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ABSTRACT

The effective multipole decomposition approach is applied to study the optical features of the silicon metasurface
in the near-infrared. The spectral regions of perfect transmission and reflection have been analyzed using the
Cartesian multipole decomposition. It is shown that transmission peaks appear due to the mutual interaction of
multipole moments up to the third order, while reflection peaks are due to the dominant contribution of one of
the multipole moments. The results of this work can be broadly applied to design novel metasurfaces, sensors,
and optical filters.
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1. INTRODUCTION

Dielectric nanophotonics is the intensively studied area of modern science with high potential for device appli-
cations. Optical properties of dielectric nanostructures attract significant attention of scientific groups over the
world.1–4 Dielectric materials provide the opportunity to manipulate both electric and magnetic components of
light using the simple particle geometries. In other words, such sub-wavelength particles support the excitation
of strong electric and magnetic multipole resonances. These resonances can be used to control light scattering
by changing material, shape, and aspect ratio of nanoparticles.5,6 The mutual interaction between multipole
moments can be used in a wide range of applications such as nanoantennas,7,8 sensing,9–12 cloaking,13,14 solar
cell technology15 and functional metasurfaces.16,17 Moreover, the multipole decomposition approach has recently
been applied to analyze dielectric structures in the terahertz frequency range18 and even macroscopic objects
like the Great Pyramid.19

In this work, we study the periodic array of silicon nanocubes embedded in air. We study the optical properties
of the structure using a multipole decomposition approach and analyze the features of transmission and reflection
spectra. Obtained results can be used to design novel optical sensors and filters and multi-functional metasurfaces
for the near-infrared.
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Figure 1. The artistic representation of the studied system.

2. THEORETICAL BACKGROUND

Here we use the multipole decomposition approach reported in Ref.20 to study the cubic silicon metasurface in
near-infrared. The infinite two-dimensional (2D) array of nanocubes is placed in (xy) plane and illuminated with
a linearly polarized plane wave with x-polarization.

In this case, the electric field reflection r and transmission t coefficients of the array can be written as20
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where kd = k0
√
εd is the wavenumber in a surrounding medium (k0 is the wavenumber in vacuum), SL

is the area of a lattice unit cell (SL = D2 for the square lattice, where D is the lattice constant), ε0 is the
vacuum permittivity, εd is the permittivity of a surrounding medium, vd = 1/

√
µ0ε0εd is the speed of light in the

surrounding nonmagnetic medium, px and my are the x and y components of total electric (TED) and magnetic
dipole (MD) moments, respectively, Qxz, Myz and Oxzz are the corresponding components symmetrized and
traceless tensors of electric quadrupole (EQ), magnetic quadrupole (MQ), and electric octupole (EOC) moments,
respectively.21

The reflection and transmission coefficients are

R = |r|2, T = |t|2. (3)

Then the absorption coefficient A could be derived from the following expression A = 1−R− T .

In next section, we numerically prove that the multipole expressions for T and R obtained above are in
an excellent agreement with the direct numerical calculations of the transmission and reflection for periodic
dielectric metasurfaces.
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Figure 2. Spectra of the transmission T , reflection R, and absorption A coefficients of the metasurfaces composed of silicon
nanocubes of height H = 500 nm with period D = 800 nm
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Figure 3. Absolute values of the multipole contributions in the electric field reflection and transmission coefficients r and
t of the metasurfaces composed of silicon nanocubes of height H = 500 nm with period D = 800 nm

3. RESULTS AND DISCUSSION

Here we apply the multipole decomposition approach to study the optical properties of the metasurface in Fig.
1. The base edge of each nanocube is equal to H = 500 nm and the lattice constant is D = 800 nm.

Fig. 2 presents the transmission and reflection spectra of the metasurface in near-infrared. Note that ab-
sorption can be neglected due to transparency of silicon in the considered range. The direct calculations of
transmission and reflection parameters are in the excellent agreement with the results obtained with multi-
pole decomposition approach (Eq. 3). We note three wavelengths of the perfect transmission through the
metasurface(λ ≈ 1246 nm, λ ≈ 1494 nm and λ ≈ 2400 nm) and four wavelengths of the perfect reflection
appears(λ ≈ 1294 nm, λ ≈ 1444 nm, λ ≈ 1622 nm and λ ≈ 1844 nm). Fig. 3 presents the absolute values of
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Figure 4. Phases of the multipole terms in the amplitude reflection and transmission coefficients of the metasurface
composed of nanocubes of height H = 500 nm with period D = 800 nm

the multipole moment contributions to the electric field reflection and transmission coefficients r and t for the
considered metasurface. We use this multipole analysis together with the phases of multipole contributions (Fig.
4) to study the origins of optical properties of the metasurface.

The interesting case of perfect transmission can be seen at λ ≈ 1494 nm. The contributions of TED, MD, EQ,
and MQ moments in the r and t coefficients are approximately equal at this wavelength (Fig. 3). Moreover, the
phases of these contributions are also equal to each other (Fig. 4). Similar conditions provide homogeneous side
scattering for the single particle22,23 and so-called lattice invisibility effect for the infinite array.20 In turn, at
λ ≈ 1294 nm multipole contributions are not equal to each other; TED and MQ provide dominant contribution
at this wavelength. The phases of multipole contributions are equal as well as for λ ≈ 1494 nm (Fig. 4). At
λ ≈ 2400 nm usual Kerker conditions24,25 fulfillment leads to the perfect transmission through the metasurface.

As for the perfect reflection features of the studied metasurface, there are two sharp peaks at λ ≈ 1294 nm
and λ ≈ 1444 nm and the region of high reflection with two perfect reflection spectral points at λ ≈ 1622 nm
and λ ≈ 1844 nm (Fig. 3). Every peak is provided mainly by one multipole moment contribution: EQ for
λ ≈ 1622 nm, MQ for λ ≈ 1444 nm, TED for λ ≈ 1622 nm and MD for λ ≈ 1844 nm. It is worth noting that
for λ ≈ 1622 nm and λ ≈ 1844 nm phase difference between TED and MD moments is equal to π/2 (Fig. 4,
and it corresponds to the forward scattering suppression according to Kerker conditions.

4. CONCLUSIONS

In this work, we utilized the multipole decomposition approach to analyze the cubic silicon metasurface in the
near-infrared. We studied transmission and reflection features to explain their origins with multipole theory. It
has been shown that transmission peaks mainly provided due to the mutual interaction of different multipole
moments. In contradiction, reflection peaks appear due to the dominant contribution of TED, MD, EQ or MQ
moment.

Multipole decomposition of transmission and reflection spectra provides the useful tool for semi-analytical
analysis of arrays of non-spherical nanoparticles in near-infrared spectral range. Our results can be used to
design novel photonic devices, sensors, and optical applications.
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