Limited in vivo tests also
showed that nanoMIPs had no visible impact on hepatocytes or the structure of the kidney. No
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Figure 8. Fluorescence Imaging of Rabbit Eye Tissues Taken from the Keratitis Model Rabbits (Left) or
Normal Rabbits (Right) Following Treatment with IR-783-Loaded Molecularly Imprinted (MIP) and
Nonimprinted (NIP) Nanoparticles.

The control was treated with IR-783 solution alone. Reprinted, with permission, from [87].

sign of toxicity was found and no body weight changes or clinical symptoms (i.e., diarrhea, fever) were
found 14 days after the experiment [72].

The answer to the question of whether MIP formulations should be biodegradable is not straightfor-
ward. Potentially, clearance of biodegradable nanoMIPs might be simplified clearance. However, the
byproducts of polymer degradation might be more toxic than the NPs themselves. Monomers such as
methacrylic acid, methyl methacrylate, and ethylene glycol dimethacrylate are biocompatible and
nontoxic [89,90]. The same is not true for some other monomers such as acrylamide [91]. The exam-
ples reported here, as well as many other relevant examples from the literature, imply that nonde-
gradable polymers might be safer for use in medical devices and drug delivery [92,93]. In addition
to residual monomers, other toxic impurities can be present in a plastic product, including oligomers,
low molecular weight polymer fragments, catalyst remnants, and surfactants [94]. It is therefore essen-
tial to ensure the complete removal of nonpolymerized components from MIP formulations.

In addition to complications in the experimental design of NPs, there are multiple challenges for the
manufacture, regulation, and approval of NPs for clinical use. The majority of protocols describing
the synthesis of nanoMIPs cannot be easily adapted to large-scale manufacturing. A major break-
through was therefore to combine nanoMIP synthesis with an affinity separation step in a single pro-
cedure, using an immobilized template for MIP formation [95]. The resulting process allowed the con-
struction of the first prototype automatic nanoMIP synthesizer [8]. The process of MIP synthesis using
the automated reactor is shown schematically in Figure 3. This approach represents the state of the
art in nanoMIP synthesis: not only can soluble particles with a well-defined size (30-100 nm) and a
narrow size distribution be produced in 1 h, but they also possess nanomolar dissociation constants
for their respective targets, no residual template is present, and the immobilized template can be
reused. This automated process overcomes all the historic drawbacks of bulk MIPs, and raises the
exciting possibility of deploying nanoMIPs in therapeutic applications. Despite this success, bringing
manufacturing protocol into compliance with good laboratory practice and good manufacturing
practice, as well as passing FDA investigational new drug trials, will be challenging.

Imaging

In many ways, drug delivery and imaging are connected. Both applications should address safety is-
sues and the issue of targeted delivery to specific cells and organs. For imaging applications, nano-
MIPs should have fluorescent, magnetic, or positron-emitting tags. So far only fluorescent labels have
been used in combination with nanoMIPs, including pyrene, fluorescein, and rhodamine derivatives
[29,96], quantum dots (QDs) [97], and carbon dots [33]. In one study, two differently colored nanoMIPs
were imprinted with D-glucuronic acid and N-acetylneuraminic acid. Both MIPs were found to be
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Figure 9. Confocal Image Showing Simultaneous Multiplex Labeling of D-Glucuronic Acid (GlcA) and
N-Acetylneuraminic Acid (NANA) on Fixed Human Keratinocytes by Molecularly Imprinted Polymer (MIP)
GlcA Quantum Dots (QDs) (MIPGIcA-QDs, Green) and MIPNANA-QDs (red), respectively.

Reprinted, with permission, from [32].

highly selective for their target monosaccharides because no crossreactivity was observed with other
sugars on the cell surface [32]. Fluorescently labeled nanoMIPs were used for multiplex imaging of
fixed and living human keratinocytes to localize hyaluronan and sialylation sites (Figure 9). Monodis-
perse 400 nm-sized particles bound to extracellular targets, whereas 125 nm particles were also able
to stain intracellular and pericellular regions.

In similar work, fluorescent nanoMIPs were imprinted with sialic acid and used for imaging cancer cells
[31]. These nanoMIPs exhibited selective staining for DU145 cancer cells and did not enter Hel a cells
even after long incubation times. In a previously mentioned work, fluorescent nanoMIPs were im-
printed with a linear epitope of EGFR and used in confocal microscopy [81]. A strong fluorescence
signal was detected from the MIPs in MDA-MB-468 cells that overexpress EGFR, whereas almost
no signal was observed in MDA-231 or SKBR3 cells. These results show that nanoMIPs can potentially
be used as a cell imaging tool against difficult targets such as membrane proteins.

Very few papers actually describe the use of nanoMIPs in vivo. In a rare example, nanoMIPs were im-
printed with human vascular endothelial growth factor (WWEGF) and coupled with QDs for cancer imag-
ing [98]. The composite NPs exhibited specific binding to human melanoma cell xenografts overexpress-
ing hVEGF in zebrafish embryos. In another work, fluorescein-labeled nanoMIPs, imprinted with
senescence membrane marker B2M, were used for the selective targeting of senescent cells [82]. Nano-
MIPs were able to detect senescent cells in aged mice without eliciting any apparent toxicity (Figure 10).

Overall, nanoMIPs are promising materials that can be considered for advancing imaging, in partic-
ular when antibodies are less desirable because of their immunogenicity or long production time.
Moreover, one of the main limitations associated with the state of art in imaging techniques is the
detection limit of fluorescent antibodies that is currently restricted to antigens expressed on the
target at more than 1000 copies/cell, whereas key inflammatory and cancer markers such as interleu-
kins are often present in only a few hundreds of copies on the cell membrane, therefore falling below
current detection limits [99]. However, given their larger dimensions (10-400 nm), nanoMIPs that
contain a significant number of fluorophores per NP can circumvent the aforementioned limitations,
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Figure 10. Representative Images of Mice of Different Ages Injected Intravenously with Alexa Fluor 647-
Tagged B2M Nanoscale Molecularly Imprinted Polymers (nanoMIPs).

Animals were imaged 2 h after injection. Total fluorescence signals were quantified and are shown in units of radiant
efficiency. Reprinted, with permission, from [82].

without any need for secondary binding or catalytic amplification. Despite holding great promise,
nanoMIP-based bioimaging is still in its infancy, and more work is required before it can be consid-
ered for practical applications. The research focus in this area should shift from fluorescence to
magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging. It is crucially
important that safety issues are addressed and manufacturing problems solved before this technol-
ogy can advance.

Sensing

In diagnostics, cell-imprinted MIPs are used almost entirely for the detection of microorganisms.
Currently, laboratory-based biochemical methods for microorganism analysis employ standard
antibody assays and PCR [100]. Cell culture remains a standard technique for identifying bacterial
species; however, it usually requires 24-48 h, depending on the growth speed of the target bacterium
[101]. These methods generally require a high level of technical skill and complex sample preparation.
There is therefore an industry-driven requirement to design novel, rapid, and reliable analytical
detection methods for microorganisms.

A quartz crystal microbalance (QCM) sensor platform was developed for the detection of E. coli,
B. cereus, P. aeruginosa, B. subtilis, and Staphylococcus aureus [101-103]. Imprinted PPy and PU
were generated directly onto the sensor surface. The QCM device allowed detection of microorgan-
isms at concentrations of 1.4 x 108 cells/ml within 2—-3 minutes. Overall, QCM sensors have shown
similar sensitivity to surface plasmon resonance (SPR), allowed 10 regeneration cycles, and remained
operational for at least 3 months [104]. In an example of practical application, a PU-based QCM
sensor was used to follow the growth of E. coli and Saccharomyces cerevisiae in a bioreactor
[105,106]. The sensor was able to identify different stages of the cell cycle, with a limit of detection
(LoD) of 1.6 x 10 cells/ml.

Electrochemical sensors based on conducting MIP materials, such as electropolymerized 3-aminophe-
nol and 3-aminophenylboronic acid, were used for the detection of S. aureus and S. epidermidis
[107,108]. Cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox
probes were explored for the specific detection of the target bacteria at 10>~10” colony-forming units
(cfu)/ml concentrations. Imprinted PPy/poly(3-methylthiophene) was used in impedance detection of
B. subtilis endospores at 10°-10” cfu/ml [109]. Surface-imprinted polydopamine was used for yeast
sensing, allowing a LoD of 50 cfu/ml with excellent selectivity versus smaller Vibrio alginolyticus,
E. coli, and S. aureus [110]. A microprinting method was used to develop a capacitive sensor for
E. coli with a LoD of 70 cfu/ml [111]. This sensor was able to detect the target in river water.
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Electropolymerized 3-aminophenylboronic acid was used to create a sensor for S. epidermidis using
electrochemical impedance spectroscopy [108]. The same type of transducer was exploited by Qi and
colleagues to create an imprinted sensor for sulfate-reducing bacteria on chitosan doped with reduced
graphene sheets. The sensor performed in the range of 1 x 10°=1 x 108 cfu/ml [112]. NanoMIPs were
synthesized using a sol-gel method with cerium dioxide NPs in the presence of S. aureus on the surface
of an indium tin oxide [113]. This assay was used to detect S. aureus at 10*-10° cfu/ml.

An electrochemiluminescence biosensor was developed for the quantitative detection of E. coli
O157:H7 based on a polydopamine-imprinted polymer [114]. However, in this work MIPs were only
used for capturing bacteria, and electrochemiluminiscent detection was achieved using a polyclonal
antibody labeled with nitrogen-doped graphene QDs. The LoD was very low, at 8 cfu/ml.

Thermal wave analysis was used for a bacterial identification assay involving PU imprinted with nine
different bacterial targets [115]. The limit of selectivity of the sensor was tested in a mixed bacterial
solution in the presence of a 99-fold excess of competitor species. This platform was able to detect
bacteria at 3 x 10% cfu/ml in spiked urine.

In a rare example of a nonbacteria imprinting, the microprinting approach has been exploited to pro-
duce sensors capable of detecting breast-cancer cells (MCF-7 or ZR-75-1 cells), immortalized T-lym-
phocytes associated with leukemia (Jurkat cells), and healthy peripheral blood mononuclear cells
[116-118].

In most of these examples, imprinted films were prepared by stamp imprinting or by electropolyme-
rization. The main problem with these approaches lies in their poor reproducibility and the ineffi-
ciency of the mass manufacture of sensor devices owing to the use of live bacteria as templates. There
is also danger in using pathogenic bacteria as a template for sensor production. A solution to these
problems was found in anti-idiotype imprinting using PDMS master stamps with ‘plastic copies’ of
natural cells [119]. Sensitive layers created this way were capable of the differentiation between
S. cerevisiae and S. bayanus, and could detect erythrocytes in ABO blood group typing [45]. In addi-
tion to the advantage of improved reproducibility and standardization, such layers on mass-sensitive
devices featured the same selectivity and sensitivity as MIPs generated using native cells.

Concluding Remarks

Molecular imprinting represents the most generic, versatile, scalable, and cost-effective approach to the
creation of synthetic molecular receptors for small molecules and cells to date. The approaches reported
so far range from whole-cell imprinting to targeting specific and distinctive cell-surface components.
Many recent developments in the synthesis of MIPs, such as the use of a solid phase approach and con-
tact printing permit, for the first time provide a reliable supply of soluble synthetic NPs and polymer coat-
ings with predetermined molecular recognition properties, subnanomolar affinities, and defined size
and surface chemistry for life science applications, drug delivery, imaging, and diagnostics. Indeed, tar-
geting specific cells such as human cancer cells or pathogenic bacteria by utilizing nanoMIPs would help
to revolutionize clinical practice and enable personalized medicine [33,40,98]. One challenge (see
Outstanding Questions) is to produce nanoMIP architectures that are suitable for translating MIP-medi-
ated cell recognition from passive binding to a defined target to active intervention in the cell biology
process. To accomplish this important step, the integrated design of multifunctional MIPs is expected,
gathering in a single nanoMIP particle the ability to activate or silence biochemical pathways [37,120].
Success in this area will result in new paradigms for MIP applications that both complement existing ther-
apeutic and diagnostic techniques, and will open doors to in situ programmed nanomachines for pre-
cision medicine interventions and tissue regeneration.
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