Arbona N, Butkiewicz CB, Shubitz LF, et al

1	Clinical Features of Cats Diagnosed with Coccidioidomycosis in Arizona, 2004-
2	2018
3	
4	Arbona N, College of Veterinary Medicine, Kansas State University, Manhattan, KS,
5	USA
6	Butkiewicz CD, Valley Fever Center for Excellence, University of Arizona, Tucson,
7	AZ, USA
8	Keyes M, The Cat Hospital of Tucson, Tucson, AZ, USA
9	Shubitz LF, Valley Fever Center for Excellence, University of Arizona, Tucson, AZ,
10	USA
11	
12	Corresponding Author: Christine Butkiewicz DVM, MPH, MLIS
13	cbutkiew@email.arizona.edu
14	520-626-6527
15	PO Box 245215
16	Medical Research Building
17	1656 E. Mabel St.
18	University of Arizona

19	Tucson, AZ 85724, USA
20	
21	Keywords: cats, Coccidioides, coccidioidomycosis, communicable diseases,
22	epidemiology, mycoses, veterinary
23	

24	Abstract
25	Objectives: The goal of this study was to describe the clinical presentation, diagnosis
26	and treatment of coccidioidomycosis in cats residing in a region endemic for
27	Coccidioides species.
28	Methods: A retrospective review of records was performed at both primary and tertiary
29	care veterinary practices in Tucson and Phoenix, AZ. Data collected included
30	signalment, clinical signs, physical exam findings, diagnostic test results, treatment and
31	outcome.
32	Results: Fifty-one feline cases were identified from six different veterinary hospitals.
33	Cats presented with clinical signs and laboratory abnormalities similar to what has been
34	seen in dogs, including respiratory illness (20/51), neutrophilia (24/31), monocytosis
35	(17/31), and hyperglobulinemia (16/30). However, cats at diagnosis were typically
36	significantly ill, with 31/51 having disseminated infection, most commonly to the skin
37	(n=22). Additionally, 43/44 cats that had serum antibody tests performed were positive,
38	and median titer at diagnosis was 1:32 (range 1:4 – \geq 1:256). Serum antibody titers
39	reduced significantly (P \leq 0.001) in cats that responded to treatment compared with cats
40	that did not clinically improve. 40/46 cats that were treated with oral flucaonzole

41	responded and did not require additional therapy. Fourteen cats developed recurrent
42	disease and all but 1 had antifungal therapy successfully reinstituted.
43	Conclusions and relevance: Coccidioidomycosis is a disease of concern for cats
44	residing in the region endemic for Coccidoides spp. Disease is most often disseminated
45	at the time of diagnosis, possibly due to delays in presentation for care and recognition
46	of the infection. Suspicion of disease, serum chemistries, blood cell counts, presence of
47	antibody, and imaging aid in diagnosis of coccidioidomycosis in cats. Serum antibody
48	reduction during treatment frequently correlated with an adequate response to
49	medication. Consideration of coccidioidomycosis as a cause of illness will lead to
50	earlier diagnosis and potentially better treatment outcomes in cats.
51	

52 Introduction

Coccidioidomycosis, also known as Valley Fever, is a fungal disease prevalent 53 54 in semiarid regions of the western hemisphere. In the United States, endemic regions are found in Arizona, California and parts of New Mexico, Texas, Nevada and Utah.^{1,2} 55 Recently, several locally acquired human cases were identified in eastern Washington 56 state.^{3,4} The causative agents are the dimorphic fungi *Coccidioides immitis* and *C*. 57 *posadasii*, with no noteworthy variances in the disease course between the two species.⁵ 58 59 Infection is acquired by inhalation of the $3-5 \mu m$ arthroconidia (spores) which grow from mycelia in the soil and are very easily aerosolized by natural or human-60 caused disturbance, such as digging, wind or construction.¹ In the lungs, the tiny spores 61 easily reach the distal airways and rapidly transform into the parasitic spherule phase. 62 Rapid expansion of the fungus by endosporulating spherules results in a respiratory 63 64 infection ranging from subclinical to severe. In hosts that are unable to control the 65 infection early, Coccidioides species may disseminate via the bloodstream to virtually any extrapulmonary tissue.^{1,6} 66

Published literature on dogs with coccidioidomycosis cites a wide variety of
clinical presentations, dependent on involved organ systems, but coughing, lethargy and
anorexia are the most common features, followed by lameness from osteomyelitis.⁶⁻⁸

70	Typical clinicopathological findings in dogs include hyperglobulinemia, monocytosis
71	and hypoalbuminemia. ^{9,10} Less information is available about the disease in cats. At one
72	time, cats were believed to be resistant to infection by Coccidioides species;11 however,
73	published case reports have proven this to be incorrect. ^{5,11-13} As the historic incidence of
74	coccidioidomycosis is not known in cats, it cannot be ascertained whether infections are
75	increasing or whether veterinarians are more aware of the disease in this species.
76	The purpose of this retrospective study was to learn more about how
77	coccidioidomycosis presents, progresses, and is treated in the feline species.
78	Materials and Methods
79	Study Design and Case Selection: A retrospective record review of feline
80	coccidioidomycosis cases was performed at six veterinary practices in Arizona - three
81	feline only practices, two specialty referral hospitals and one general small companion
82	animal practice (four in Tucson, two in Phoenix). Records between 2004 and 2018
83	(where available) were searched for potential cases. All database searches were
84	performed by staff at each clinic, except for one specialty hospital in Tucson. At that
85	location, investigators performed the database search for the available years (2011 to
86	2018) using the search terms "coccidioidomycosis," "cocci," and "Valley Fever." Cases
87	were included in this study if they were definitively diagnosed via cytology, histology

88	or culture or if they had at least two of the following: clinical signs that can be related to
89	coccidioidomycosis in other species, positive anticoccidioidal antibody serology,
90	clinicopathological changes similar to canines and radiographs supportive of the
91	diagnosis. Cases were excluded if inadequate information was available and if the
92	diagnosis was inconclusive.
93	Data Collection: Medical records were reviewed by one of the authors. The data
94	collected included signalment, lifestyle, clinical signs, complete blood cell count
95	(CBC), serum chemistries, radiographs or other imaging, coccidioidal serology,
96	treatment and outcome. As multiple diagnostic laboratories were used,
97	clinicopathological data was collected as the laboratory interpretation rather than the
98	raw data. Coccidioidal serology was performed by commercial laboratories, which used
99	agar gel immunodiffusion (AGID) to identify antibodies (IgG and IgM) and quantitate
100	IgG. Semi-quantitation of IgG is obtained by serial dilution of positive serum and an
101	endpoint titer is reported.
102	Statistical Analysis: Descriptive analysis of collected data was performed in Microsoft
103	Excel (2016). Data were migrated to GraphPad Prism version 7.00 for Windows
104	(GraphPad Software) for statistical analysis. The non-parametric Mann-Whitney U test
105	was performed to compare titers. Significance was set at P ≤ 0.05 .

106	Results
107	Case inclusion: Fifty-one feline cases of coccidioidomycosis were included in the
108	analysis. While demographic data of the hospital populations was largely unavailable,
109	we were able to obtain estimates of patient visits for 2 hospitals (1 feline only, 1
110	specialty). For these 2 clinics, the feline coccidioidomycosis cases represented 0.23%
111	and 0.15%, respectively, of the feline patient visits.
112	Signalment: Most of the cats were domestic crossbreeds ($n = 46, 90\%$). There was one
113	of each of the following breeds: Abyssinian, Himalayan, Maine Coon, Persian, and
114	Siamese. Age at diagnosis ranged from 1 year to 15.5 years (mean = 6.8 years, SD = 4).
115	There were 30 neutered males (59%) and 21 females (41%), of which all but one was
116	spayed. Most cats were reported as indoor only $(n = 30)$, with 15 indoor/outdoor and
117	one outdoor only. Lifestyle information was unavailable for five cats. Body weights at
118	time of diagnosis ranged from 1.86 kg to 7.82 kg (mean = 4.58 kg, SD = 1.27).
119	Eighteen cats had lost weight from a previous visit while 12 cats had no weight loss.
120	Information about previous weight was unavailable for 21/51 of the cats. Five cats had
121	comorbidities that could have affected immune function. These were feline
122	immunodeficiency virus (n = 3), feline leukemia virus (n = 1) and diabetes mellitus (n =
123	1).

124	Clinical signs: Clinical signs at presentation are summarized in Table 1. Dermal lesions
125	were the most commonly reported complaint (n=22, 43%), with most of those lesions
126	described as nodular (13/22). Additional descriptions of dermal lesions included non-
127	healing wounds (7/22) and crust or plaque-like lesions (2/22). Respiratory signs were
128	present in 20 (39%) cats. These cats were described as having some form of respiratory
129	distress (14/20), including tachypnea, wheezing, or labored breathing. Six of the 20 cats
130	presented with a cough only, while 12/20 cats had both a cough and respiratory distress
131	described. Signs associated with systemic illness, such as decreased appetite or anorexia
132	(n=14) or fever (\geq 103°F or 39.4°C, n=4) were less frequently reported. Lameness,
133	paresis or paraparesis was seen in 11 (22%) cases.
133 134	paresis or paraparesis was seen in 11 (22%) cases. <i>Radiography and imaging:</i> Radiographs were acquired in 22 cats at the time of
134	Radiography and imaging: Radiographs were acquired in 22 cats at the time of
134 135	Radiography and imaging: Radiographs were acquired in 22 cats at the time of diagnosis (19 thoracic, two thoracic and skeletal and one skeletal only). One cat had a
134 135 136	<i>Radiography and imaging:</i> Radiographs were acquired in 22 cats at the time of diagnosis (19 thoracic, two thoracic and skeletal and one skeletal only). One cat had a thoracic ultrasound performed and four cats had both thoracic ultrasound and
134 135 136 137	<i>Radiography and imaging:</i> Radiographs were acquired in 22 cats at the time of diagnosis (19 thoracic, two thoracic and skeletal and one skeletal only). One cat had a thoracic ultrasound performed and four cats had both thoracic ultrasound and radiographs performed. Results are summarized in Table 1. Half of the cats had
134 135 136 137 138	<i>Radiography and imaging:</i> Radiographs were acquired in 22 cats at the time of diagnosis (19 thoracic, two thoracic and skeletal and one skeletal only). One cat had a thoracic ultrasound performed and four cats had both thoracic ultrasound and radiographs performed. Results are summarized in Table 1. Half of the cats had multiple radiographic abnormalities noted. Overall, a bronchial, interstitial and/or

142	(Figure 1) All three cats with skeletal radiographs performed were found to have an
143	osteomyelitis characteristic of fungal infection in a forelimb. Thoracic ultrasound
144	showed pericardial effusion in two cats. One cat had a computed tomography scan of
145	the thorax. (Figure X)
146	Hematology and Serum Chemistries: Thirty cats had serum chemistries and a CBC
147	performed at the time of diagnosis and one additional cat had only a CBC performed.
148	Three cats (6%) had no abnormalities noted on either the serum chemistries or the CBC.
149	Neutrophilia was present in 24 (47%) cats, monocytosis was present in 17 (33%) cats,
150	and hyperglobulinemia was present in 14 (27%) cats. (Table 3)
151	Serology: Forty-four cats had coccidioidal serology performed at the time of diagnosis
152	and 43 were seropositive. Titers ranged from 1:4 to \geq 1:256 (median 1:32). The seven
153	cases in which serology was not performed were definitively diagnosed through
154	cytology, histopathology or culture, as was the seronegative cat. Post-diagnosis
155	serology results were available for 40 cats. The latest available serology result for each
156	of these 40 cats was compared to the serology results at diagnosis, with the available
157	follow up time ranging from 2 months to 12 years (mean = 2.76 years, SD = 2.67). The
158	post-diagnosis serology results ranged from negative to $\geq 1:256$ (median $\leq 1:4$).

159	The 40 cats with follow up serology were divided into two groups based upon
160	whether there was clinical improvement after treatment was initiated. Thirty-three cats
161	were clinically improved compared with the time of diagnosis, with the follow up
162	examination and serology occurring as early as 3 months post-diagnosis. Seven cats
163	were clinically worse. Interestingly, all of these cats were about 1 year post-diagnosis at
164	the time this assessment was made. On average, the cats with clinical improvement had
165	the titer decrease by three dilutions, while cats that were not clinically better had an
166	average increase of the titer by one dilution. There was a statistically significant
167	difference in the change in quantitative dilutions between these groups (P \leq 0.001).
168	Clinical pathology: Cytology, histology and/or culture were performed and confirmed
169	the diagnosis of coccidioidomycosis in 18 (35%) of the cats in the population; all but
170	one of these cats had disseminated disease. The most common confirmed site of
171	dissemination was to the cutaneous or subcutaneous tissue ($n = 6$), followed by ocular
172	tissue ($n = 4$). One cat each had dissemination to the pleural space, a cranial thoracic
173	mass, the liver and an extradural mass. Four cats had positive culture and/or cytology
174	from multiple sites.
175	Disseminated disease: In addition to the 17 cats that received a confirmation of

extrapulmonary dissemination through histology, cytology or culture, 14 cats (27%) had

177	a combination of evidence supporting a diagnosis of disseminated disease by the
178	treating veterinarian, although etiologic testing was not pursued. Of these, nine cats had
179	dermal lesions consistent with coccidioidomycosis. Two cats had skeletal radiographic
180	changes characteristic for fungal osteomyelitis. Two cats had both dermal and ocular
181	disease and one cat was believed to have dissemination to the skin, eye, and tongue
182	based on records. Sites of dissemination are summarized in Table 4.
183	Treatment: Treatment was instituted in 50/51 cats, while the remaining cat was
184	euthanized at diagnosis due to the severity of the disseminated disease. The most
185	commonly prescribed antifungal was fluconazole as sole agent and the typical dosage of
186	fluconazole was 50 mg/cat PO q12h. Itraconazole was the only other antifungal drug
187	given as the first line agent.
188	Forty-six (92%) cats were treated with fluconazole initially and 40 of those
189	never received another antifungal drug. Six cats received additional antifungal drugs,
190	either concurrently or sequentially, due to failure to respond to fluconazole alone.
191	Additional antifungal drugs included itraconazole, amphotericin B, posaconazole and
192	terbinafine. Twenty-five cats were still receiving oral antifungal medication at the time
193	of the review (22 on fluconazole, 2 on itraconazole, and 1 on posaconazole). For this
194	group of cats, the time on antifungal medication ranged from 6 months to 7.5 years.

195	Itraconazole was instituted as the initial treatment in the other four (8%) cats.
196	One of these cats was maintained on itraconazole only. One cat, which had severe
197	skeletal disease requiring amputation of the affected limb, was changed to fluconazole
198	post-amputation. The remaining two cats received multiple therapies. Treatment is
199	summarized in Table 5.
200	A recurrence of coccidioidomycosis was described in 14 cats. All of these cats
201	received additional antifungal therapy, which was successful in 13/14. Fourteen cats
202	were deceased at the time of the review. As previously described, 1 cat was euthanized
203	at diagnosis due to the severity of disease and 1 was euthanized after failing to respond
204	to antifungal therapy after a recurrence of disease. Five cats were euthanized for
205	unrelated medical conditions, and the circumstances of the death or euthanasia could
206	not be determined for the remaining 7 cats.
207	Discussion
208	Reports of cats with coccidioidomycosis have appeared in the literature only
209	within the past five decades and constitute a few case reports and retrospective
210	reviews. ^{5,11,12,14,15} These cases represent a small fraction of the cats residing within the
211	endemic region for Coccidioides species. While coccidioidomycosis is reportable in
212	humans in Arizona, it is not currently reportable in veterinary species, allowing only for

estimates of the impact of disease in our animal populations. Previous work has shown
that the rates of infection and disease in dogs are similar to or higher than those seen in
people;¹⁶ however, the frequency of disease and subclinical infection in cats is
unknown.

In this study population, the average age at diagnosis was 6.8 years, which is 217 similar to cats in a previous retrospective study.¹¹ Two-thirds of the cats diagnosed with 218 coccidioidomycosis lived exclusively indoors at the time of diagnosis, suggesting that 219 220 being outdoors exposed to soil is not requisite for acquiring infection. This has also been noted in cats with blastomycosis,^{17,18} cryptococcus,¹⁹ and histoplasmosis.²⁰ Spores 221 may be introduced to indoor cats through air conditioners, open doors and windows or 222 on fomites that enter the residence (people, other animals). 223 Though primary pulmonary disease with a cough is the most common 224 presentation of coccidioidomycosis in dogs and humans,^{2,8} respiratory disease has been 225 previously reported to be present in only 25% of cats.¹¹ In contrast to previous findings, 226 40% of the cats in this population exhibited significant respiratory signs. Interestingly, 227 228 hilar lymphadenopathy was not frequently identified on the thoracic radiographs of this

230 most notable about cats is that >60% of this population had disseminated disease at the

229

cohort, despite being a common finding in dogs with coccidioidomycosis.^{10,21,22} What is

231	time of diagnosis, and nearly half of all the cats in this study had dermal lesions as the
232	primary feature leading to diagnosis of coccidioidomycosis. For all cats residing in the
233	endemic region, even those exclusively indoors, coccidioidomycosis should be
234	considered as a differential diagnosis for antibiotic-unresponsive dermal lesions,
235	respiratory distress or cough, pleural effusion, ocular disease, chronic skeletal
236	pain/lameness or paresis/paralysis. Coccidioidomycosis should be strongly considered
237	in cats that present with chronic dermal lesions that do not respond to empirical
238	treatment.
239	Clinicopathologic abnormalities were more common in this feline population
240	compared to previous reports. ¹¹ The most common abnormalities were
241	hyperglobulinemia, neutrophilia, and monocytosis, which are supportive of a diagnosis
242	of coccidioidomycosis based on canine disease.9,10 While the CBC and serum
243	chemistries can aid in the diagnosis of coccidioidomycosis, the lack of inflammatory
244	parameters cannot rule out coccidioidomycosis in cats.
245	Agar gel immunodiffusion uses doubling serial dilutions of serum to quantitate
246	anticoccidioidal antibody levels. The assay has been demonstrated to have high
247	specificity for anticoccidioidal antibodies, although there are no published validity
248	studies of its use in felines. ²³ In dogs, overlap in titers has been shown with clinical and

249	subclinical disease and the magnitude of the titer does not consistently correlate with
250	the presence or severity of illness. ¹⁶ Additionally, negative serology does not rule out
251	coccidioidomycosis in humans or dogs.9,21,24 The overwhelming majority of the cats in
252	this study that were tested did have anticoccidioidal antibodies, which is similar to the
253	only other review of feline coccidioidomycosis, in which all affected cats were
254	seropositive. ¹¹ At this time, the rates of healthy seropositive cats as well as seronegative
255	cats with clinical coccidioidomycosis is unknown. A serosurvey of both healthy and
256	sick cats, as has been done in dogs, ¹⁶ would be needed to determine this information.
257	Interestingly, the single seronegative cat in this case series did have histological
258	confirmation of infection.
259	Confirmation of the presence of the fungus through histopathology, cytology,
260	and/or fungal culture is considered the gold standard for diagnosis; however, dogs are
261	typically diagnosed through a combination of clinicopathology, diagnostic imaging and
262	relevant clinical signs. ⁶ The large number of cats in this study with confirmed
263	coccidioidomycosis is likely due to two factors: 1) the frequency of and 2) the location
264	of dissemination. Extrapulmonary dissemination is rare in humans. ^{2,25} It appears to be
265	more common in canines, with previous studies showing dissemination rates from 20%
266	to 42% of cases. ^{10,26} The most common site of dissemination in canines is to the skeletal

267	system and biopsy is infrequently pursued due to cost and invasiveness of the testing as
268	well as a strong radiographic indication of disease. However, the dermatologic
269	dissemination seen in cats ^{5,11,12,15} allows for easily obtained aspirates and biopsies.
270	Also, the specimens for definitive diagnosis are usually obtained after lesions have
271	failed to respond to antimicrobial or other empiric treatments. Two cats in this study
272	had confirmed dissemination to the skeletal system, but one cat was confirmed on
273	necropsy and the other was confirmed upon amputation of the limb. The two cats with
274	suspected skeletal dissemination based upon radiographs did not have confirmatory
275	biopsy performed.
276	Most cats in this study were treated with the oral antifungal fluconazole, as is
276 277	Most cats in this study were treated with the oral antifungal fluconazole, as is typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high
277	typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high
277 278	typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high bioavailability and excellent tissue penetration. ^{27,28} The tissue penetration makes
277 278 279	typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high bioavailability and excellent tissue penetration. ^{27,28} The tissue penetration makes fluconazole a particularly good choice due to the level of disseminated disease in
277 278 279 280	typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high bioavailability and excellent tissue penetration. ^{27,28} The tissue penetration makes fluconazole a particularly good choice due to the level of disseminated disease in multiple tissues, including ocular, seen in these cats. It is likely that fluconazole was
277 278 279 280 281	typical for dogs in Arizona. ⁶ Fluconazole, while fungistatic, has the advantage of a high bioavailability and excellent tissue penetration. ^{27,28} The tissue penetration makes fluconazole a particularly good choice due to the level of disseminated disease in multiple tissues, including ocular, seen in these cats. It is likely that fluconazole was chosen due to convenience, availability and familiarity, but it appears that most cats

the cats were treated to clinical remission. While coccidioidomycosis in cats may
require lengthy treatment with antifungal therapy and monitoring for recurrence, overall
most cats will respond to treatment.

A limitation of this study is the retrospective nature of data collection. In order 288 to identify the greatest number of cases, we purposefully approached feline only and 289 290 specialty hospitals. This may have created a bias towards cats that were more ill at the 291 time of diagnosis. However, the cases from the general small animal practice in Tucson 292 did not have notable differences in the severity of illness. We were reliant upon most of the veterinary clinics to perform their own database searches and we suspect that the 293 294 true number of feline coccidioidomycosis cases is underrepresented in this review. We 295 were also unable to control for radiographic interpretation, diagnostic laboratory, and 296 recommendations made to owners. There is currently no information regarding the 297 number, sex, lifestyle, and breed of cats living in Tucson and Phoenix, making it 298 impossible for us to identify risk factors for disease. A longitudinal study of 299 coccidioidomycosis in cats would provide stronger evidence about the presentation of 300 disease and outcome for cats residing in the endemic region. 301 The cases in this study indicate that cats experience significant clinical disease

302 as a result of infection with *Coccidioides* species. Extrapulmonary dissemination was

303	evident in over half of the cats, often with spread to multiple organ systems. It is
304	possible that the independent nature of cats and their ability to hide subtle indications of
305	illness leads them to be diagnosed later in the course of disease. However, most of the
306	cats in this study were reported to live exclusively indoors, suggesting that this
307	population of cats did have owners who could monitor their cats daily for behavioral
308	changes indicating illness. The extent of disease associated with coccidioidomycosis
309	reported here and in previous work ¹¹ may indicate a difference in host control of disease
310	compared with dogs or humans.

311 Conclusions

Coccidioidomycosis presents a diagnostic challenge in any species due to the 312 overlap of clinical signs, clinicopathologic changes and radiographic abnormalities 313 between coccidioidomycosis and other diseases. The results of our study indicate that 314 315 clinical suspicion of coccidioidomycosis should be high in cats with dermatologic 316 lesions or severe respiratory illness. Positive serology appears to be well correlated with clinical illness, although biopsy and culture samples can provide a definitive diagnosis. 317 Orally administered fluconazole was the treatment of choice in this population of cats 318 319 and proved to be effective in most animals treated.

321 Acknowledgements

322	The authors are grateful to the following veterinary clinics for sharing their		
323	information with us: Desert Veterinary Medical Specialists (Gilbert, AZ), Feline, Ltd.		
324	(Tucson, AZ), Orange Grove Animal Hospital (Tucson, AZ), Scottsdale Cat Hospital		
325	(Scottsdale, AZ) and the Veterinary Specialty Center of Tucson (Tucson, AZ).		
326			
327	Funding		
328	This work was funded by the Valley Fever Center for Excellence Companion		
329	Care Fund, The University of Arizona, Tucson, AZ.		
330			
331	Conflicts of Interest		
332	One author (MK) is the owner of a veterinary hospital in Tucson that		
333	participated in this retrospective review. There are no other conflicts of interest to		
334	report.		
335			
336	References		
337	1. Graupmann-Kuzma A, Valentine BA, Shubitz LF, et al. Coccidioidomycosis in		
338	dogs and cats: a review. J Am Anim Hosp Assoc 2008; 44: 226-35.		

339	2.	Nguyen C, Barker BM, Hoover S, et al. Recent advances in our
340		understanding of the environmental, epidemiological, immunological, and
341		clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 2013; 26(3):
342		505-525.
343	3.	Litvintseva AP, Marsden-Haug N, Hurst S, et al. Valley fever: finding new
344		places for an old disease: Coccidioides immitis found in Washington State
345		soil associated with recent human infection. Clin Infect Dis 2015; 60(1): e1-3.
346	4.	Marsden-Haug N, Goldoft M, Ralston C, et al. Coccidioidomycosis acquired in
347		Washington State. Clin Infect Dis 2013; 56(6): 847-850.
348	5.	Simões DM, Dial SM, Coyner KS, et al. Retrospective analysis of cutaneous
349		lesions in 23 canine and 17 feline cases of coccidiodomycosis seen in
350		Arizona, USA (2009-2015). Vet Dermatol 2016; 27(5): 346-e87.
351	6.	Shubitz LF. Comparative aspects of coccidioidomycosis in animals and
352		humans. Ann N Y Acad Sci 2007; 1111: 395-403.
353	7.	Reed RE. Diagnosis of disseminated canine coccidioidomycosis. J Am Vet
354		Med Assoc 1956; 128(4): 196-201.
355	8.	Sykes JE. Coccidioidomycosis. In: Sykes JE (ed). Canine and Feline Infectious
356		Diseases. St. Louis, Missouri: Elsevier Sanders, 2014, pp 613-623.

357	9.	Shubitz LF, Dial SM. Coccidioidomycosis: a diagnostic challenge. Clin Tech
358		Small Anim Pract 2005; 20(4): 220-226.
359	10.	Johnson LR, Herrgesell EJ, Davidson AP, et al. Clinical, clinicopathologic,
360		and radiographic findings in dogs with coccidioidomycosis: 24 cases (1995-
361		2000). J Am Vet Med Assoc 2003; 222(4): 461-466.
362	11.	Greene RT, Troy GC. Coccidioidomycosis in 48 cats: a retrospective study
363		(1984-1993). J Vet Intern Med 1995; 9(2): 86-91.
364	12.	Reed RE, Hoge RS, Trautman RJ. Coccidioidomycosis in two cats. J Am Vet
365		Med Assoc 1973; 143(9): 953-956.
366	13.	Angell JA, Shively JN, Merideth RE, et al. Ocular coccidioidomycosis in a cat.
367		J Am Vet Med Assoc 1985; 187(2): 167-169.
368	14.	Tofflemire K, Betbeze C. Three cases of feline ocular coccidioidomycosis:
369		presentation, clinical features, diagonosis, and treatment. Vet Ophthalmol
370		2010; 13(3): 166-172.
371	15.	Wolf AM. Primary cutaneous coccidioidomycosis in a dog and a cat. J Am
372		Vet Med Assoc 1979; 174(5): 504-506.

373	16.	Shubitz LF, Butkiewicz CD, Dial SM, et al. Incidence of Coccidioides
374		infection among dogs residing in a region in which the organism is endemic.
375		J Am Vet Med Assoc 2005; 226(11): 1846-1850.
376	17.	Blondin N, Baumgardner DJ, Moore GE, et al. Blastomycosis in indoor cats:
377		suburban Chicago, Illinois, USA. Mycopathologia 2007; 163(2): 59-66.
378	18.	House right RA, Webb JL, Claus KN. Blastomycosis in an indoor-only cat. ${\cal J}$
379		Am Vet Med Assoc 2015; 247(4): 357-359.
380	19.	Trividi SR, Sykes JE, Cannon MS, et al. Clinical features and epidemiology of
381		crytptococcus in cats and dogs in California: 93 cases (1988 – 2010). J Am
382		Vet Med Assoc 2011; 239(3): 357-369.
383	20.	Smith KM, Strom AR, Gilmour MA, et al. Utility of antigen testing for the
384		diagnosis of ocular histoplasmosis in four cats: A case series and literature
385		review. J Feline Med Surg 2017; 19(10):1110-1118.
386	21.	Crabtree AC, Keith DG, Diamond HL. Relationship between radiographic
387		hilar lymphadenopathy and serologic titers for <i>Coccidioides</i> sp. in dogs in
388		an endemic region. Vet Radiol Ultrasound 2008; 49(6): 501-503.
389	22.	Millman TM, O'Brien TR, Suter PF, et al. Coccidioidomycosis in the dog: its
390		radiographic diagnosis. Vet Radiol 1979; 20: 50-65.

391	23.	Stockamp NW, Thompson GR. Coccidioidomycosis. Infect Dis Clin North Am
392	2016;	30(1): 229-246.
393	24.	Pappagianis D. Serologic studies in coccidioidomycosis. Semin Respir Infect
394		2001; 16(4): 242-250.
395	25.	Brown J, Benedict K, Park BJ, et al. Coccidioidomycosis: epidemiology. Clin
396		Epidemiol 2013; 5: 185-197.
397	26.	Davidson AP, Pappagianis D. Canine coccidioidomycosis: 1970 to 1993.
398		Proceedings of the 5 th International Conference on Coccidioidomycosis; 1994
399		Aug 24 – 27; Washington, D.C.: National Foundation for Infectious Diseases,
400		1996, pp 155-162.
401	27.	Goa KL, Barradell LB. Fluconazole. An update of its pharmacodynamic and
402		pharmacokinetic properties and therapeutic use in major superficial and
403		systemic mycoses in immunocompromised patients. Drugs 1995; 50(4): 658-
404		690.
405	28.	Hector RF. An overview of antifungal drugs and their use for treatment of
406		deep and superficial mycosis in animals. Clin Tech Small Anim Pract 2005;
407		20(4): 240-249.
408		

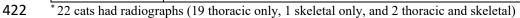
Arbona N, Butkiewicz CB, Shubitz LF, et al

410 Figure

- 411 Figure 3. Coronal section of thorax (A) and sagittal section of thoracic spine (B) of a SF
- 412 domestic shorthair with acute onset of hind limb paralysis. (A) The thoracic section
- 413 shows an enlarged mediastinal lymph node (LN) as well as a fungal granuloma (G) and
- 414 pulmonary infiltration in the right cranial lung lobe. (B) There is a contrast-enhancing
- 415 space occupying lesion of the spinal cord. Coccidioides was identified by and
- 416 the cat responded completely to oral fluconazole.

Table 1: Presenting clinical signs 417

n (%)
20 (39%)
8 (40%)
7 (35%)*
5 (25%) [*]
4 (9%)
14 (27%)
18 (35%)
11 (22%)
22 (43%)**
13 (59%)*
8 (36%)*


418

* These reflect the percentage of animals that presented with that category of clinical signs; ** One cat

419 with dematologic lesions did not have a description of the lesions provided in the record

421 Table 2: Radiographic abnormalities noted

	Radiographic Changes	n
	Hilar Lymphadenopathy	1
Single	Bronchial/Interstitial/Alveolar Pattern	4
Radiographic	Lobe Consolidation	1
Abnormality	Mass/Nodule	2
Noted	Pleural Effusion	2
	Osteomyelitis	1
	Hilar Lymphadenopathy & Lobe Consolidation	2
	Hilar Lymphadenopathy & Bronchial/Alveolar/Interstitial Pattern	2
	Hilar Lymphadenopathy, Lobe Consolidation, &	1
Multiple	Bronchial/Alveolar/Interstitial Pattern	
Radiographic	Bronchial/Interstitial/Alveolar Pattern & Lobe Consolidation	1
Abnormalities	Bronchial/Interstitial/Alveolar Pattern & Pleural Effusion	1
Noted	Pleural Effusion & Lobe Consolidation	2
	Lobe Consolidation, Mass/Nodule, & Osteomyelitis	1
	Bronchial/Interstitial/Alveolar Pattern & Osteomyelitis	1

423 Table 3: Serum chemistry and CBC abnormalities
--

n (%)
16 (53%)
12 (40%)
13 (43%)
7 (23%)

424 Table 4: Sites of Dissemination

Location	Confirmed (n=17)*	Suspected (n=14) [†]
Cutaneous/subcutaneous	7	12
Ocular	5	3
Pleural Effusion	1	0
Hepatic	2	0
Skeletal	2	2
Tongue	2	1
Extradural mass	1	0
Pericardium	1	0
Joint	1	0

Spleen	1	0
Lymph Node	1	0

425 ^{*}4 cats within this group had confirmed dissemination to multiple sites; [†]3 cats within

426 this group had suspected dissemination to multiple sites

428 Table 5: Antifungal Treatments

Initial	
Treatment	Additional Therapies
	none (n=40)*
Fluconazole	itraconazole (n=4)
(n=46)	itraconazole, terbinafine, amphotericin B, posaconazole (n=1)
	posaconazole, itraconazole (n=1)
	none (n=1)
Itraconazole	fluconazole (n=1)
(n=4)	fluconazole, amphotericin B, terbinafine (n=1)
	fluconazole, amphotericin B $(n=1)^{\dagger}$

*One cat in this group had amphotericin B discontinued after one dose due to rising

430 renal values; the cat was then maintained on fluconazole alone

431 [†]This cat was euthanized approximately one year after diagnosis due to worsening

432 disseminated disease