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Abstract

The ferromagnetic Heisenberg spin-1⁄2 quantum spin chain describes a quantum spin system of spin-1⁄2 particles on a
one-dimensional lattice. In the thermodynamic limit, the spectral gap of this system closes at rate of O

(
n−2

)
. We

demonstrate this by proving an upper bound on the spectral gap using the variational principle and a lower bound
using the martingale method.

1. Introduction

Determining the energy of a physical system is an ubiquitous problem in physics, and especially
in quantum mechanics, where the possible energy values on are often discretized. Calculating the
ground and first excited energies are often of particular importance, especially in areas such as
molecular physics and thermodynamics. The gap between these two energies, and whether it remains
open or closes in certain limiting cases, will determine many fundamental principles of a system; for
example, systems with an open gap have correlation functions which decay exponentially [6, 11].

In a quantum spin chain, particles are fixed in space on the sites of the integer lattice Z. These
particles can not move and thus only interact through their spin. A particle of spin-s located at the
site x ∈ Z is described by the Hilbert space H{x} = C2s+1. For a finite subsystem Λ ⊂ Z, the total
state space is given by the tensor product of the on-site Hilbert spaces, namely

HΛ =
⊗
x∈Λ

Hx.

The algebra of observables A{x} at a site x ∈ Z is the set of all (2s + 1)-dimensional complex
matrices, A{x} = M2s+1(C). The algebra of observables for a finite subsystem Λ ⊂ Z is then given
by AΛ = ⊗x∈ΛA{x}. All observables corresponding to a measurable quantity in a physical system
are Hermitian; the possible values of a measurement are exactly the eigenvalues. One example of
an observable is the Hamiltonian H, a Hermitian matrix representing the total energy of a system.
The smallest eigenvalue of the Hamiltonian is the ground state energy, and the others are the excited
state energies. The gap between the ground state energy and the first excited state energy is called
the spectral gap.

In this thesis, we will calculate the spectral gap of a particular nearest neighbor quantum spin
system, called the ferromagnetic Heisenberg spin-1⁄2 model. After introducing this model, we will
calculate its spectral gap in two steps; first, by explicitly calculating an upper bound on the gap,
followed by proving a lower bound using a technique called the martingale method. By showing that
these bounds are of order O(n−2), we prove the gap must close at exactly this rate, by the squeeze
theorem.

2. The Ferromagnetic Heisenberg Spin-1⁄2 Model

In this section, we introduce the ferromagnetic Heisenberg spin-1⁄2 model. After describing the
basic mathematical construction, we give an expression for the Hamiltonian of the system in terms of
an operator which transposes the particles on the lattice. This expression is then used to characterize
the ground state space of the system as the set of all states which are symmetric under permutations.

2.1. The Hamiltonian. The ferromagnetic Heisenberg spin-1⁄2 model (abbreviated from now on
as the Heisenberg-1⁄2 model) describes a one-dimensional lattice of spin-1⁄2 particles which interact
with their nearest neighbors.

H1 H2 H3 Hn

Each particle x ∈ Z is described by a vector in H{x} = C2. A system of n particles is then
described by

H[1,n] =

n⊗
x=1

C2 = C2n .
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Let Si = 1
2σ

i, where σi is the ith Pauli spin matrix, given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.(2.1)

The 4 × 4 interaction of the ferromagnetic Heisenberg-1⁄2 model between with two neighboring
particles is given by

h = −
3∑

x=1

Si ⊗ Si +
1

4
1

= −1

4

(
3∑

x=1

σi ⊗ σi + 1

)

=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

(2.2)

where we have shifted by − 1
41 so that the minimum energy is zero.

In an n particle system, the interaction between particles x and x+ 1 is given by

hx,x+1 = 1⊗ . . .︸ ︷︷ ︸
x−1

⊗h⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−x

.

The Hamiltonian of the entire system is then given by

H[1,n] =

n−1∑
x=1

hx,x+1.

Theorem 2.1. The Hamiltonian of the ferromagnetic Heisenberg-1⁄2 model is gapless in the ther-
modynamic limit (i.e., n→ ∞). The gap closes at a rate of O(n−2) where n is the number of sites
of our lattice. More specifically,

1

4n2
≤ gap

(
H[1,n]

)
≤ π2n

4(n− 1)2(n+ 1)
.

In the rest of this section, we will demonstrate a useful construction of the Hamiltonian and the
ground state space using transposition operators. In Section 3, we will provide useful background
information on the group SU(2) and show that our model is SU(2)-invariant. In Section 4, we will
prove an upper bound on the gap by using the variational principle (see Theorem 4.2). Finally,
in Section 5, we will introduce the martingale method and apply it to our model to prove a lower
bound on the gap (see Theorem 5.6).

2.2. The ground state space. In order to calculate the ground state space, we will rewrite the
Hamiltonian in terms of a transposition operator and utilize properties of frustration-freeness, defined
below.

Definition 2.2. A nearest-neighbor quantum spin chain is frustration-free if
(a) hx,x+1 ≥ 0 ∀x = 1, . . . , n− 1, and
(b) ker(H[1,n]) 6= {0} for all n.

For a frustration-free model, the ground state space is given by the kernel of the Hamiltonian.
As a consequence, gap(H[1,n]) = λ1, where λ1 is the first excited energy of the Hamiltonian. We
will show that the ferromagnetic Heisenberg-1⁄2 model is frustration-free. To this end, the following
lemma will be useful.

Lemma 2.3. In a frustration-free model, ker(H[1,n]) =
⋂n−1
x=1 ker(hx,x+1).
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Proof. Assume that ψ ∈
⋂n−1
x=1 ker(hx,x+1). Then,

H[1,n]ψ =

(
n−1∑
x=1

hx,x+1

)
ψ

=

n−1∑
x=1

(hx,x+1ψ)

= 0.

Therefore, ker(H[1,n]) ⊇
⋂n−1
x=1 ker(hx,x+1).

Now assume ψ ∈ ker(H[1,n]) and consider,

0 =
〈
ψ
∣∣H[1,n]

∣∣ψ〉 = 〈ψ∣∣∣∣∣
n−1∑
x=1

hx,x+1

∣∣∣∣∣ψ
〉

=

n−1∑
x=1

〈ψ|hx,x+1|ψ〉 .

Let 1 ≤ x ≤ n− 1 be arbitrary. By Definition 2.2(a), 〈ψ|hx,x+1|ψ〉 = 0. Since hx,x+1 is self-adjoint,
by the spectral theorem [3, Chapter 8.6] it has a basis of eigenvectors e1, . . . , e2n with corresponding
non-negative eigenvalues λ1, . . . , λ2n . Let ψ =

∑2n

i=1 ciei. Then,

0 = 〈ψ|hx,x+1|ψ〉

=

〈
2n∑
i=1

ciei

∣∣∣∣∣hx,x+1

∣∣∣∣∣
2n∑
i=1

ciei

〉

=

〈
2n∑
i=1

ciei

∣∣∣∣∣
2n∑
i=1

ciλiei

〉

=

2n∑
i=1

λi|ci|2.

Therefore, either λi = 0 or ci = 0 for all i, and so

ψ =
∑
i s.t.
λi=0

ciei ∈ ker (hx,x+1) .

This holds for every x, so ψ ∈
⋂n−1
x=1 ker(hx,x+1). �

In order to show that the ferromagnetic Heisenberg-1⁄2 model is frustration-free, we must now
show that its kernel is non-empty. This is equivalent to the ground state space being the kernel
because hx,x+1 ≥ 0 by 2.2(a). We will do so by showing that the kernel is the set of all symmetric
vectors, which we define next.

A permutation σ ∈ Sn induces a permutation operator τσ : C2n → C2n given by

τσ

(
n⊗
x=1

ψx

)
=

n⊗
x=1

ψσ(x).(2.3)

We extend this definition to H[1,n] linearly. Note that the τ operators form a group under composi-
tion, where

τσ1
◦ τσ2

= τσ1◦σ2
, τ−1

σ = τσ−1 .(2.4)

We say that a vector ψ is symmetric if τσ(ψ) = ψ for every σ ∈ Sn.



4

For a transposition σ = (x x+ 1), we write τσ = τx,x+1 = 1⊗ · · · ⊗ τ ⊗ · · · ⊗ 1 where

τ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Now, we may rewrite h in terms of τ , using our prior calculation in (2.2):

h =
1

4



−1 0 0 0
0 1 −2 0
0 −2 1 0
0 0 0 −1

+ 1



=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


=

1

2
(1− τ).

Therefore, the Hamiltonian for a lattice with n sites is given by

H[1,n] =
1

2

n−1∑
x=1

(1− τx,x+1).

We are now ready to calculate the ground state space. This lemma not only completes our
justification for H[1,n] being frustration-free, but will also provide an easy characterization for vectors
in the ground state space, which we will need to use throughout our proofs for the upper and lower
bounds of the spectral gap.

Lemma 2.4. The ground state space of H[1,n], denoted G[1,n], is the set of symmetric vectors.

Proof. Assume ψ is symmetric. Then, ψ − τx,x+1ψ = 0 for all 1 ≤ x < n. Therefore,

H[1,n]ψ =
1

2

n−1∑
x=1

(1− τx,x+1)ψ = 0,

and the set of symmetric vectors is a subset of ker(H[1,n]). Thus, our model is frustration-free.
Assume ψ ∈ ker(H[1,n). By Lemma 2.3 and the previous step of this proof, H[1,n] is frustration-

free, so ψ ∈ ker(hx,x+1) for all 1 ≤ x < n. Therefore, ψ = τx,x+1ψ. Since {(1 2), . . . , (n− 1 n)} is a
generating set for Sn, by (2.4), ψ = τσψ for all σ ∈ Sn, so ψ is symmetric. �

3. Representations of SU(2)

In this section, we introduce the group of special unitary matrices of dimension 2, SU(2), and its
associated Lie algebra su(2). We characterize the representations of su(2) and show that a unique
representation (up to isomorphism) exists for each half-integer spin value. We then apply this to
our Heisenberg-1⁄2 model, demonstrating that it is SU(2) symmetric. Schur’s Lemma then gives a
characterization of the ground state space in terms of the representations of su(2), which will be
used in Section 5 to prove a lower bound on the spectral gap by determining in which irreducible
representation the ground state space lies.
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3.1. Irreducible representations. The group SU(2) is the set of all special unitary matrices of
dimension two [3, Chapter 9.6]:

SU(2) = {A ∈ GL2(C) | A∗ = A−1}.

The corresponding Lie algebra su(2) (over R) is the space of all traceless, self-adjoint matrices

su(2) = {A ∈ GL2(C) | A∗ = A,Tr(A) = 0},

where the Lie algebra bracket is given by the usual commutator: [A,B] = AB −BA.
To find a basis of su(2), we start with the requirement that a11 = −a22, and then impose self-

adjointness:

A∗ = A =⇒
[
a11 a12
a21 −a11

]
=

[
a11 a21
a12 −a11

]
=⇒ A =

[
a c+ di

c− di −a

]
for a, c, d ∈ R. Therefore, su(2) = span{S1, S2, S3} over R where S1, S2, S3 are given by (2.1).

We consider complex su(2), for which a second basis is given by {S3, S+, S−} (where S+ = S1+iS2,
and S− = S1 − iS2), which satisfies the relations

[S3, S+] = S+, [S3, S−] = −S−, [S+, S−] = 2S3.(3.1)

Lemma 3.1. If v is an eigenvector of S3 with eigenvalue λ, then S+v and S−v are either zero or
eigenvectors of S3 with eigenvalues λ+ 1 and λ− 1, respectively.

Proof. Let v be an eigenvector of S3 with eigenvalue λ. Then,

S3S+v = S+S3v + [S3, S+]v

= λS+v + S+v

= (λ+ 1)S+v. �

A finite-dimensional group representation of a groupG is a group homomorphism ρ : G→ GLn(C).
The value n is the dimension of the representation. An invariant subspace is a subspace W ⊂ V
such that, for all g ∈ G, ρgW ⊂W . If ρ is a representation on V , and W has no invariant subspace,
then ρ is called an irreducible representation. Otherwise, the representation is reducible, and there
are invariant subspaces V1, . . . , Vn with corresponding irreducible representations ρi = ρ|Vi

such
that V = V1 ⊕ · · · ⊕ Vn, and ρ = ρ1 ⊕ · · · ⊕ ρn. A map ρ : A→ GL(V ) is a representation of the Lie
algebra A if ρ([C,B]) = [ρ(C), ρ(B)] for all B,C ∈ A. Similar to group representations, a reducible
Lie algebra representation can be decomposed into a sum of irreducible representations acting on
invariant subspaces.

Lemma 3.2. There is a unique (up to isomorphism) n-dimensional representation of su(2) for each
non-negative integer n.

We denote the n-dimensional irreducible representations of su(2) asD(s) for 1⁄2-integers s = 0, 1/2, . . .,
where D(s) has dimension 2s+1. We denote the associated n = 2s+1 dimensional vector space on
which D(s) acts by V (s).

Proof of Lemma 3.2. First, a zero dimensional representation is the trivial representation which
maps all elements of su(2) to the identity. We will now show a representation exists for all positive
integers n. Let s = 1

2 (n− 1), and let v1, . . . , vn be the standard basis for Cn. Relative to this basis,
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let

S3 =


s

s− 1
. . .

1− s
−s



S+ =


0 a1

0 a2
. . .
0 an−1

0



S− =


0
a1 0

a2 0
. . .

an−1 0


where am =

√
s(s+ 1)− (s−m)(s−m+ 1). These matrices then satisfy the commutation re-

lationships for su(2) given by (3.1). Therefore, they generate a representation for each integer
dimension.

Furthermore, this representation must be irreducible because the basis can be obtained by re-
peated applications of S+ and S− to an arbitrary (non-zero) vector: Let v = a1v1 + · · ·+ anvn 6= 0.
Let ak be the last non-zero coefficient (i.e., ai = 0 for all k < i ≤ n). Now, 1/a′1(S

+)kv = v1 for
some a′ 6= 0. Finally, the remaining basis vectors v2, . . . , vn may be obtained by vi = 1/a′i(S

−)i−1v1
for some a′i 6= 0. Obtaining the basis vectors from any non-zero vector in this way is only possible
in an irreducible representation.

We now show that any two irreducible representations of su(2) of the same dimension must be iso-
morphic. Each irreducible representation must have the same n distinct eigenvalues of S3. A choice
of representation then corresponds to a choice of basis, each basis vector being an eigenvalue of S3.
Let V and V ′ be two such bases, corresponding to representations ρ and ρ′. Then, let T : V → V ′

represent a change of basis such that, for each eigenvector v ∈ V of S3, T (v) is an eigenvector of S3

with the same eigenvalue. Now, T−1ρT = ρ′, so the representations are isomorphic. �

Importantly, the tensor product of two irreducible representations may be rewritten relatively
simply as the direct product of irreducible representations.

Theorem 3.3 (Clebsch-Gordon Series). For two irreducible representations D(s), D(t) of su(2),

D(s) ⊗D(t) = D(s+t) ⊕D(s+1−1) ⊕ · · · ⊕D(|s−t|).

The next theorem demonstrates the usefulness of considering the Hamiltonian in terms of the
irreducible representations of su(2).

Theorem 3.4 (Schur’s Lemma [3, Theorem 10.7.6]).
(a) Let ρ and ρ′ be irreducible representations of G on vector spaces V and V ′, respectively,

and let T : V ′ → V be a G-invariant transformation. Then, either T is an isomorphism,
or T = 0.

(b) Let ρ be an irreducible representation of G on a vector space V , and let T : V → V be
a G-invariant linear operator (i.e., ∀g ∈ G, T ◦ ρ′g = ρg ◦ T ). Then T is multiplication by a
scalar: T = cI.
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There is an equivalent theorem for Lie algebra representations.
On an SU(2)-invariant Hamiltonian, the second part of Schur’s Lemma guarantees that any vector

lying entirely inside an irreducible representation is an eigenvector for the Hamiltonian. Therefore,
the decomposition of V into the su(2)-invariant subspaces simultaneously diagonalizes an SU(2)-
invariant Hamiltonian.

3.2. Application to the ferromagnetic Heisenberg-1⁄2 model. We will now consider how SU(2)
may be applied to the ferromagnetic Heisenberg-1⁄2 model. These results will be particularly useful
in Section 5, where we will construct a state which bounds the spectral gap from above by consid-
ering states which must lie inside a particular irreducible representation. We now show that the
Hamiltonian in the ferromagnetic Heisenberg-1⁄2 model is SU(2)-invariant, and that Schur’s Lemma
may therefore be applied.

Proposition 3.5. The Hamiltonian of the ferromagnetic Heisenberg-1⁄2 model is SU(2) symmetric.

Proof. Let {σ1, σ2, σ3} be the basis for SU(2) given in (2.1), and let h be as given in (2.2).
Then, [h, σi ⊗ σi] = 0 and [h, σi ⊗ 1 + 1 ⊗ σi] = 0 for each of i = 1, 2, 3. Therefore, h is SU(2)
and su(2) symmetric. �

The following lemma characterizes one of the irreducible representations, and therefore one of the
eigenspaces. We will later see that this eigenspace corresponds to the first excited state.

Lemma 3.6. The highest weight irreducible representation of (V ( 1
2 ))⊗n is the space of symmetric

vectors.

Proof. We generate a basis for the highest weight irreducible representation as in Lemma 3.2. The
vector corresponding to the largest eigenvector of S3 will be in the highest weight irreducible repre-
sentation; in this case, ψ0 = |↑ . . . ↑〉. This vector is symmetric. In the representation (D( 1

2 ))⊗n,

S− =

n∑
k=0

(12)
⊗k ⊗ S−

1/2 ⊗ (12)
⊗(n−k−1)

where
S−

1/2 =

[
0 0
1 0

]
.

Let σ ∈ Sn. Then,

τσ(S
−) =

n∑
k=0

τσ

(
(12)

⊗k ⊗ S−
1/2 ⊗ (12)

⊗(n−k−1)
)

=

n∑
k=0

(12)
⊗σ(k) ⊗ S−

1/2 ⊗ (12)
⊗(n−σ(k)−1)

= S−.

Therefore, S− is symmetric. A symmetric operator applied to a symmetric vector will yield a
symmetric vector; therefore, ψi+1 = S−ψi is symmetric, so V (n/2) ⊆ G[1,n].

By induction, all of the basis vectors are symmetric and therefore in the kernel; therefore, the
highest weight irreducible representation is in the kernel. All that remains to show is that every
symmetric vector is in the highest weight irreducible representation. Note that there are n + 1
linearly independent symmetric vectors on n sites. This is the same as the dimension of the highest
weight irreducible representation, V (n/2), so V (n/2) = G[1,n]. �

4. Upper Bound on the Spectral Gap

In this section, we prove an upper bound on the spectral gap of O(n−2) for the ferromagnetic
Heisenberg-1⁄2 model. We first introduce the variational principle, a technique for calculating ener-
gies, and then apply this technique to our model.
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4.1. The variational principle. The variational principle can be used to establish an upper bound
on the lowest non-zero eigenvalue of linear operators. When applied to a frustration-free quantum
system, it gives an upper bound for the spectral gap above the ground state.

Theorem 4.1 (Variational Principle). Let H ∈ Mn(C) be an n × n Hermitian matrix with spec-
trum λ0 < λ1 ≤ . . . ≤ λm. Denote the ground state of H by G = ker(H − λ0I). Then,

λ1 = inf
ψ∈Cn

ψ⊥G

〈ψ|H|ψ〉
‖ψ‖2

where λ1 is the second smallest (distinct) eigenvalue of H.

Proof. By the spectral theorem, let {e1, . . . , en} be an orthonormal basis for Cn. By relabeling,
let e1, . . . , em, em+1, . . . , en have eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λm, 0, . . . , 0. Then, for any ψ ∈ G⊥,

ψ = 〈e1|ψ1〉 |e1〉+ · · ·+ 〈em|ψm〉 |em〉 .
When applied to H,

H |ψ〉 = λ1 〈e1|ψ1〉 |e1〉+ · · ·+ λm 〈em|ψm〉 |em〉 .
Left-multiplying by 〈ψ| = 〈e1| 〈e1|ψ1〉+ · · ·+ 〈em| 〈em|ψm〉 yields

〈ψ|H|ψ〉 = λ1|〈e1|ψ〉|2 + · · ·+ λm|〈em|ψ〉|2

≥ λ1

(
|〈e1|ψ〉|2 + · · ·+ |〈em|ψ〉|2

)
= λ1 ‖ψ‖2 .

Therefore,

λ1 ≤ inf
ψ⊥G
ψ 6=0

〈ψ|H|ψ〉
‖ψ‖2

.

Let ψ be in the eigenspace corresponding to eigenvalue λ1. Since H is Hermitian, ψ ⊥ G. Then,
〈ψ|H|ψ〉
‖ψ‖2

=
λ1 〈ψ|ψ〉
‖ψ‖2

= λ1.

Therefore, λ1 is the infimum. �

4.2. Application to the ferromagnetic Heisenberg-1⁄2 model. In this section, we apply the
variational principle we introduced in Section 4.1 to prove an upper bound on the first excited energy
of the ferromagnetic Heisenberg-1⁄2 model. To apply this method, we need to consider vectors that are
orthogonal to the ground state space. We will begin by establishing a criterion using the permutation
operators introduced in (2.3) for determining if a vector ψ belongs to the orthogonal complement of
the ground state space. We will define a variational vector that satisfies this criterion, which belongs
to the class of so-called one-particle states, defined below. In Lemma 4.5 we will prove an upper
bound on the expected energy of any one particle state, that we will apply to our variational vector
to prove the main result, which we now state.

Theorem 4.2 (Upper bound on spectral gap). Let λ1 be the first excited energy of H[1,n]. Then,

λ1 ≤ π2n

4(n− 1)2(n+ 1)
.

In Lemma 4.4 we establish a criteria for determining if a vector is orthogonal to the ground state
space. To state this result, recall our definition of a permutation operator given by (2.3),

τσ

(
n⊗
i=1

ψi

)
=

n⊗
i=1

ψσ(i).

The next proposition demonstrates that the permutation operators are unitary.
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Proposition 4.3. For all σ ∈ Sn, τσ−1 = τ∗σ . Namely, τσ is unitary.

Proof. Let σ ∈ Sn. Since τσ only permutes the vectors of the standard orthonormal basis of C2n

without changing the magnitude of a vector, 〈τσψ|τσψ〉 = 〈ψ|ψ〉 for all ψ ∈ C2n . But, by the
definition of an adjoint, we also have that 〈ψ|ψ〉 = 〈ψ|τ∗στσψ〉. Therefore, τ∗σ ◦ τσ = 1. A similar
calculation shows that τσ ◦ τ∗σ = 1. So, τ∗σ = τ−1

σ = τσ−1 by (2.4). Therefore, τσ is unitary. �

We can now state a sufficient condition for being in an excited state of the Hamiltonian in terms
of the permutation operator.

Lemma 4.4. Let ψ ∈ C2n . If there is a σ ∈ Sn such that τσψ = −ψ, then ψ ⊥ G.

Proof. Let ψ ∈ C2n and ϕ ∈ G. Assume that there is a σ ∈ Sn such that τσψ = −ψ. Then, by
Lemma 4.3,

〈ψ|ϕ〉 = 〈ψ|τσ−1ϕ〉
= 〈τσψ|ϕ〉
= 〈−ψ|ϕ〉
= −〈ψ|ϕ〉 .

Therefore, 〈ψ|ϕ〉 = −〈ψ|ϕ〉 = 0. Since ψ and ϕ are orthogonal, ψ ⊥ G. �

We define a one particle state to be a linear combination of vectors of the form |x〉 = |↑ . . . ↑↓↑ . . . ↑〉
with the down spin in the xth position. We will begin by deriving a general expression for

〈
ψ
∣∣H[1,n]

∣∣ψ〉
for one particle states by using the permutation operator. Then, we will choose an excited state,
apply Lemma 4.4 to show that it is perpendicular to the ground state, and apply the variational
principle to establish an upper bound on the spectral gap.

For a general one-particle state, the expected energy can be calculated exactly. This is the content
of the next lemma.

Lemma 4.5. Let ψ =
∑n
x=1 cx |x〉 be a one-particle state. Then,〈

ψ
∣∣H[1,n]

∣∣ψ〉 = n∑
x=1

|cx − cx+1|2.

Proof. Let ψ =
∑n
x=1 cx |x〉. Consider the energy of a one-particle state,〈

ψ
∣∣H[1,n]

∣∣ψ〉 = 〈ψ∣∣∣∣∣
n−1∑
x=1

(1− τx,x+1)

∣∣∣∣∣ψ
〉

= (n− 1) ‖ψ‖2 −
n−1∑
x=1

〈ψ|τx,x+1ψ〉 .

When |ψ〉 is a one-particle state, we may expand |ψ〉 =
∑n
x=1 cx |x〉,

n−1∑
x=1

〈ψ|τx,x+1ψ〉 =
n−1∑
x=1

n∑
y=1

n∑
z=1

cycz 〈y|τx,x+1z〉 .

Now, 〈y|τx,x+1z〉 = δy,τxz where δ·,· is the Kronecker delta. Note that y = τx,x+1z for all possi-
ble x, y, z if and only if one of the following is true:

(1) y = x+ 1, z = x,
(2) y = x, z = x+ 1,
(3) y = z and y 6= x, x+ 1.

Therefore, for any fixed 1 ≤ x ≤ n− 1 and 1 ≤ y ≤ n,
n∑
z=1

cycz 〈y|τx,x+1z〉 = |cy|2(1− δy,x+1 − δx,y) + cycy−1δy,x+1 + cycy+1δx,y.
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We will now sum over x and y for each term. Taking into account that
∑n
y=1 |cy|

2
= ‖ψ‖2,

n−1∑
x=1

n∑
y=1

|cy|2(1− δy,x+1 − δx,y) =

n−1∑
x=1

[(
n∑
y=1

|cy|2
)

− |cx|2 − |cx+1|2
]

= (n− 1) ‖ψ‖2 −
n−1∑
x=1

(
|cx|2 +

∣∣c2x+1

∣∣) .
Additionally,

n−1∑
x=1

n∑
y=1

cycy−1δy,x+1 =

n−1∑
x=1

cx+1cx,

n−1∑
x=1

n∑
y=1

cycy+1δx,y =

n−1∑
x=1

cxcx+1.

Combining these summations, we obtain

〈
ψ
∣∣H[1,n]

∣∣ψ〉 = (n− 1) ‖ψ‖2 +
n−1∑
x=1

(
|cx|2 + |cx+1|2 − ‖ψ‖2 − cxcx+1 − cxcx+1

)
=
n−1∑
x=1

(
|cx|2 − cxcx+1 − cxcx+1 + |cx+1|2

)
=

n−1∑
x=1

|cx − cx+1|2. �

Proof of Theorem 4.2. We will now prove this section’s main theorem by constructing a one-particle
state perpendicular to the ground state with energy decaying at a rate of n−2. We make the ansatz

cx = cos

(
(x− 1)π

n− 1

)
.

We first show that this vector is perpendicular to the ground states using Lemma 4.4. From our
definition of cx, cx = −cx−n+1. Let

σ =

bn/2c∏
x=1

(x (n− x+ 1))

where there is no ambiguity because the above transpositions mutually commute. By this construc-
tion, τσ |x〉 = |n− x+ 1〉 for all 1 ≤ x ≤ n, so

τσψ =

n∑
x=1

cx |x〉

= −
n∑
x=1

−cx−n+1 |n− x+ 1〉

= −ψ.

Thus, by Lemma 4.4, ψ ⊥ G. So, by the variational principle,

λ1 ≤
〈
ψ1

∣∣H[1,n]

∣∣ψ1

〉
‖ψ1‖2

.
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We first calculate the magnitude of ψ, namely,

‖ψ‖2 =

n∑
x=1

cos2
(
(x− 1)π

n− 1

)

=

n∑
x=1

[
1

2
+

1

2
cos

(
2(x− 1)π

n− 1

)]

=
n

2
+

1

2

[
1 +

n−1∑
x=1

cos

(
2xπ

n− 1

)]
.

Using the trigonometric identity

N∑
k=1

cos(kθ) = −1

2
+

sin
(
(N + 1

2 )θ
)

2 sin
(
θ
2

)
we can simplify ‖ψ‖2 as

‖ψ‖2 =
n

2
+

1

2

1− 1

2
+

sin
(

(n− 1
2 )2π

n−1

)
2 sin

(
π
n−1

)


=
n

2
+

1

2

1
2
+

sin
(
2π + π

n−1

)
2 sin

(
π
n−1

)


=
n

2
+

1

2
.

Finally, we calculate the energy of this ansatz. Using sin θ < θ for θ > 0 and the trigonometric
identity

cos θ − cosφ = −2 sin

(
θ + φ

2

)
sin

(
θ − φ

2

)
,

Lemma 4.5 shows

〈
ψ
∣∣H[1,n]

∣∣ψ〉 = n∑
x=1

|cx − cx+1|2 =

n∑
x=1

∣∣∣∣cos( (x− 1)π

n− 1

)
− cos

(
xπ

n− 1

)∣∣∣∣2
=

n∑
x=1

∣∣∣∣2 sin( (2x− 1)π

2(n− 1)

)
sin

(
π

2(n− 1)

)∣∣∣∣2
= 4 sin2

(
π

2(n− 1)

) n∑
x=1

sin2
(

(2x− 1)

2(n− 1)π

)
≤ 4 sin2

(
π

2(n− 1)

)
n

< 4

(
π

2(n− 1)

)2

n

=
π2n

(n− 1)2
.
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Therefore, by Theorem 4.1,

λ1 ≤
〈
ψ
∣∣H[1,n]

∣∣ψ〉
‖ψ‖2

≤ π2n

4(n− 1)2(n+ 1)
. �

5. Lower Bound on the Spectral Gap

In this section, we calculate a lower bound on the spectral gap of the Heisenberg-1⁄2 model of
order O(n−2), which is the same order as found in Section 4. To do this, we begin by introducing
the martingale method in general, and then applying this method to our model specifically.

5.1. The martingale method. We consider a frustration-free, translational invariant (i.e., shift-
ing the lattice does not change the observables) quantum spin system with Hamiltonian acting
on H[1,L] = C2n given by

H[1,L] =

L−1∑
x=1

hx,x+1.

Recall that by Lemma 2.3,

ker(H[1,L]) =

L−1⋂
x=1

ker(hx,x+1).

For any Λ ⊂ [1, L], define GΛ to be the orthogonal projection onto GΛ := ker(HΛ), where we use
the convention G{x} = 1. A consequence of frustration-freeness is the following:

Proposition 5.1.
(a) If Λ1 ⊂ Λ2, then GΛ1

GΛ2
= GΛ2

GΛ1
= GΛ2

.
(b) If Λ1 ∩ Λ2 = ∅, then GΛ1

GΛ2
= GΛ2

GΛ1
.

Proof. By Lemma 2.3,

Im(GΛ1
) =

⋂
{x,x+1}⊆Λ1

ker(hx,x+1),

Im(GΛ2
) =

⋂
{x,x+1}⊆Λ2

ker(hx,x+1).

Assume Λ1 ⊂ Λ2. Then,
⋂

{x,x+1}⊆Λ2
ker(hx,x+1) ⊆

⋂
{x,x+1}⊆Λ1

ker(hx,x+1), so that, by defini-
tion, Im(GΛ2

) ⊆ Im(GΛ1
).

Let {e1, . . . , em} be an orthogonal basis for Im(GΛ2
), and by the basis extension theorem, ex-

tend this to orthogonal bases {e1, . . . , en} and {e1, . . . , ep} for Im(GΛ1
) and H[1,L], respectively

(p ≥ n ≥ m). Let |ψ〉 =
∑p
i=1 ciei be arbitrary, and consider

GΛ2
GΛ1

|ψ〉 = GΛ2

∣∣∣∣∣
n∑
i=1

ciei

〉

=

m∑
i=1

ciei

= GΛ2
|ψ〉 .
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Similarly,

GΛ1GΛ2 |ψ〉 = GΛ1

∣∣∣∣∣
n∑
i=1

ciei

〉

=

m∑
i=1

ciei

= GΛ2 |ψ〉 .

Therefore, GΛ1
GΛ2

= GΛ2
GΛ1

as claimed.
Assume that Λ1∩Λ2 = ∅. Further assume, without loss of generality, that Λ1 precedes Λ2. Then,

for some orthonormal projections P ∈ AΛ1
and Q ∈ AΛ2

, we may write

GΛ1
= P ⊗ 1Λ2

⊗ 1Λ\(Λ1∪Λ2),

GΛ2
= 1Λ1

⊗Q⊗ 1Λ\(Λ1∪Λ2),

GΛ1
GΛ2

= GΛ2
GΛ1

= P ⊗Q⊗ 1Λ\(Λ1∪Λ2). �

Next, we define operators En (1 ≤ n ≤ L) on H[1,L] as

En =


1−G[1,2] n = 1

G[1,n] −G[1,n+1] 1 < n < L

G[1,L] n = L.

(5.1)

Immediately from this definition, En forms a resolution of the identity:
L∑
n=1

En = 1.(5.2)

We show that the set {En | 1 ≤ n ≤ L} is a mutually orthogonal family of orthogonal projections,
that is,

E∗
n = En, EnEm = δn,mEm.(5.3)

First, note that En is the sum of orthogonal projections. Orthogonal projections are self-adjoint,
so En is also self-adjoint, i.e., E∗

n = En. Consider EnEm for 1 ≤ n,m ≤ L. Without loss of
generality, assume n ≤ m. Then, by Proposition 5.1(a), we have

EnEm =
(
G[1,n] −G[1,n+1]

) (
G[1,m] −G[1,m+1]

)
= G[1,n]G[1,m] −G[1,n]G[1,m+1] −G[1,n+1]G[1,m] +G[1,n+1]G[1,m+1]

= G[1,m] −G[1,m+1] − (1− δn,m)G[1,m] +G[1,m+1]

= δn,mEm.

A similar calculation shows that (5.3) holds if m < n.
For the martingale method, we will need a bound of the spectral gap of a single interaction

term hx,x+1.

Proposition 5.2. Let γ be the smallest non-zero eigenvalue of hx,x+1. Then,

hx,x+1 ≥ γ(1−G[x,x+1]).

Proof. Recall that hx,x+1 ≥ 0 because our model is frustration-free. Since the image of a map is
orthogonal to the kernel of the map,

Im(hx,x+1)
⊥ = Im(G[x,x+1]).

Therefore, 1−G[x,x+1] is the orthogonal projection onto the image of hx,x+1.
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By the spectral theorem, there exists non-negative eigenvalues λ1, . . . , λn and an orthonormal
basis {e1, . . . , en} such that

hx,x+1 |ψ〉 =
n∑
i=1

λi 〈ei|ψ〉 ei.

Furthermore, the elements ei corresponding to non-negative eigenvalues form an orthogonal basis
for the image of h[x,x+1], and thus for the image of 1−G[x,x+1]. Therefore,

〈ψ|hx,x+1|ψ〉 =
n∑
i=1

λi 〈ei|ψ〉

≥ γ

n∑
i=1
λi 6=0

〈ei|ψ〉

= γ
〈
ψ
∣∣1−G[x,x+1]

∣∣ψ〉 .
Therefore, hx,x+1 ≥ γ(1−G[x,x+1]). �

The next assumption is key for the martingale method. We will show that it is satisfied by the
ferromagnetic Heisenberg-1⁄2 model.

Assumption 5.3. There exists a constant ε, 0 ≤ ε < 1√
2
, such that, for all 1 ≤ n ≤ L− 1,

EnG[n,n+1]En ≤ ε2En.(5.4)
Equivalently, ∥∥G[n,n+1]En

∥∥ ≤ ε.(5.5)

That the above two expressions are equivalent can be seen by the following equivalences:∥∥G[n,n+1]En
∥∥ ≤ ε⇐⇒

∥∥G[n,n+1]Enψ
∥∥2 ≤ ε2 ‖ψ‖2

⇐⇒
〈
ψ
∣∣∣EnG2

[n,n+1]Enψ
〉
≤ ε2 〈ψ|ψ〉

⇐⇒ EnG[n,n+1]En ≤ ε2En,

where the final equivalence follows from (5.3).
Given Assumption 5.3 holds, we can prove a lower bound for the spectral gap of H[1,L].

Theorem 5.4 (Martingale method). Let λ1 be the lowest non-zero eigenvalue of the translation
invariant, frustration-free Hamiltonian H[1,L]. Then, the following estimate holds under Assump-
tion 5.3:

λ1 ≥ γ(1−
√
2ε)2.

The proof of this theorem will rely on the following inequality.

Proposition 5.5. For any φ1, φ2 ∈ Cn and c > 0,

|〈φ1|φ2〉| ≤
c

2
‖φ1‖+

1

2c
‖φ2‖ .

Proof. Consider,

0 ≤
(√

c ‖φ1‖ −
1√

c ‖φ2‖

)2

= c ‖φ1‖2 − 2 ‖φ1‖ ‖φ2‖+
1

c
‖φ2‖2

=
c

2
‖φ1‖2 − ‖φ1‖ ‖φ2‖+

1

2c
‖φ2‖2 .
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So, ‖φ1‖ ‖φ2‖ ≤ c
2 ‖φ1‖

2
+ 1

2c ‖φ2‖
2. Invoking the Cauchy-Swartz inequality |〈φ1|φ2〉| ≤ ‖φ1‖ ‖φ2‖

gives

|〈φ1|φ2〉| ≤
c

2
‖φ1‖+

1

2c
‖φ2‖ . �

Proof of Theorem 5.4. Let ψ ⊥ G[1,L]. Then, G[1,L]ψ = ELψ = 0; by plugging in the resolution of
the identity (5.2) and using the mutual orthogonality of En (5.1) and (5.3) we find

‖ψ‖2 =

〈
ψ

∣∣∣∣∣
L∑
n=1

En

∣∣∣∣∣ψ
〉

=

L−1∑
n=1

〈ψ|En|ψ〉 .(5.6)

Moreover,
〈ψ|En|ψ〉 =

〈
ψ
∣∣(1−G[n,n+1])Enψ

〉
+
〈
ψ
∣∣G[n,n+1]Enψ

〉
.

By introducing another resolution of the identity and using Proposition 5.1,

〈
ψ
∣∣G[n,n+1]En

∣∣ψ〉 = 〈ψ∣∣∣∣∣
L−1∑
m=1

EmG[n,n+1]Enψ

〉
=
〈
ψ
∣∣(En−1 + En)G[n,n+1]Enψ

〉
,(5.7)

where En−1 is absent for n = 1. The final line follows by observing that, if m ≤ n − 2, then Em
and G[n,n+1] commute by Proposition 5.1(a), and if m ≥ n + 1, then they commute by Proposi-
tion 5.1(b). In either case, EmG[n,n+1]En = G[n,n+1]EmEn = 0 by (5.3).

Invoking Proposition 5.5, for any constants c1, c2 > 0, (5.7) becomes

‖Enψ‖2 ≤ 1

2c1

〈
ψ
∣∣ (1−G[n,n+1]

)
ψ
〉
+
c1
2
〈ψ|Enψ〉

+
1

2c2

〈
ψ
∣∣EnG[n,n+1]Enψ

〉
+
c2
2

〈
ψ
∣∣(En−1 + En)

2ψ
〉
.(5.8)

By Proposition 5.2, the first term of (5.8) can be estimated by〈
ψ
∣∣ (1−G[n,n+1]

)
ψ
〉
≤ 1

γ
〈ψ|hn,n+1ψ〉 ,

and by (5.2), the third term of (5.8) can be estimated by〈
ψ
∣∣EnG[n,n+1]Enψ

〉
≤ ε2En.

Plugging these estimates back into (5.8),(
2− c1 −

ε2

c2

)
‖Enψ‖2 − c2 ‖(En−1 + En)ψ‖2 ≤ 1

c1γ
〈ψ|hn,n+1ψ〉 .(5.9)

Note that ‖(En−1 + En)ψ‖2 = ‖En−1ψ‖2 + ‖Enψ‖2 since En−1, En are mutually orthogonal.
Now, by (5.6),

L−1∑
n=1

(
2− c1 −

ε2

c2

)
‖Enψ‖2 =

(
2− c1 −

ε2

c2

)
‖ψ‖2
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and
L−1∑
n=1

c2 ‖(En−1 + En)ψ‖2 = c2

L−1∑
n=1

(‖En−1ψ‖2 + ‖Enψ‖2)

= c2

(
‖ψ‖2 +

L−2∑
n=1

‖Enψ‖2
)

≤ 2c2 ‖ψ‖2 .

Therefore, summing (5.9) over n yields

(2− c1 −
ε2

c2
− 2c2) ‖ψ‖2 ≤ 1

c1γ

〈
ψ
∣∣H[1,L]ψ

〉
.

Recall that ψ was chosen to be in the eigenspace corresponding to the eigenvalue λ1. There-
fore, λ1 ‖ψ‖2 =

〈
ψ
∣∣H[1,L]ψ

〉
, and we obtain the inequality

λ1 ‖ψ‖2 ≥ γc1

(
2− c1 −

ε2

c2
− 2c2

)
‖ψ‖2 .

We are interested in optimizing the lower bound λ1. To do so, we must maximize

f(c1, c2) = c1

(
2− c1 −

ε2

c2
− 2c2

)
.

Solving fc1(c1, c2) = fc2(c1, c2) = 0 produces c1 = 1−
√
2ε and c2 = ε/

√
2.

Finally, by plugging in these values of c1 and c2, we find

c1

(
2− c1 −

ε2

c2
− 2c2

)
= (1−

√
2ε)2.

Therefore,
λ1 ≥ γ(1−

√
2ε)2. �

5.2. Application to the ferromagnetic Heisenberg-1⁄2 model. We are now ready to apply
the martingale method to the ferromagnetic Heisenberg-1⁄2 model to obtain a lower bound on the
spectral gap.

Theorem 5.6. The spectral gap of the Heisenberg-1⁄2 Hamiltonian H[1,L] closes at a rate bounded
below by O(n−2). Specifically,

gap(H[1,n]) ≥
1

4n2
.

In order to invoke Theorem 5.4, we must show that the Heisenberg-1⁄2 model satisfies Assump-
tion 5.3. In order to do so, we must calculate the value

ε = sup
ψ 6=0

∥∥G[n,n+1]En
∥∥

‖ψ‖
.(5.10)

To do so, we will use the following lemma.

Lemma 5.7. Let A ∈M2n+1(C). Then,

sup
ψ 6=0

‖AEnψ‖2

‖ψ‖2
= sup
ψ∈G[1,n]∩G⊥

[1,n+1]

ψ 6=0

‖Aψ‖2

‖ψ‖2
.
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Proof. Note that En = G[1,n] − G[1,n+1] = G[1,n](1 − G[1,n+1]) by Proposition 5.1(a). We will rely
on the fact that Enψ = ψ if and only if ψ ∈ G[1,n] ∩ G⊥

[1,n+1]. To demonstrate this, first assume
that Enψ = ψ. Then, since G[1,n] = G2

[1,n],

G[1,n]ψ = G[1,n]Enψ

= Enψ

= ψ.

Therefore, ψ ∈ G[1,n]. Now, by Proposition 5.1(a),

ψ = G[1,n]

(
1−G[1,n+1]

)
ψ

=
(
1−G[1,n+1]

)
G[1,n]ψ

=
(
1−G[1,n+1]

)
ψ.

Therefore, (1−G[1,n+1])ψ = ψ, or equivalently, G[1,n+1]ψ = 0. Therefore, ψ ∈ G[1,n] ∩ G⊥
[1,n+1].

Next, assume that ψ ∈ G[1,n] ∩ G⊥
[1,n+1]. Then, (1−G[1,n+1])ψ = ψ and G[1,n]ψ = ψ, so

Enψ = G[1,n]

(
1−G[1,n+1]

)
ψ = ψ.

This finishes establishing that Enψ = ψ if and only if ψ ∈ G[1,n] ∩ G⊥
[1,n+1].

We now prove our lemma. Let φ 6∈ G[1,n] ∩G⊥
[1,n+1], and let φ′ = Enφ. Then, Enφ′ = φ′, and

‖AEnφ′‖ = ‖Aφ′‖ = ‖AEnφ‖ .

Note that φ = φ′ + (1 − En)φ. By the mutual orthogonality of En, ‖φ‖2 = ‖φ′‖2 + ‖(1− En)φ‖2,
and so ‖φ‖ > ‖φ′‖. Therefore,

‖AEnφ‖
‖φ‖

<
‖AEnφ′‖

‖φ′‖
,

so the supremum could not have been achieved at φ, and the supremum of ‖AEnφ‖
‖φ‖ must be achieved

on G[1,n] ∩ G⊥
[1,n+1].

Therefore,

sup
ψ 6=0

‖AEnψ‖2

‖ψ‖2
= sup
ψ∈G[1,n]∩G⊥

[1,n+1]

ψ 6=0

‖Aψ‖2

‖ψ‖2
. �

Proof of Theorem 5.6. By Lemma 5.7, we are interested in vectors ψ ∈ G[1,n]∩G⊥
[1,n+1]. Since G[1,n] ≈ V (n/2)

is the space of symmetric vectors on the first n sites, ψ will be of the form

ψ =
∑

p=−n
2 ,...,

n
2

k=↑,↓

ck,pψp ⊗ |k〉 , ck,p ∈ C

where ψp is the normalized, symmetric state with spin p, and ck,p ∈ C.
Recall the definition of V (n/2) introduced in Section 3.1, and see the comment following the state-

ment of Lemma 3.2. Since ψp ∈ G[1,n] ≈ V (n/2) it must be that ψ ∈ V (n/2)⊗V (1/2) ≈ V (n + 1/2)⊕V (n − 1/2)

where we are applying Theorem 3.3. By Lemmas 2.4 and 3.6, we know that V (n + 1/2) = G[1,n+1].
Therefore, ψ ∈ G[1,n] ∩ G⊥

[1,n+1] = V (n − 1/2).
It can be shown that [G[n,n+1], σ

i
[1,L]] = 0 for all i = 1, 2, 3; therefore, G[n,n+1] is SU(2)-invariant.

Along with V ((n − 1)/2) being an irreducible representation of SU(2), by Schur’s Lemma [3, Chap-
ter 10.7], G[n,n+1] is multiplication by a scalar on V ((n − 1)/2). Therefore,

∥∥G[n,n+1]ψ
∥∥ is a constant

scalar, regardless of the choice of ψ, and so we need only construct a single ψ ∈ V (n − 1/2)
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Let ψ1, ψ2 ∈ G[1,n] be ψ1 = ψn/2 ⊗ |↓〉, ψ2 = ψn/2−1 ⊗ |↑〉, and ψ = −nψ1 + ψ2. Let |i〉 ∈ C2n

refer to a spin-up particle being in only the ith position. Note that ψ1 = |↑ . . . ↑↓〉 = |n+ 1〉
and ψ2 =

∑n
i=1 |i〉. Note that ψ ⊥ G[1,n+1] as

〈ψ|ψ1 + ψ2〉 = −n ‖ψ1‖2 + ‖ψ2‖2

= −n+ n

= 0.

We can now show that Assumption 5.3 is satisfied by 5.10. By Lemma 5.7,

G[n,n+1]Enψ = G[n,n+1]ψ

= G[n,n+1]ψ2 − nG[n,n+1]ψ1

= |1〉+ · · ·+ |n− 1〉+ 1

2
(|n〉+ |n+ 1〉)− n

2
(|n〉+ |n+ 1〉)

= |1〉+ · · ·+ |n− 1〉 − n− 1

2
(|n〉+ |n+ 1〉).

Therefore, ∥∥G[n,n+1]ψ
∥∥

‖ψ‖
=

√
n− 1 + 2(n−1

2 )2

√
n+ n2

=
1√
2

√
n2 − 1

n2 + n
.(5.11)

Our value of ε is given by (5.11). Note that this is less than 1/
√
2, satisfying Assumption 5.3.

Finally, we may invoke Theorem 5.4 to show that the rate at which the spectral gap closes is
bounded from below by O(n−2). By plugging ε into Theorem 5.4 and using the value of γ = 1
(corresponding to the smallest non-zero eigenvalue of hx,x+1, see (2.2)) gives

λ1 ≥ γ(1−
√
2ε)2

=

(
1−

√
n2 − 1

n2 + n

)2

=

(
1−

√
(n− 1)(n+ 1)

n(n+ 1)

)2

=

(
1−

√
1− 1

n

)2

.

To see that this is O(n−2), we now take the Taylor expansion of
√
1− 1

n with respect to 1
n :√

1− 1

n
= 1− 1

2n
− 1

8n2
− . . .

≤ 1− 1

2n
.

This converges for all n > 1. Therefore,

λ1 ≥
(
1− 1 +

1

2n

)2

=
1

4n2
. �
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6. Conclusion

In this thesis, we applied two broad techniques, the variational principle and the martingale
method, to prove both an upper and lower bound on the spectral gap of the ferromagnetic ferro-
magnetic Heisenberg-1⁄2 model in the thermodynamic limit. The variational principle is a general
principle applicable to a wide variety of quantum systems, and we utilized a specific representation of
our Hamiltonian in order to apply it. The martingale method is applicable to more general systems
than demonstrated here, including to multi-dimensional lattices.

However, the techniques demonstrated here will are not applicable to the antiferromagnetic
Heisenberg-1⁄2 quantum spin chain (in which the negative sign of (2.2) is dropped) as this model
is not frustration free. A technique called the Bethe ansatz provides an exact expression for the
spectral gap in this model [7, 8, 9].

This thesis also focused specifically on particles with spin value 1⁄2. A famous conjecture by
Haldane [4, 5] states that integer-spin Heisenberg ferromagnets are gapped, while the half-integer
Heisenberg ferromagnets are gapless. In 1988, Affleck, Kennedy, Lieb and Tasaki introduce a vari-
ation of the spin-1 Heisenberg ferromagnetic chain (known as the AKLT model) that satisfied Hal-
dane’s conjectured [1, 2].

Proving that the upper bound closes at a rate of O(n−2) is sufficient to prove that the ferromag-
netic ferromagnetic Heisenberg-1⁄2 model is gapless. By proving that this is also a lower bound, we
have proven that the spectral gap closes at exactly this rate by the squeeze theorem.
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