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ABSTRACT

Tsang et al. have shown that the Fisher information of the two incoherent point source separation, below the 
Rayleigh limit, is finite and achievable using optical modes measurements.1 However, recent claims regarding 
partial coherence of sources, no matter how small, leads to necessarily zero Fisher information as the source 
separation decreases below the Rayleigh limit approaching zero have proved to be controversial.2, 3 Thus, the 
impact of partial coherence on the photon counting optical modal measurements merits further exploration. 
In this work, we derive the mutual coherence function (image plane) of two partially coherent point sources 
and find the classical Fisher information of the source separation using both direct image plane and photon 
counting modal measurements. A classical Fisher information analysis of partially coherent source(s) leads to 
some rather surprising results for two-point source resolution as the source separation approaches zero. We 
find that the magnitude of the Fisher information strongly depends on the degree of (positive/negative) partial 
coherence, which can be understood using an intuitive semi-classical analysis of direct image plane and photon 
counting modal measurements. We also provide an error analysis of the maximum likelihood estimators for both 
measurements.

Keywords: Fisher information, coherent point sources, Rayleigh limit

1. INTRODUCTION

In traditional imaging, the Rayleigh’s resolution criteria typically defines the resolving limit of an optical imaging 
system.4 The criterion states that in order to distinguish two points in the image plane, the separation of the 
two points has to be larger than the width of the point spread function (PSF) of the system, which is ultimately 
limited by diffraction. However, more rigorously the ultimate resolving (i.e. angular separation) accuracy for 
two point-sources is determined by the Fisher information of the image measurement.5 It can be shown that 
this Fisher information approaches zero as the angular separation of the two point source converges, below the 
diffraction limit, to zero. However, quantum information theory has shown that two close incoherent point 
sources can be resolved by using linear optics and photon counting measurements even when their separation 
is smaller than Rayleigh’s criterion.1 It has been demonstrated that by counting the photons in terms of the 
various spatial modes of the optical field, both classical and quantum Fisher Information approach finite values 
when the two point source separation goes to zero. This result implies that a finite precision can be achieved in 
the deep sub-Rayleigh regime, which is not achievable by the traditional direct image plane measurement.

Recently, the classical Fisher information and the quantum Fisher information for two partially coherent point 
sources has been also being investigated.2 This work shows that if there is any finite degree of coherence between 
the two-point sources, no matter how small, the finite precision in the limit two point separation approaches 
zero would fade (i.e. Rayleigh’s curse), except for perfectly positively-correlated sources. Counterarguments,3
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which have debated the parametrization of the correlation function and the normalization of the density operator
originally reported in Ref. 2, have been made and some of these points were conceded by the authors.6 However,
the normalization issue in this analysis has still proven to be controversial. In this work, we adopt a semi-classical
approach to the analysis of partially coherent two-point sources and find the classical Fisher information of their
angular separation using both imaging and photon counting measurements. We demonstrate that even for
partially-coherent sources the Rayleigh’s curse is not manifested, except perfectly positively coherent sources.
We validate our Fisher information analysis by quantifying the precision of the angular separation estimate for
various degrees of coherence and separation of two point sources.

2. PHOTON DISTRIBUTION: DIRECT IMAGING AND MODE SORTING
MEASUREMENTS

2.1 Propagation of Mutual Coherence

We begin by defining the mutual intensity of the two point sources denoted by Jo(xo1, xo2; θ):

Jo(xo1, xo2; θ) = [I(xo1; θ)I(xo2; θ)]1/2µo(xo1 − xo2)

=
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where xo1, xo2 are the angular co-ordinates in the object plane and θ is the angular separation of two point source
as shown in Fig. 1. The complex degree of coherence, denoted by µ(xo1 − xo2), describes the coherence of the
two point sources.7 We consider a simple imaging system with a single lens (Fig. 1). After propagating to the
image plane, under paraxial condition and assuming Gaussian aperture, the mutual coherence can be written
as:7
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where x1, x2 are co-ordinates of any two points on the optical field the image plane and n̄ is proportional to
the photons emitted from the two point sources. The width of the Gaussian PSF is given by: σi = λ/4πσa,
where λ is the wavelength and σa is the standard deviation of the Gaussian function describing the aperture.
We summarize the pre-factor of Eq. (2) by n̄, which is proportional to the intensity Io.

(a) Direct imaging measurement. (b) Mode sorting measurement.

Figure 1: The system schematic illustrating the two measurements.
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2.2 Direct Imaging Model

Consider pixellated detectors in the image plane as shown in Fig. 1(a). By setting x1 = x2 = x in Eq. (2), the
intensity in the image plane can be written as:

I(x; θ) =
n̄
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Note that Eq. (3) is normalized such that I(x; θ, µ) = 1 when n̄ = 1 and µ(θ) = 0 (incoherence). The intensity,
which is assumed to be pseudo continuous on the detector plane, is the mean number of photons collected as
described by the Poisson point process on the pixellated detectors.

2.3 Mode sorting Measurement Model

Fig. 1(b) shows the schematic illustrating the mode sorting measurement. Spatial mode demultiplexer (SPADE)
is used to sort the optical field incident in the image plane into a spatial mode basis. Photons in each of the
different spatial modes are counted. In order to find the optical field intensity in each mode, we have to project
the mutual coherence function onto mode basis. If we use Hermite Gaussian mode set as the mode basis,1,2 the
mean number of photon in the qth mode ψq(x), labelled by λq(θ), can be written as:

λq(θ) =
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Strictly speaking, one should integrate Eq. (4) across the detector size. However, if θ is small enough such
that J(x1, x2; θ) � 1 when x1 or x2 is large enough, we may approximate the integral as in Eq. (4) to obtain
the analytical form.

3. MEASUREMENT PERFORMANCE METRICS: FISHER INFORMATION AND
MEAN SQUARE ERROR

For each measurement described in Section 2, the classical Fisher information quantifies the information relevant
to estimating the two point source separation and can be expressed as:

FIimag(θ) =
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Up to now, the coherence µ(θ) is expressed as a function of θ. In our analysis, we assume that it is a constant
and calculate the maximum likelihood estimator (MLE) for some representative values of µ. It is worth noting
that the MLE approaches a minimum variance unbiased estimator as n̄ and θ get large, so we use it here to obtain
MSE to quantify estimation performance of the two measurements. Here, for the two-point source problem, given
a measurement ~n = (n1, n2, n3...), the MLE θ̂ can be numerically computed. We estimate the MSE of the two
measurements by Monte Carlo sampling:

MSE ≈< (θ − θ̂m)2 >, (7)

where θ̂m is ML estimation of each sample measurement.

Proc. of SPIE Vol. 11136  111360H-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. ANALYSIS OF FISHER INFORMATION AND MLE

We demonstrate the theory formulated above with some representative cases. Here the angular separation of the
object ranges from 0 to 6×10−5 radians. λ is set to be 500 nm and σa is set to be 15000λ. σi is the width of the
Gaussian PSF on the image plane. The source coherence µ is chosen to be 0,±0.1, and ± 0.9, which represent
incoherent and strongly/weakly positively/negatively correlated sources. For the analysis in this section, we
assume that the measurement exposure time window is fixed. Rayleigh limit is typically defined for a circular
aperture. Here for a Gaussian aperture we use full width at half maximum (FWHM) σF of the PSF as the
Rayleigh limit (σF = 2.36σi).

4.1 Fisher Information Analysis
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Figure 2: Fisher information for imaging (dashed) and mode sorting (solid) measurements for varying degrees
(colors) of source coherence. The black dotted line shows the FWHM (Rayleigh’s limit).

Fisher information for different degrees of coherence are shown in Fig. 2. For the mode sorting measurement,
we note that the Fisher information attains finite values when the separation of the two point source approaches
zero. The Fisher information for incoherent sources is a constant.3 If the number of photon received is fixed
(i.e. variable exposure time), the quantum Fisher information has the similar properties qualitatively except for
µ = −1.6 For direct imaging, all the Fisher information goes to zero as θ goes to zero for all coherence values.

Here there are some FI trends worth highlighting. First, the Fisher information of mode sorting measurement
is always higher than that of the imaging measurement, which implies that the best unbiased estimator of the
mode sorting measurement always outperforms that of the direct imaging measurement. Second, in the small θ
regime, more negatively correlated sources lead to higher Fisher information than positively correlated sources.
This can be understood intuitively: negative correlation gives rise to a minima (null) on the optical axis, as
shown in Fig. 2, at x = 0 when θ is small while positive correlation does the opposite. The dip (or the minima)
surrounded by maximas on either side encodes more information and thus facilitates more accurate estimation
of the unknown parameter θ.

4.2 Maximum Likelihood Estimation: Error analysis

We quantify the performance of the maximum likelihood estimator (MLE) by estimating its mean square error
(MSE). Simulations of ni, the number of photons found in each mode/pixel following the Poisson distribution
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Figure 3: Intensity on the image plane for µ = ±0.9 when θ/σF ≈ 0.68.

with the mean shown in Eqs. (3) and (4), are carried out for n̄ = 10 and n̄ = 100. MSEs are estimated by Eq.
= (7). The results, together with the Cramer-Rao lower bound (CRLB) are shown in Fig. 4. CRLB, lower
bound on MSE, is obtained as the inverse of the Fisher information defined in Eqs. (5) and (6). Note that all
the bounds converge to 1/n̄.

For Fig. 4, it can be seen that the MSE of mode sorting tends to zero for negative and small positive coherence
(µ). This behavior can be explained as follow. In order to find the MSE at θ = 0, one has to solve the following
equation:

θ2
[
ntot − 2µn̄ exp

(
− θ2

8σ2
i

)]
= 0, (8)

where ntot denotes the total number of photon received in the finite exposure window. The solution for Eq. (8)
has qualitative difference when µ varies:

θ̂ =


0 , if µ ≤ 0 or ntot > 2µn̄.
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√
8 ln

(
2µn̄
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)
, otherwise.

(9)

At θ = 0, one can only find photons in the 0th-order mode, under which the MLE predicts θ = 0 when µ ≤ 0
according to Eq. (9). If µ > 0, the larger the µ is, the lower probability that the estimator gives the correct
prediction. Although the MSE for the imaging measurement does not goes to zero as θ goes to zero, it still has
finite value at θ = 0.

Furthermore, if one has the exact knowledge of the actual total number of photon received, the MSE, no
matter what the number, converges to the corresponding CRLB. However, if we just have the knowledge of the
average or expected number of photons, the MSE can only converge to the weighted average of the CRLB for
different number of photons. Thus when n̄ is large, the MSE converges to CRLB asymptotically.
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Figure 4: MSE and CRLB for the two measurements.
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5. CONCLUSION

In this work we employ mutual coherence analysis to determine the photon distribution on the image plane for
both imaging and mode sorting measurement for the task of resolving two (partially) coherent point source. We
find that two perfectly coherent point sources still lead to finite Fisher information if mode sorting measurement
is used. We also validated our Fisher information analysis with evaluating the achievable MSE (i.e. separation
precision) for both types of measurements.
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