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ABSTRACT 

Channeled Spectropolarimeters (CHSP) are compact optical instruments that have potential for making 

precise polarization measurements without any moving parts. While most spectropolarimeters use rotating 

elements to make measurements, CHSPs use mechanically fixed thick retarders to modulate the Stokes vector 

onto the spectrum of light. In realistic applications, CHSPs must have calibration algorithms that give stable 

measurements in a variety of environmental conditions. Previous researchers developed a self-calibration 

algorithm that uses redundant channel information to compensate temperature-induced phase fluctuations in 

real-time without any additional reference measurements. In this paper we discuss the stability of the self-

calibration technique. We identify a mathematical ambiguity in the algorithm that limits the range of 

temperatures over which the algorithm is stable. For a 60𝜆:120𝜆 channeled spectropolarimeter with quartz 

retarders, the stable temperature range is only 27 oC and is not suitable for many applications outside of the 

laboratory. We propose and demonstrate a modified algorithm that uses the slope of the phase to remove the 

mathematical ambiguity and extend the temperature range of the system. The demonstration shows stable 

operation over a 41 oC temperature range and shows promise for increasing stability over a temperature range 

suitable for extreme terrestrial conditions. 

Keywords: spectropolarimetry, polarimetry, signal processing, temperature stability, retarder, Stokes Vector 

 

1. INTRODUCTION 

Polarimeters are important optical instruments that have a range of applications1 in astronomy, remote sensing, material 

science, biology, and the semiconductor industry. Polarimeters have the ability to measure the polarization of incoherent 

light which is represented by the Stokes vector. Spectropolarimeters are polarimeters that have the additional capability of 

measuring the spectral dependence of the Stokes vector, yielding additional information about the object being studied.  

Most spectropolarimeters, including the commercially available Axoscan2, use a rotating retarder in combination with 

polarizing optics to measure the Stokes vector3,4. Although this approach is the most widely used, it tends to be bulky, 

slow, and the use of rotating elements allows the possibility of mechanical breakdown. Another approach that has been 

studied is the snapshot channeled spectropolarimeter5. In this system, a set of mechanically fixed thick retarders are used 

instead of rotating elements. Channeled spectropolarimeters (CHSP) have the advantage of being compact, mechanically 

robust, and fast. 

One of the key challenges for CHSPs is the development of a robust and accurate calibration scheme6,7. Calibration is 

necessary due to the use of thick retarders that are sensitive to environmental conditions such as temperature. Temperature 

changes of just several degrees can cause a significant change in the birefringence and result in phase changes on the order 

of a wavelength. CHSP instruments deployed outdoors in terrestrial conditions should operate over a wide temperature 

range, such as -40o C to 100o C in order to provide good performance in ranging from cold extremes in the arctic to 

Polarization Science and Remote Sensing IX, edited by Julia M. Craven, Joseph A. Shaw, Frans Snik, Proc. of SPIE
Vol. 11132, 111320P · © 2019 SPIE · CCC code: 0277-786X/19/$21 · doi: 10.1117/12.2528078

Proc. of SPIE Vol. 11132  111320P-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



temperature levels reached when exposed to direct sunlight for long periods of time. Operation over this temperature range 

should be sufficient for . Extraterrestrial systems may require even wider temperature ranges.  Researchers developed a 

dynamic, or “self-calibrating” technique that uses redundant information in the spectrum to compensate for temperature-

induced phase changes in real-time8-10.  

In this paper we discuss the stability of the self-calibration technique. We identify a mathematical ambiguity that occurs 

during phase-unwrapping and results in erroneous Stokes vector measurements when the temperature exceeds a threshold 

limit. We develop a theory to predict the temperature range in which a CHSP is stable based on the characteristics of the 

thick retarders. We propose an extended temperature range algorithm that uses the slope of the phase measured in the self-

calibration algorithm to remove the phase ambiguity and improve stability. We demonstrate the existence of the self-

calibration instability and show the ability of the extended range algorithm to increase the stability over a larger temperature 

range. 

2. CHANNELED SPECTROPOLARIMETER 

A CHSP consists of two thick retarders R1 and R2 and an analyzer A as shown in Fig. 1a. The fast axis of R1 and the 

transmission axis of A define the measurement axis. The fast axis of R2 is aligned at 45o with respect to the measurement 

axis. The retarder thicknesses are typically selected with a ratio T1/T2 = 2 or 3. Light with an arbitrary Stokes vector 𝑆(𝜎) =
[𝑆0(𝜎) 𝑆1(𝜎) 𝑆2(𝜎) 𝑆3(𝜎)]

𝑇 illuminates the CHSP and is measured by a spectrometer, generating a signal5 𝑃(𝜎): 

𝑃(𝜎) =
1

2
𝑆0(𝜎) +

1

2
𝑆1(𝜎) cos(𝜙2(𝜎))  

+
1

2
𝑆2(𝜎) sin(𝜙2(𝜎)) sin(𝜙1(𝜎)) 

−
1

2
𝑆3(𝜎) sin(𝜙2(𝜎)) cos(𝜙1(𝜎)). (1) 

 

 

 

Figure 1: (a) Schematic of a channeled spectropolarimeter. Retarders R1 and R2 and analyzer A modulate the input Stokes Vector. The 

spectrum is measured by the spectrometer as 𝑃(𝜎). (b) The Fourier transform of 𝑃(𝜎) as a function of OPD, ℎ, is depicted as the dotted 
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blue line. The channel numbers are indicated by 𝑖, the windowing function for the second channel 𝑊2(ℎ) is depicted by the grey line, 

and the second channel C2(ℎ) is depicted as the solid blue line. 

The signal is divided into a set of channels 𝐶𝑖(ℎ) in the OPD domain by taking the Fourier transform of 𝑃(𝜎) and 

multiplying by a windowing function 𝑊𝑖(𝜎) as seen in Fig. 1b: 

𝐶𝑖(ℎ) =  ℱ{𝑃(𝜎)} ∙ 𝑊𝑖(ℎ), (2) 

Where OPD is represented as h and the windowing function is centered around the ith channel 𝐶𝑖(ℎ). Channel content 

𝐹𝑖(𝜎) in wavenumber space is determined by taking the inverse Fourier transform: 

𝐹𝑖(𝜎) = ℱ
−1{𝐶𝑖(ℎ)}, (3) 

The individual channel content is related to the Stokes vector components: 

𝐹0(𝜎) =
1

2
𝑆0(𝜎), 

𝐹1(𝜎) =
1

8
𝑆23
∗ (𝜎)exp (𝑗[𝜙2(𝜎) − 𝜙1(𝜎)]), 

𝐹2(𝜎) =
1

4
𝑆1(𝜎)exp (𝑗[𝜙2(𝜎)), 

𝐹3(𝜎) = −
1

8
𝑆23(𝜎) exp(𝑗[𝜙2(𝜎) + 𝜙1(𝜎)]), (4) 

where 𝑆23(𝜎) =  𝑆2(𝜎) + 𝑗𝑆3(𝜎). In order to reconstruct the Stokes vector, the factors 𝐾𝑖(𝜎) must calibrated. These 

factors compensate for the phase the of the thick retarders, as well as the amplitude and phase of the transfer function of 

the spectrometer itself. Processes for obtaining these factors are described in detail in this paper. The full Stokes vector 

can now be reconstructed using the 0th, 2nd , and 3rd channels after calibrating the factors 𝐾𝑖(𝜎): 

𝑆(𝜎) =

(

 

𝐹0(𝜎) ∙ 𝐾0(𝜎)

𝐹2(𝜎) ∙ 𝐾2(𝜎)

𝑅𝑒{𝐹3(𝜎) ∙ 𝐾3(𝜎)}

−𝐼𝑚{𝐹3(𝜎) ∙ 𝐾3(𝜎)})

 , (5) 

Each calibration factor can be written as the product of a reference calibration factor 𝐾𝑟,𝑖(𝜎) representing the initial state 

of the system and a differential calibration factor 𝐾𝑑,𝑖(𝜎) representing the deviation from the initial state caused by 

perturbations such as temperature change: 

𝐾𝑖(𝜎) =  𝐾𝑟,𝑖(𝜎) ∙ 𝐾𝑑,𝑖(𝜎). (6) 

𝐾𝑟,𝑖(𝜎) needs to be calibrated during the initial setup of the CHSP to determine the phase of the thick retarders. We use a 

reference beam approach similar to the one described in reference 9 to obtain 𝐾𝑟,𝑖(𝜎). 𝐾𝑑,𝑖(𝜎) needs to be continuously 

calibrated to compensate for phase changes in the thick retarders due to temperature fluctuations. In section 3 a self-

calibration algorithm for obtaining 𝐾𝑑,𝑖(𝜎) is described and analyzed. In section 4, the self-calibration algorithm is 

modified to provide a more stable measurement of 𝐾𝑑,𝑖(𝜎) over a wide range of environmental temperature conditions. 

3. SELF-CALIBRATION 

The “self-calibration” technique uses redundant information given in the channels to determine the differential calibration 

factors 𝐾𝑑,𝑖(𝜎) and compensate fluctuations in the phases 𝜙1(𝜎) and 𝜙2(𝜎) of the thick retarders. After summarizing the 

technique as described in references 8,9 we identify a mathematical ambiguity in the phase-unwrapping procedure that 

results in instability of the self-calibration algorithm. We provide an analysis to determine the temperature range in which 

the instrument has stable operation.  
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3.1 Self-calibration algorithm 

The difference in phase retardance between the reference measurement and the current measurement 𝛿𝜙1(𝜎) and 𝛿𝜙2(𝜎) 

for the two retarders are required to find 𝐾𝑑,𝑖(𝜎) and compensate for phase fluctuations in real-time. We use the self-

calibration equations8 to determine the phase of R2 during the reference measurement 𝜙2,𝑟(𝜎) and the phase of R2 during 

the current measurement 𝜙2,𝑚(𝜎): 

tan (2 ∙ 𝜙2,𝑟(𝜎)) =  𝐾2,𝑟(𝜎)
2 + 𝐾1,𝑟(𝜎) ∙ 𝐾3,𝑟(𝜎) (7) 

tan (2 ∙ 𝜙2,𝑚(𝜎)) =  𝐹2(𝜎)
2 + 𝐹1(𝜎) ∙ 𝐹3(𝜎) (8) 

Due to tangent function, the phases must be unwrapped. As a result, the phases can only be determined within an integer 

number of 2𝜋 accuracy. After dividing the unwrapped phase by 2, the measured phase functions of the reference and 

current measurement θ2,𝑟(𝜎) and θ2,𝑚(𝜎) are: 

θ2,𝑟(𝜎) = 𝜙2,𝑟(𝜎) + 𝑛𝑟𝜋 =  
1

2
UNWRAP{tan−1[𝐾2,𝑟(𝜎)

2 + 𝐾1,𝑟(𝜎) ∙ 𝐾3,𝑟(𝜎)]} (9) 

θ2,𝑚(𝜎) =  𝜙2,𝑚(𝜎) + 𝑛𝑚𝜋 =  
1

2
UNWRAP{tan−1[𝐹2(𝜎)

2 + 𝐹1(𝜎) ∙ 𝐹3(𝜎)]} (10) 

Where 𝑛𝑟 and 𝑛𝑚 are integers. The difference between the two measured phase functions yields the measured phase 

difference, δθ2(𝜎): 

δθ2(𝜎) = θ2,𝑚(𝜎) − θ2,𝑟(𝜎) = 𝛿𝜙2(𝜎) + 𝑛𝜋 (11) 

Thus, the measured phase difference δθ2(𝜎) is known within 𝑛𝜋 accuracy of the actual phase difference 𝛿𝜙2(𝜎) where 𝑛 

is an integer. The differential phase retardance of R1, 𝛿𝜙1(𝜎), can be determined if the ratio 𝜌 of the thicknesses of the 

two retarders are known: 

𝜌 =
𝜙2(𝜎)

𝜙1(𝜎)
=
𝑇2
𝑇1

(12) 

The retardance 𝛿𝜙1(𝜎) can be determined within 𝑛𝜋 𝜌⁄  accuracy: 

𝛿𝜙1(𝜎) =
δθ2(𝜎)

𝜌
−
𝑛𝜋

𝜌
(13) 

And the differential calibration coefficients are determined: 

𝐾1,𝑑(𝜎) = exp [𝑗 (1 −
1

𝜌
) (δθ2(𝜎) − 𝑛𝜋)] 

𝐾2,𝑑(𝜎) = exp [𝑗(δθ2(𝜎) − 𝑛𝜋)] 

𝐾3,𝑑(𝜎) = exp [𝑗 (1 +
1

𝜌
) (δθ2(𝜎) − 𝑛𝜋)] (14) 

3.2 Phase-unwrapping  

Phase-unwrapping algorithms must have a phase reference since only relative changes in phase can be determined and the 

absolute phase cannot be determined. Most phase-unwrapping algorithms will implicitly assign an initial phase reference 

in the range of [0,2𝜋) to the first wavenumber in the spectrum and then begin unwrapping the phase towards higher 

wavenumbers. If there is noise in the spectrum at the wavenumber where the phase reference is taken, the reconstructed 

phase may have errors that affect the Stokes vector reconstruction. Assuming that the phase-unwrapping function assigns 

the phase reference to the first wavenumber in the spectrum, the phase reference can be shifted to a different wavenumber 

𝜎𝑟𝑒𝑓  in a part of the spectrum that has higher signal-to-noise ratio using the following equation: 
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θ′(𝜎) =  θ(𝜎) − 2𝜋 ∙ floor {
θ(𝜎𝑟𝑒𝑓)

2𝜋
} (15) 

where θ′(𝜎) is the phase function with the desired phase reference and θ(𝜎) is the phase function directly returned by the 

phase-unwrapping algorithm. The floor{}function rounds the argument down to the nearest integer. 

3.3 Limitations of the self-calibration algorithm  

In previous studies, researchers did not consider the phase ambiguity caused by the unknown integer n and implicitly 

assumed that 𝑛 = 0. This assumption is true for small deviations from the reference phase, but if the phase deviation 

becomes large then 𝑛 ≠ 0. If the value of n is incorrectly chosen, the results of the Stokes reconstruction may be inaccurate. 

If in the self-calibration 𝑛 is assumed to be 0, then the calibration factors will have a phase error 𝜖𝐾𝑖,𝑑(𝜎): 

𝜖𝐾1,𝑑(𝜎) = exp [−𝑗 (1 −
1

𝜌
) 𝑛𝜋] 

𝜖𝐾2,𝑑(𝜎) = exp [−𝑗𝑛𝜋] 

𝜖𝐾3,𝑑(𝜎) = exp [−𝑗 (1 +
1

𝜌
) 𝑛𝜋] (16) 

When n is assumed to be 0, the reconstructed Stokes vector 𝑆(𝜎) is represented in terms of the actual Stokes vector 

components 𝑆0, 𝑆1, 𝑆2, 𝑆3 and the actual value of 𝑛: 

𝑆(𝜎) =

(

 
 
 
 

𝑆0
𝑆1 ∙ cos(𝑗𝑛𝜋)

𝑆2 ∙ cos [𝑗 (1 +
1

𝜌
) 𝑛𝜋] + 𝑆3 ∙ sin [𝑗 (1 +

1

𝜌
) 𝑛𝜋]

𝑆3 ∙ cos [𝑗 (1 +
1

𝜌
) 𝑛𝜋] − 𝑆2 ∙ sin [𝑗 (1 +

1

𝜌
) 𝑛𝜋]

)

 
 
 
 

(17) 

If the true value of 𝑛 is 0, then the reconstructed Stokes vector will simplify to the actual Stokes vector and the measurement 

will be correct. However, if the phase has deviated significantly from the reference phase and the true value of 𝑛 is non-

zero, then the reconstructed Stokes vector will have error. 𝑆1 will have a sign error for odd values of 𝑛 and 𝑆2 and 𝑆3 will 

be reconstructed as a linear combination of the actual 𝑆2 and 𝑆3 components.  

Next, we quantify the maximum deviation from the reference phase that produces accurate measurements when making 

the assumption 𝑛 = 0. The phase of retarder R2 at the reference wavenumber exists in the intervals θ2,𝑟(𝜎𝑟𝑒𝑓) ∍ [0, 𝜋) and 

θ2,𝑚(𝜎𝑟𝑒𝑓) ∍ [0, 𝜋) for both the reference and current phase measurements. When the actual value of 𝑛 = 0 the phase 

difference δϕ2(𝜎𝑟𝑒𝑓) lies in the interval: 

δϕ2(𝜎𝑟𝑒𝑓) ∍ (−θ2,𝑟(𝜎𝑟𝑒𝑓), 𝜋 − θ2,𝑟(𝜎𝑟𝑒𝑓)] (18) 

Next, we find the temperature range over which the system is stable. The change in phase retardance due to a change in 

temperature is determined using the coefficient γ that is expressed as the normalized change in phase per unit change in 

temperature11. Through this coefficient the change in phase retardance is proportional to the change in temperature:  

δϕ2(𝜎𝑟𝑒𝑓) = γ ∙ ϕ2,𝑟(𝜎𝑟𝑒𝑓) ∙ Δ𝑇 (19) 

The temperature range over which a CHSP is stable can be expressed in terms of the temperature during reference 

calibration 𝑇0 after rearranging for Δ𝑇: 

𝑇 ∍ [𝑇0 +
𝜋 − θ2,𝑟(𝜎𝑟𝑒𝑓)

𝛾 ∙ ϕ2,𝑟(𝜎𝑟𝑒𝑓)
, 𝑇0 −

θ2,𝑟(𝜎𝑟𝑒𝑓)

𝛾 ∙ ϕ2,𝑟(𝜎𝑟𝑒𝑓)
) (20) 

Proc. of SPIE Vol. 11132  111320P-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



And the absolute temperature range over which the instrument is stable is: 

Δ𝑇 = |
𝜋

𝛾 ∙ ϕ2,𝑟(𝜎𝑟𝑒𝑓)
| (21) 

While the measured reference phase θ2,𝑟(𝜎𝑟𝑒𝑓) is determined by measurement, the absolute reference phase ϕ2,𝑟(𝜎𝑟𝑒𝑓) 

cannot be determined directly. However, an approximate value can be used based on the specification of the retarder. A 

retarder specified with a number of waves of retardance 𝑊𝑉 at a specification wavelength 𝜆𝑠𝑝𝑒𝑐 has a phase retardance: 

ϕ2,𝑟(𝜎𝑟𝑒𝑓) = 2𝜋 ∙ 𝑊𝑉 ∙ 𝜎𝑟𝑒𝑓 ∙ 𝜆𝑠𝑝𝑒𝑐 (22) 

Although the absolute range over which the CHSP is stable is easily determined based on the materials and specifications 

of the thick retarders, the upper and lower temperature bounds are not symmetric around the initial temperature. 

Furthermore, the upper and lower bounds are essentially unpredictable since θ2,𝑟(𝜎𝑟𝑒𝑓) is not known until the reference 

measurement is taken. In the case that the reference phase happens to be close to the bounds 0 or 𝜋, the ability to withstand 

temperature increases or decreases may be severely limited.  

As an example, consider a CHSP system with 60𝜆 and 120𝜆 retarders specified at 𝜆𝑠𝑝𝑒𝑐 = 633nm and made out of quartz 

(𝛾 = −1.4 ∙ 10−4[
1

K
]). For a reference wavenumber at 𝜎𝑟𝑒𝑓 = 1.72 ∙ 10

6 The total temperature range of the system is 27.3 

oC. If the initial phase at the reference wavenumber is θ2,𝑟(𝜎𝑟𝑒𝑓) = .09𝜋 and the ambient temperature during the reference 

calibration is  𝑇0 = 21.0 
oC, then the stable temperature range is [-3.9 oC, 23.4 oC].  

4. EXTENDED TEMPERATURE RANGE CALIBRATION 

In this section we show that the temperature range of a CHSP instrument can be extended beyond the limitations described 

in section 3.3 by using the slope of the phase retardance to determine the value of n.  

4.1 Extended Range Calibration Algorithm 

First, we fit the measured reference phase θ2,𝑟(𝜎) and measured current phase θ2,𝑚(𝜎) to the linear approximations 

ψ𝑚(𝜎) = A𝑚𝜎 + B𝑚  and ψ𝑟(𝜎) = A𝑟𝜎 + B𝑟 . We assume that the difference in phase between the reference and the 

current measurement δϕ2(𝜎𝑟𝑒𝑓) can be modeled using the slopes obtained in the linear fit: 

δϕ2(𝜎𝑟𝑒𝑓) = 𝜎𝑟𝑒𝑓(A𝑚 − A𝑟) (23) 

Using Eq. 14 and Eq. 26 we relate the measured slope differential and the linear fit coefficients to the measured phase 

difference δθ2(𝜎𝑟𝑒𝑓) and the integer n: 

𝜎𝑟𝑒𝑓(A𝑚 − A𝑟) = δθ2(𝜎𝑟𝑒𝑓) + 𝑛𝜋 (24) 

Since the fit is an approximation and n must be an exact integer, we use a minimization function to find the value of n that 

best satisfies the equation: 

minn{𝜎𝑟𝑒𝑓(A𝑚 − A𝑟) − [δθ2(𝜎𝑟𝑒𝑓) + 𝑛𝜋]} (25) 

The correct value of n is then inserted into Eq. 17 for stable operation over a large temperature range. 

5. EXPERIMENTAL RESULTS 

A CHSP system was assembled as shown in Fig. 2 to demonstrate the temperature range limitations discussed in section 

3.3 and to demonstrate the extended temperature range algorithm presented in section 4.  The system uses a 60𝜆 thick 

retarder oriented at 0o and two 60𝜆 retarders oriented at 45o. The two retarders at 45o effectively operate as a single 120𝜆 

retarder. A polarization state generator consists of a broadband halogen lamp and a polarization element. An Ocean Optics 

USB4000+ Spectrometer is used to measure the spectrum after the light passes through all the polarization components. 

The system is placed in an enclosed chamber and the temperature of the CHSP system is uniformly increased using a heat 

source in combination with a fan for air circulation.   
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Figure 2: A demonstration CHSP system is assembled using 60𝜆 quartz retarders. The retarders are arranged to effectively form a 60𝜆 

: 120𝜆 CHSP. A broadband light source and a linear polarizer form a polarization state generator. The system is placed in a heating 

chamber with air flow to uniformly increase the temperature and observe its effect on stability. 

In the experiment a linear polarizer oriented at approximately 22.5 degrees is used in the polarization state generator to 

produce a Stokes vector with nonzero S1 and S2
 polarization but no S3 polarization. The system was initially calibrated at 

an ambient temperature of 21 oC using the reference light technique from reference 9. The temperature of the system was 

gradually increased from 21 oC to 62 oC and measurements were made at 14 different temperatures. The reconstructed 

Stokes vector components are spectrally averaged and plotted against temperature in Fig. 3a for the original self-calibration 

algorithm and in Fig. 3b for the extended temperature range algorithm.  

The example at the end of section 3.3 has all the same parameters as this experiment and is used as a basis for comparison 

to theory. When we reconstruct the Stokes vector using the original self-calibration method we observe an abrupt change 

in the measured Stokes vector at around 25 oC in the transition from 𝑛 = 0 to 𝑛 = 1. This agrees well with theory where 

we predict that the stable temperature range has an upper limit of 23.4 oC. We also observe a second abrupt change during 

the transition from 𝑛 = 1 to 𝑛 = 2. This transition is observed to occur at 52 oC in close agreement with the theoretical 

prediction of 50.7 oC. Using the extended temperature range algorithm all abrupt changes in the Stokes vector are 

eliminated and the algorithm is demonstrated to be stable over a 41 oC temperature range. The experiment also shows the 

algorithm can correctly predict 𝑛 values of at least 2. Assuming the algorithm is stable for the entire range in which 𝑛 = 2 

then we can determine this system has a stable temperature range over 136.5 degrees ranging from -58.5 oC to 78 oC. If the 

algorithm continues to provide stable results for 𝑛 = 3 then the system has potential to be stable even for extreme terrestrial 

conditions.  
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Figure 3: Stokes vector reconstruction as a function of temperature using different reconstruction algorithms. The sample was a linear 

polarizer oriented at approximately 22.5 degrees. Since the Stokes vector components from the linear polarizer do not vary with 

spectrum, they were averaged from 0.5um to 0.9um. (a) Reconstruction using the original self-calibration technique. Since the technique 

does not account for the changing value of 𝑛, the measurement abruptly changes at 25 oC and 52 oC. (b) Reconstruction using the 

extended temperature range algorithm provides stable measurements as temperature increases. 

6. CONCLUSION 

In this paper we discuss the stability of a real-time calibration technique for channeled spectropolarimeters. We find that 

a mathematical ambiguity in the technique results in a limited temperature range in which the system is stable. For a system 

that uses a pair of 60𝜆 and 120𝜆 quartz retarders the temperature range is limited to 27 oC and is not sufficient for 

applications outside the laboratory. We propose an extended temperature range algorithm that uses the slope of the phase 

obtained in the self-calibration algorithm to remove the mathematical ambiguity and extend the temperature range over 

which the system is stable. We demonstrate these claims by assembling a 60𝜆:120𝜆 channeled spectropolarimeter and 

placing it in a heat-controlled chamber. After raising the heat in the chamber from 21 oC to 62 oC we observed abrupt 

changes in the reconstructed Stokes vector at 25 oC and 52 oC when using the original self-calibration algorithm, but did 

not observe any abrupt changes when using the extended temperature algorithm. The new algorithm has the potential to 

improve the stability of channeled spectropolarimeters over a broad temperature range. 
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