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Spontaneous formation of transverse patterns is ubiquitous in nonlinear dynamical systems of all kinds.
An aspect of particular interest is the active control of such patterns. In nonlinear optical systems this can
be used for all-optical switching with transistorlike performance, for example, realized with polaritons in
a planar quantum-well semiconductor microcavity. Here we focus on a specific configuration which takes
advantage of the intricate polarization dependencies in the interacting optically driven polariton system. Besides
detailed numerical simulations of the coupled light-field exciton dynamics, in the present paper we focus on the
derivation of a simplified population competition model giving detailed insight into the underlying mechanisms
from a nonlinear dynamical systems perspective. We show that such a model takes the form of a generalized
Lotka-Volterra system for two competing populations explicitly including a source term that enables external
control. We present a comprehensive analysis of both the existence and stability of stationary states in the
parameter space spanned by spatial anisotropy and external control strength. We also construct phase boundaries
in nontrivial regions and characterize emerging bifurcations. The population competition model reproduces all
key features of the switching observed in full numerical simulations of the rather complex semiconductor system
and at the same time is simple enough for a fully analytical understanding.
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I. INTRODUCTION

The demand for integrated optoelectronic devices in optical
communication networks has resulted in an increase of re-
search activities targeted at functional all-optical components.
For example, a wide range of different approaches has been
proposed to realize efficient all-optical switches exploiting
the nonlinear optical properties of different material systems,
including organic photonic crystals [1], rubidium atomic-
vapor cells [2], and GaAs semiconductor microcavities as in
Refs. [3–8]. The latter utilize the optical control of transverse
optical patterns to achieve transistorlike switching perfor-
mance [2,9]. Spontaneous formation of spatially extended pat-
terns has been intensively studied during the past decades [10]
with applications to different areas of science, including the
formation of sand ripples and desert sand dunes [11], animal
coat patterns such as zebra stripes [12,13], and geographic
patterns in parasitic insect populations [14]. With applications
to optical switching, however, the quest for efficient external
control of these patterns naturally arises but in many cases has
not been explored in detail. In the present work we investigate
a specific example of all-optical switching of polariton pat-
terns in a semiconductor quantum-well microcavity system. In
contrast to our previous work [9] we give a detailed analysis
of the optical switching dynamics from a nonlinear dynamical
systems perspective. To this end we derive a simplified mode
competition model that governs the essentials of the system
dynamics but is simple enough to fully characterize the pos-
sible stationary solutions and phase-space singularities in the
relevant parameter space. This simplified model has the very
general mathematical form of a generalized Lotka-Volterra

system, with the addition of an inhomogeneity for external
control. In the main part of the paper (see Sec. III), we present
a complete steady-state analysis of this nonlinear system. The
solution space we obtain in dependence of spatial anisotropy
and external control strength has a very general nature and
may be similarly realized in other systems where external
control of population competition is studied such as chemical
reactions and in the life sciences.

As our specific example, here we study planar semiconduc-
tor microcavities with strong coupling between the cavity field
and the exciton polarization that gives rise to the formation
of exciton polaritons [15]. These quasiparticles consist of a
photonic part and an excitonic part and are characterized by
a normal-mode splitting in the dispersion relation, leading
to long coherence times and strong nonlinear interactions on
the lower branch. The latter are driven by four-wave mixing
processes of coherent polariton fields which can also be
interpreted as polariton-polariton scattering, mediated through
exciton-exciton scattering. For certain excitation conditions,
small spatially varying density fluctuations can experience
huge growth in particular modes due to the intrinsic feedback
mechanisms driven by four-wave mixing. This causes spa-
tially homogeneous density distributions to become unstable
such that the system’s symmetry is spontaneously broken.
This results in the formation of stationary patterns, directly
observable in the far-field emission from the microcavity.
Figure 1(a) shows the excitation geometry used with the pump
at normal incidence (zero in-plane momentum) and finite off-
axis (k �= 0) signals due to amplified fluctuations. Figure 1(b)
shows the normal-mode splitting of the dispersion relation
into lower and upper polariton branches alongside the bare
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FIG. 1. (a) Sketch of a planar quantum-well semiconductor mi-
crocavity with continuous-wave pump at normal incidence (on axis)
and an optional off-axis control beam. (b) Corresponding polariton
dispersion relation in the normal-mode splitting regime. The domi-
nant four-wave mixing process is indicated, driving the pairwise scat-
tering of pump-induced polaritons onto the lower polariton branch
with opposite in-plane momenta for signal and idler modes.

exciton and cavity dispersions. Phase-matching conditions
determine the efficiencies of the different scattering processes
and therefore determine the possible pattern geometry. For
scalar (only one circular polarization state) polariton fields
hexagon patterns are favored [16–18]. Extending the model
with polarization dependence, a complex interplay of the
TE/TM cavity-mode splitting in the linear regime and the
spin-dependent exciton-exciton interactions in the nonlin-
ear regime arises. The resulting polarization-induced spatial
anisotropy [19] determines the possible unstable modes and
stable patterns formed. For linearly polarized pump excitation
slightly above the instability threshold, cross-linearly polar-
ized resonant modes parallel and perpendicular to the pump’s
polarization plane constitute the basic instabilities [20], re-
sulting in two-spot or four-spot patterns. Making use of
this spatially anisotropic polariton-polariton scattering, a re-
versible optical switching for orthogonal two-spot patterns
can be realized that is triggered by a weak external control
beam [9]. The advance of taking the polarization dependence
into account, compared to scalar switching schemes [6–8],
is the explicit breaking of the rotational symmetry, offering
control of the orientation of the initial pattern via a linearly
polarized pump and providing an automatic back-switching
mechanism. It also makes background-free detection possible
since the pattern switching takes place in the cross-polarized
channel.

II. ORTHOGONAL SWITCHING OF
TWO-SPOT PATTERNS

A detailed numerical investigation of the present system
for the following excitation conditions was already discussed
in Ref. [9]. The system is excited (driven) by an x-linearly
polarized continuous-wave pump at normal incidence with
flat-top Gaussian shape in the quantum-well (QW) plane and
an intensity slightly above the off-axis instability threshold.
In this case spontaneous breaking of spatial and polarization
symmetry is observed. Signals are formed by resonant polari-
ton scattering onto the elastic circle defined by the polariton
dispersion (see Fig. 1). As can also be understood based
on a linear stability analysis [20,21], the scattering occurs
predominantly in four spatial directions oriented orthogonal
and parallel to the pump polarization plane, respectively. In

FIG. 2. Schematic illustration of the dominant contributions to
the in-plane scattering of polaritons onto the elastic circles defined
by the TE and TM modes of the lower polariton branch. The pump
indicated in the center is x polarized and slightly above the off-
axis instability threshold. Parallel and perpendicular to the pump
polarization direction, the scattering can occur in either the TE or
TM mode (left panel). For pumping spectrally well below the exciton
resonance, the scattering with polarization orthogonal to the pump’s
is preferred (middle panel). With spatial anisotropy (which is partly
induced by the linear pump polarization) scattering along the pump’s
polarization direction onto the TE mode can dominate (right panel).

general, in any spatial direction signals can form either in the
TE mode or in the TM mode, as illustrated in Fig. 2. However,
for the pump polaritons scattered to finite k through Coulomb
interaction, due to the underlying spin-dependent exciton-
exciton interactions, the scattering probability is higher for
a polarization state orthogonal to the pump polarization
state [21]. Therefore, in the spatial direction parallel to the
pump polarization state, the scattered signals preferentially
form in the TE mode, and they form in the TM mode for scat-
tering orthogonal to the pump polarization state (see Fig. 2).
Out of these four signals, a stationary two-spot pattern (only
one mode pair with opposite in-plane momenta) can be pre-
pared by introducing some anisotropy favoring one direction
over the other. Alongside a slight polarization-induced spatial
anisotropy that is due to a slightly higher density of states for
the TE modes [20], an additional anisotropy can be introduced
by tilting the pump beam slightly away from normal incidence
(see Fig. 2). In the nonlinear system studied, at sufficiently
high densities of the favored two-spot pattern, cross-saturation
processes will lead to the extinction of the signals in the other
orthogonal direction. This allows us to single out a two-spot
pattern T1 which will serve as the initial state in the switching
process. Here we start with the two-spot pattern oriented in
the x direction (the direction of intrinsic anisotropy). This
selection process is schematically visualized in Fig. 2.

If now a weak (compared to the pump intensity) y-
polarized control beam with an in-plane momentum on the
elastic circle and spatially orthogonal to the initial pattern
is applied, stimulated scattering leads to population revival
of the corresponding two-spot pattern. Due to the cross-
saturation effect, the initial pattern is destabilized and finally
switched off completely while the orthogonal pattern reaches
a steady state T2 (see Fig. 3). After the control beam has
been switched off again, the anisotropy leads to reemergence
of the initial T1 pattern, while the T2 state vanishes again. If
the control beam is so weak that complete switching may not
be possible, the system will remain in a stationary four-spot
pattern state F . Based on this scheme, in Ref. [9] transistorlike
reversible switching was demonstrated, including a systematic
study of switching times, minimum control power needed,
and achievable gain. This was done by numerical simulations
of the nonlinear set of equations of motion governing the
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FIG. 3. (a) Stationary T1 and (b) T2 states of the polariton pattern
switch as obtained from the numerical solution of Eqs. (1) for the
x-linearly polarized cw pump at k ≈ 0. Shown is the stationary
y-polarization component of |E |2 in k space in arbitrary units (a) be-
fore and (b) after switching on a continuous-wave control beam.
Switching off the control beam results in reversal of the switching
process such that after sufficiently long times the system returns to
the stationary T1 pattern.

coherent coupled light field and exciton dynamics in the
microcavity system in the two-dimensional QW plane in real
space,

ih̄∂t E
± = (Hc − iγc)E± + H±E∓ − �p± + E±

pump,

ih̄∂t p± = (
εe

0 − iγe
)
p± − �(1 − αpsf |p±|2)E±

+ T ++|p±|2 p± + T +−|p∓|2 p±. (1)

Here the index ± denotes the different components in the
circular polarization basis, Hc = h̄ω0− h̄2

4 ( 1
mTM

+ 1
mTE

)(∂2
x +∂2

y )
is the cavity Hamiltonian, and εe

0 is the flat exciton dis-
persion. γc and γe represent the photon and exciton loss
rates, � describes the photon-exciton coupling, and H± =
− h̄2

4 ( 1
mTM

− 1
mTE

)(∂x∓i∂y)2 couples the two polarization com-
ponents due to TE/TM splitting. The cubic nonlinearities
consist of a phase-space filling term αpsf , repulsive interaction
T ++ for excitons with parallel spins, and attractive interaction
T +− for excitons with opposite spins.

Based on Eqs. (1) with an x-linearly polarized continuous-
wave pump beam at k ≈ 0, we perform a numerical sim-
ulation to demonstrate the basic switching process in the
two-dimensional plane of in-plane momenta. Figure 3 shows
the photonic component |E |2 in k space without a control
beam such that the stationary pattern T1 forms in Fig. 3(a) and,
with the control beam on, switching to the stationary pattern
T2 in Fig. 3(b). The control beam has the same frequency
as the pump beam (see Fig. 1). System parameters used
and details of the calculations are given in Appendix A.
Upon switching off the control beam the switching action
is reversed, and the pattern returns to its original state T1.
Switching times in the range of ∼100 ps are achievable [9].

The focus of the present paper is not on the full numerical
simulations of Eqs. (1) and resulting switching performance.
Rather, starting from Eqs. (1), we will derive a simplified
population competition model for selected modes in k space
(details of the derivation are given in Appendix B) to provide
further insight into the underlying phase space singularities
that dictate the global behavior and solution space of the
nonlinear dynamical system studied. In a similar fashion this

approach was previously applied to the switching between
subsets of a hexagonal pattern [22]. We will systematically
analyze the existence and stability properties of possible
steady states in dependence of the strength of the different
involved physical processes for a typical orthogonal switching
setup comparable to the one introduced above. To this end, we
will construct phase boundaries in representative regions of
parameter space and characterize relevant bifurcations. This
will lead to a general understanding of crucial parameter
dependencies such as the ratio between the control beam
strength and the anisotropy and also of the coexistence of
solutions in certain parameter regions and hysteresis behavior.
Based on the simplified model, we will also be able to show
that the polariton dynamics and optical switching phenomena
discussed in the present paper can mathematically be under-
stood based on a generalized Lotka-Volterra model including
an external control parameter.

III. POPULATION COMPETITION MODEL

The simplified population competition model discussed in
the remainder of the present paper can be derived from the set
of equations of motion in Eq. (1) as detailed in Appendix B.
It reads

Ȧ1 = α1A1 − β1A3
1 − θ1A2

2A1,

Ȧ2 = α2A2 − β2A3
2 − θ2A2

1A2 + S. (2)

Here A1 and A2 are real-valued amplitudes of the two elemen-
tary states of the system, i.e., the two orthogonal polariton
mode pairs in k space. In the case of stationary solutions
the phases in the full model (1) become “locked,” allowing
us to remove them as dynamical variables from the equa-
tions, which is suitable for the following steady-state analysis.
The six dimensionless real-valued positive parameters, αi,
βi, θi, are directly related to the main (up to third order)
polariton-polariton scattering processes of the original system
as illustrated in Fig. 4. They can be calculated from the
physical parameters of the full model (see Appendix C). These
parameters are intrinsically different for A1 and A2 due to the
polarization dependence and anisotropy. The linear process
representing growth of the resonant modes is described by αi.
Saturation processes are represented by the cubic terms which
can be divided into self-saturation βi and cross saturation θi.
The external control is described by the inhomogeneity S.
If we rewrite Eqs. (2) as (Ȧ1, Ȧ2)T ≡ ( f1, f2)T = f , steady
states are characterized by f = 0. Four qualitatively different
stationary solutions are possible: (i) two-spot pattern T1 with
A1 �= 0 and A2 = 0, (ii) two-spot pattern T2 with A1 = 0 and
A2 �= 0, (iii) four-spot pattern F with A1 �= 0 and A2 �= 0, and
(iv) the trivial solution with A1 = 0 and A2 = 0. Here we are
interested in only physical solutions Ai � 0, and therefore,
the state space is R2

�0, i.e., the first quadrant of the (A1, A2)
plane. The linear term α leads to exponential growth of the
corresponding mode pair, and the self-saturation β has a
stabilizing effect. For these two processes, Eqs. (2) are auto-
matically decoupled and may be solved separately, resulting in
a stable four-spot pattern. However, the cross-saturation terms
θ couple the two modes and tend to suppress a particular mode
pair, favoring the other mode pair, resulting in a two-spot
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FIG. 4. Illustration of the different polariton-polariton scattering
processes in k space for the two elementary mode pairs A1 and A2

in Eq. (2). The dashed circle represents the ring in k space on which
efficient scattering is possible. Green solid (red open) circles mark
the incoming (outgoing) modes. Solid (dashed) arrows mark their
corresponding momenta. Here αi describe the growth process of the
two mode pairs (basic instability leading to pattern formation), and
βi and θi represent the self- and cross-saturation processes.

pattern. Additionally, the external control acts as a source
term for A2. The PC model thus describes the dynamical
competition between the three types of possible stationary
patterns: T1, T2 and F . A phase in the PC model is defined
as a set consisting of the number of steady states and their
stability properties. These sets, i.e., the phase, are functions
of the seven parameters, and a phase boundary in parameter
space indicates the change in the number of steady states
and/or their stability. This can happen only at points where
at least one eigenvalue of the corresponding Jacobian matrix
J ≡ (∂Aj fi ) is zero [23], which is equivalent to the condition
det J = 0. We thus find phase boundaries in parameter space
at points satisfying {f, det J} = 0.

A. Homogeneous case S = 0

The homogeneous case of Eq. (2) (S = 0) has the form of
a generalized Lotka-Volterra (GLV) model [24] with cubic
nonlinearities. The transformation Ai → A2

i ≡ Ãi yields the
usual Lotka-Volterra (LV) equations [25] with quadratic non-
linearities while conserving the (A1, A2) phase space structure
in the positive quadrant [26]. Hence, for S = 0 the phase
portraits of (2) are topologically equivalent to those of the
following well-known system:

∂t Ãi = Ãi

⎛
⎝ri −

2∑
j=1

ci j Ã j

⎞
⎠, (3)

with i = 1, 2, growth rate vector r = 2(α1, α2), and commu-
nity matrix

C = 2

(
β1 θ1

θ2 β2

)
, (4)

which describes self- and cross interaction. This LV
model (3) for interspecific competition has been studied in
many different contexts, e.g., ecology [27], chemistry [28],

economics [29], and physics [30], and it was shown [25,31]
that its dynamical behavior is limited to three cases de-
pending on the parameters: (i) the coexistence regime for
sgn(det C) = +1 (larger self-saturation), (ii) the bistability
regime for sgn(det C) = −1 (larger cross saturation), and (iii)
the dominance regime for sufficiently large and small growth
rate ratios. In this regime long-time dynamics are independent
of the interaction parameters and always result in extinction
of one population. Although the LV system, Eq. (3), is well
known, we present a short discussion of the homogeneous
case of the PC model, Eq. (2), and point out the importance
for application to the polariton switching dynamics. Since for
S = 0 the system is solvable analytically, we obtain explicit
expressions for all steady states and phase boundaries: (i) for

T1, A1 =
√

α1
β1

, A2 = 0, and it is stable for α1
α2

>
β1

θ2
, (ii) for

T2, A1 = 0, A2 =
√

α2
β2

, and it is stable for α1
α2

< θ1
β2

, (iii) for

F , A1 =
√

α2θ1−α1β2

θ1θ2−β1β2
, A2 =

√
α1θ2−α2β1

θ1θ2−β1β2
, and it exists only for

β1

θ2
≶ α1

α2
≶ θ1

β2
and is stable for θ1θ2<β1β2, and (iv) for the trivial

solution, A1 = A2 = 0. We already see that the four-spot solu-
tion does not exist in the entire S = 0 plane, in contrast to the
two-spot pattern. The trivial solution also exists everywhere
but is always unstable since the eigenvalues of its Jacobian
α1, α2 are positive. This solution will not be listed hereinafter.
For a systematic discussion we introduce a variable anisotropy
parameter δα in the first equation of (2), α1 → α1 + δα, and
set α1 = α2 = 1. It favors A1/2 for δα ≷ 0, respectively. The
resulting phase boundaries are shown in Fig. 5, where the
homogeneous case (S = 0) is included in the extended region
at the bottom of each plot. It shows the structure of the
usual LV model. Green (dark gray) and red (light gray) letters
mark stable and unstable steady states, respectively. For large
anisotropy |δα| only stable and unstable two-spot patterns are
possible. This dominance regime no longer depends on the
interaction parameters βi and θi. The middle region, on the
other hand, is divided into two cases: a stable four-spot pattern
for larger self-saturation [β1β2>θ1θ2, coexistence, Fig. 5(a)]
and two simultaneously stable two-spot patterns for larger
cross saturation [β1β2<θ1θ2, bistability, Fig. 5(b)].

The first four cases in Fig. 6 show the corresponding
flow given by representative trajectories in state space for the
homogeneous case. The system’s dynamics are unambiguous
in cases 1, 2, and 3a, where only one attractor exists which
determines the long-time behavior. However, in case 3b two
attractors exist, and the dynamics now depend on the system’s
history, leading to a hysteresis effect. The two basins of at-
traction are marked with different colors, blue (dark gray) and
orange (light gray). They are separated by the stable manifold
of the saddle point F (often called the separatrix), defined
by the set of points (A1, A2) which satisfy (A1, A2) → F for
t → ∞. In contrast to this, the line connecting all three steady
states is the unstable manifold of F , consisting of points which
satisfy (A1, A2) → F for t → −∞. Any initial point will stay
in its region (blue or orange) and end up at the corresponding
attractor (T1 or T2). The system thus shows hysteresis behavior
which might prevent complete back switching and therefore
should be avoided for switching purposes, for example, by
increasing the anisotropy.
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FIG. 5. Phase boundaries in (δα, S) parameter space showing
regions of different stable and unstable steady states in dependence
of the anisotropy and external control. (a) Larger self-saturation
β1β2>θ1θ2. (b) Larger cross saturation β1β2<θ1θ2. Green (dark gray)
and red (light gray) letters mark stable and unstable steady states,
respectively. Lines S∗

1 and S∗
2 show the phase boundaries (5) and (6).

The Hartman-Grobman theorem [23] ensures that the
behavior near hyperbolic equilibrium points is completely de-
termined by its linearization. This no longer holds for nonhy-
perbolic fixed points which are characterized by the existence
of at least one zero real-part eigenvalue of the corresponding
Jacobian. Therefore, the behavior at the phase boundaries in
parameter space cannot be analyzed via linear stability anal-
ysis. Instead one can use center manifold theory and normal
forms [23] in order to determine the occurring bifurcations.
They are transcritical for the usual LV model but different in
the case of cubic nonlinearities due to the additional Z2 × Z2

symmetry. For both two-spot solutions symmetric pitchfork
(PF) bifurcations occur at the phase boundaries when the
anisotropy parameter is changed. They are supercritical for
β1β2>θ1θ2 (larger self-saturation), leading to the coexistence
regime with a stable F pattern, and subcritical for β1β2<θ1θ2

FIG. 6. Phase plane flow for cases corresponding to Fig. 5. Black
(white) dots mark stable (unstable) steady states. Black lines show
representative orbits. The thick black line in plots 3b and 6 is the
stable manifold of the saddle point which separates two basins of
attraction.

(larger cross saturation), leading to the bistability regime with
a stable T1 and T2 pattern. Pitchfork bifurcations are typical for
dynamical systems with inversion symmetry, here Ai → −Ai.
Since we are interested in only positive solutions in the first
quadrant of the phase plane, we observe either a transition
from a stable T solution to an unstable T and stable F solution
(supercritical) or the same transition with reversed stability
(subcritical).

In conclusion, all phase portraits of the homogeneous case
can be completely reduced to the results of the well-known
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Lotka-Volterra model for two competitive species. Due to
the additional inversion symmetry we obtain pitchfork bi-
furcations at the phase boundaries. The homogeneous case
is crucial for the polariton switch because it describes the
initial pattern formation and back-switching process in the
absence of the control beam. Both can work reliably only in
regions where only the T1 pattern exists as a single attractor.
Therefore, a sufficient minimum anisotropy in favor of A1

is needed. We have also seen that if the cross saturation
dominates over the self-saturation, the coexistence of A1 and
A2 is destabilized, resulting in the extinction of Ai and survival
of Ai+1. A strong interspecific competition thus prevents the
coexistence. Otherwise, if the self-saturation is stronger than
the cross saturation, the dominating intraspecific competition
promotes coexistence. The parameters used for the full nu-
merical simulations in Sec. II lead to the larger self-saturation
case and sufficient anisotropy (see Appendix C), providing
reliable initial pattern formation and back switching since the
F pattern is unstable.

B. Inhomogeneous case S > 0

The inhomogeneous (S > 0) case of the PC model (2)
describes the actual switching process induced by an external
control beam. This term can also be motivated for other
systems where the GLV model is commonly used, e.g., to
include constant migration and harvesting in the description
of ecological systems or constant influx in chemical reactions.
Therefore, it can be interpreted as an extension of the gener-
alized Lotka-Volterra dynamics, and the following analysis is
of very general interest but has not been investigated before.
The influence of constant terms in the usual LV model with
quadratic nonlinearities was investigated in Ref. [32] from
a purely mathematical perspective, but in general inhomo-
geneous population competition models have not received
much attention in the past. Here we analyze and apply the
GLV model with a constant inhomogeneity to the case of the
orthogonal switching of two-spot polariton patterns.

Also including inhomogeneity, all steady states and phase
boundaries can still be determined analytically due to the
system’s simplicity. However, we note that, in general, solv-
ing multivariate polynomial equation systems is a difficult
task which can be simplified using algebraic methods (e.g.,
Gröbner’s basis [33,34]), as was shown in Ref. [22]. The
nonzero source term S in (2) breaks the inversion symmetry
for A2 and prevents a T1 solution. This leaves us with only
two competing patterns (called T2 and F2) this time around.
However, as we will see below, it includes the possibility of an
additional qualitatively different four-spot pattern solution F1.
The control parameter S acts as a constant source term for the
A2 mode pair, leading to linear growth. Supporting A2 means
simultaneously suppressing A1 due to the cross-saturation
effect, leading to a more asymmetric F2 solution in favor of
A2. A second four-spot pattern, F1, which is in favor of A1,
replaces T1. The phase boundaries are given explicitly by

S∗
1 (δα) = β2

√
1 + δα

θ1

3

−
√

1 + δα

θ1
, (5)

and additionally, for the case of larger cross saturation
(β1β2<θ1θ2)

S∗
2 (δα) = 6

√
3[(1 + δα)θ2 − β1]3

β2
1 (θ1θ2 − β1β2)

. (6)

The explicit expressions for the steady states T2, F1, and F2

are not given here due to their excessive length. The phase
boundaries in the (δα, S) parameter space can be seen in
Fig. 5 for the cases of both higher self-saturation and higher
cross saturation. Starting from the threshold values δα∗

1,2 of
the homogeneous case, we find continuously changing phase
boundaries S∗

1,2 to higher anisotropy values for increasing
control S. In the case of higher self-saturation there is only
one phase boundary S∗

1 due to the absence of a T1 state. For
sufficiently strong control S there is only the stable steady
state T2. This region represents the desired outcome of a
successful switching process. Its phase boundary determines
the minimum control strength required to achieve switching
for a given anisotropy value. For lower values of S, a stable
four-spot pattern arises, and depending on the ratio θ1θ2

β1β2
,

a second unstable four-spot pattern occurs together with a
stability transition of T2.

Again, we can draw the flow in the (A1, A2) phase plane
and mark the basins of attraction as shown in Fig. 6, cases 4,
5, and 6. For θ1θ2>β1β2 a region with two attractors occurs
similar to the S = 0 case, but this time with a stable F1 state
instead of T1, which again implies hysteresis behavior. For
increasing anisotropy, the unstable F2 state will approach T2

along the unstable manifold until they meet and an unstable
T2 state and a stable F1 state emerge. This corresponds to
the approach of the two phase boundaries S∗

1 and S∗
2 and

the annihilation of S∗
2 , which can happen only for parameter

values 1< θ1θ2
β1β2

< 3
2 . Otherwise, the two boundaries diverge.

Thus, the case of higher cross saturation is divided into two
subcases, defined by either the survival or the vanishing of the
middle region with two attractors.

Another important effect of the inhomogeneity S is the
explicit breaking of the Z2 symmetry in the time evolution of
A2. In the case of larger cross saturation a cusp point C arises
in the two-dimensional bifurcation diagram in Fig. 5(b). The
pitchfork bifurcation at S = 0 is replaced by a saddle-node
bifurcation for S �= 0, resulting in the creation or destruction
of a stable-unstable pair of F solutions while varying one
of the parameters. In the cusp point two saddle-node phase
boundaries, S∗

2 and −S∗
2 (not shown), meet tangentially. The

other pitchfork bifurcation (δα∗
1 ) remains (S∗

1 ) in the presence
of the inhomogeneity since the Z2 symmetry of A1 is still
conserved. This is the only bifurcation in the case of larger
self-saturation in Fig. 5(a) for S �= 0. Figure 7 shows the
evolution of the equilibrium surfaces for A1 and A2 in the
(δα, S) parameter space and the corresponding bifurcations.
The pitchfork bifurcations are visible on the S = 0 line. In the
case of higher cross saturation [Fig. 7(b)] one of the pitch-
fork bifurcations unfolds into a saddle-node bifurcation with
increasing S. In the case of higher self-saturation [Fig. 7(a)]
the supercritical pitchfork bifurcation remains stable with
increasing S.

In conclusion, the main difference for the inhomogeneous
case is the absence of a steady T1 state and the existence of an
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FIG. 7. Evolution of steady states for A1 and A2 in parameter
space. Green (s) and red (u) surfaces belong to stable and un-
stable solutions, respectively. Black lines correspond to the phase
boundaries projected on the (δα, S) plane. (a) Larger self-saturation:
one of the two pitchfork bifurcations on the S = 0 line remains
for S>0, whereas the other one vanishes completely. (b) Larger
cross saturation: one of the two pitchfork bifurcations on the S = 0
line remains for S>0; the other one is replaced by a saddle-node
bifurcation.

additional stable F1 state in the case of higher cross saturation.
This corresponds to the unfolding of one of the subcritical
pitchfork bifurcations into a saddle-node bifurcation. The
control term S thus prevents extinction of A2 and promotes
coexistence. Furthermore, the F1-T2-bistability region van-
ishes for high anisotropy values if the parameter condition
1< θ1θ2

β1β2
< 3

2 is satisfied, resulting in a single remaining phase
boundary S∗

1 similar to the case of higher self-saturation. The
occurring saddle-node and subcritical pitchfork bifurcations
are problematic since they both imply sudden vanishing of a
stable fixed point, meaning the system undergoes an abrupt
transition to another stable fixed point; that is, hysteresis
is possible. This can happen only in the bistability regime
(larger cross saturation). The numerical simulation of the
switching process presented in Sec. II takes place in the
larger self-saturation regime (model parameters are calculated
in Appendix C), which is advantageous for the switching
purpose since no hysteresis can occur. However, if the external
control beam is not sufficiently strong, we observe a stable F1

pattern in the numerical simulations, as predicted by the PC
model.

C. Remarks

So far, we have discussed steady states, their stability
properties, and bifurcations occurring in the solution space
of the population competition model in Eq. (2). From a dy-
namical perspective, we observe critical slowing down [35,36]

near the phase boundaries due to the continuously vanish-
ing real part of the Jacobian eigenvalue responsible for the
bifurcation. This corresponds to the divergence of switching
times observed in the numerical simulations in Ref. [9]. For
example, approaching S∗

1,2 for β1β2≷θ1θ2 from above results
in divergence of the switching time. Similarly, approaching
δα∗

2,1 for β1β2≷θ1θ2 from the left side results in divergence of
the back-switching time. Hence, to achieve favorable perfor-
mance, switching should be done for parameters sufficiently
far away from the phase boundaries.

We note that, in general, a nonlinear dynamical system
can have periodic solutions which are characterized by closed
orbits in the phase plane. Here we use Dulac’s criterion [37]
to rule out any periodic solutions. A simplified version reads
as follows: The existence of a function g(A1, A2) with the
property that ∇·(gf ) is sign definite in the entire considered
state space rules out any closed orbits in this area. If we choose
g = 1

A1A2
, we obtain ∇ · (gf ) = −2(β1

A1
A2

+ β2
A2
A1

+ S
A1A2

2
), and

therefore, closed orbits in the positive quadrant are impos-
sible. Another observation is that for θ1 = θ2≡θ (symmetric
coupling) we can write the system in Eq. (2) as a gradient
field f = ∇V with the potential function

V =
2∑

i=1

αi

2
A2

i − βi

4
A4

i − θ

4
A2

i A2
i+1 + SiAi, (7)

with Ai+2 = Ai, S1 = 0, and S2 = S. Closed orbits are im-
possible in gradient systems [37]; however, for the general
case θ1 �= θ2 (asymmetric coupling) this argument is no longer
applicable. Also, assuming the gradient system defined by the
potential function (7) allows us to use the language of catastro-
phe theory and observe that two of Thom’s seven elementary
catastrophes occur, namely, folds (denoted as A2 in Arnold’s
notation) and cusps (A3). We further note that our detailed
investigation above is limited to destabilizing linearity, sta-
bilizing nonlinearities, and positive control parameter. These
conditions match the numerical and experimental observa-
tions for the physical system under investigation here. For this
case we are able to completely characterize all possible steady
states and their corresponding bifurcations and rule out any
other bifurcations involving double-zero and purely imaginary
eigenvalues of the Jacobian.

IV. CONCLUSIONS

We have presented a detailed analysis of an all-optical
switching concept based on transverse patterns in an interact-
ing polariton system in a planar quantum-well semiconductor
microcavity. From the relevant equations based on a micro-
scopic semiconductor theory here we derived a simplified
population competition (PC) model describing the system dy-
namics restricted to selected modes in k space. Interestingly,
the resulting rather simple PC model shows all key features
of the system dynamics also observed in the full numerical
simulations in the parameter range of interest here. In addi-
tion to what can be learned from the numerical simulations,
the PC model enables us to systematically identify phase
boundaries in parameter space and singularities governing the
global dynamics of the nonlinear system. Interestingly, the
rather complicated original system of interacting microcavity
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polaritons for the switching phenomenon studied here can be
completely characterized by only seven flow portraits in a
two-dimensional state space. The model derived has the very
generic form of a generalized Lotka-Volterra system extended
with an inhomogeneity term to achieve external control. Such
a system has not been investigated before. Considering the
widespread use of GLV systems, the understanding obtained
in the present work is of a very general nature and will be
similarly applicable to other fields where external control of
population competition is studied such as chemical reactions
or population competition in the life sciences.
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APPENDIX A: NUMERICAL DETAILS

We used the following parameters (appropriate for
GaAs systems) to numerically simulate the switching pre-
sented in Sec. II: mTE = 1.05mTM = 0.215 meV ps2 μm−2,
� = 6.5 meV, γc = 0.8 meV, γe = 0.2 meV, αpsf = 5.188 ×
10−4 μm2, T ++ = −5T +− = 5.69 × 10−3 meV μm2, εe

0 =
1.497 eV. Coherent cw excitation 2.5 meV above the lower
polariton branch was used with flat-top Gaussian profiles with
intensities Ipump = 2.1 × 105 × Iprobe = 54 kW cm−2. Equa-
tions (1) were solved on a finite two-dimensional grid in
real space using a fourth-order Runge-Kutta method with a
variable step size. In Sec. III we use parameters β1β2/θ1θ2 =
1.14 for the case of larger self-saturation and β1β2/θ1θ2 =
0.69 for the case of larger cross saturation. All bifurcations
were determined analytically for the homogeneous case and
numerically with the help of MATCONT, a MATLAB software
package, for the inhomogeneous case.

APPENDIX B: DERIVATION OF THE PC MODEL

We follow qualitatively the derivation of the hexagon PC
model [22], but here we are including polarization effects
for linearly polarized excitation and therefore considering a
different reduced k space. We start with the coupled equations
of motion (1) for the exciton polarization and the cavity
field and transform them into k space and in the linear po-
larization basis. Introducing the reduced k space consisting
of modes {k0≡0, k1, k2, k3, k4} with relations k3 = −k1 and
k4 = −k2 (see Fig. 8) results in 20 equations. We consider
an x-polarized pump. This leads to the following selection
rules [19]: (i) the x

y-polarized probe with k ‖ ex excites TM
TE

mode, and (ii) the x
y-polarized probe with k ⊥ ex excites the

TE
TM mode.

We assume that all dynamical quantities oscillate with
pump frequency ω. Removing the phase factor e−iωt yields a
shift of the dispersion by −h̄ω. We consider all phase-matched
scattering processes up to third order within the reduced

FIG. 8. Definition of the reduced k space.

k space. In agreement with the linear stability analysis of
the corresponding system reporting a D2

∼= Z2 × Z2 symme-
try [20], we assume an equal excitation of opposite modes
in the reduced k space, i.e., pk1 = pk3≡p1 and pk2 = pk4≡p2

(with analogous notation for E ). We further assume the pump-
induced densities Ex/y

0 and px/y
0 at k = 0 are constant. Using

a cyclic definition for the two mode pairs pj = p j+2, with
j = 1, 2, results in the following phase-matched (q = k −
k′ − k′′) scattering processes (q, k′, k′′) for each mode pair
in Eq. (1):

( j, 0, 0), (0, j, 0), (0, 0, j),

3 × ( j, j, j), 2 × ( j, j + 1, j + 1). (B1)

In our setup the pump is x polarized. Therefore, terms ∝ py
0

or ∝ Ey
0 are omitted. Furthermore, we assume the colinearly

polarized off-axis modes are very small as for these modes
the instability threshold is not reached, i.e., px

j � py
j and

Ex
j � Ey

j . Hence, we also neglect terms ∝ px
j or ∝ Ex

j . This
leaves us with the following four equations for the y-polarized
mode pairs:

ih̄∂t py
j = (ε j − h̄ω− iγe)py

j +
1

2
αPSF�

[− py∗
j px

0Ex
0 + px∗

0 py
jE

x
0

+ ∣∣px
0

∣∣2
Ey

j + 3py∗
j py

jE
y
j + 2py∗

j py
j+1Ey

j+1

]
+ 1

2
(T ++ + T +−)

[
3py∗

j py
j py

j + 2py∗
j py2

j+1

]
− 1

2
(T ++ − T +−)

[
py∗

j px2
0

] + T ++∣∣px
0

∣∣2
py

j − �Ey
j ,

(B2)

ih̄∂t E
y
j = (

h̄ω
y
j − h̄ω − iγc

)
Ey

j − �py
j + Ey

pump, j . (B3)

If we further assume that the time evolution of E follows
adiabatically the evolution of p and set ∂t E j≈0, we can write

Ej = �

h̄ω j − δ j − h̄ω − iγc
p j ≡ 2λ j

αPSF�
eiθ j p j, (B4)

with j = 0, 1, 2. The pump field was also set to zero
Epump, j = 0 and will be added later manually. We define θ j as
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the phase between Ey
j and py

j , and the ratio of their amplitudes

is given by 2λ j

αPSF�
. Here δ j includes anisotropy effects due to

the higher density of states for the TE modes and tilting of the
pump. So the parameters are given by

λ je
iθ j = αPSF�

2

2
(
h̄ω

y
j − δ j − h̄ω − iγc

) for j = 1, 2, (B5)

λ0eiθ0 = αPSF�
2

2
(
h̄ωx

0 − h̄ω − iγc
) for j = 0. (B6)

Finally, we obtain two equations for the two elementary states
of the system. We also factorize the exciton field into phase
and magnitude, i.e., py

j = p̃y
je

iϕ j , and split the results into
separate equations of motion for magnitude and phase:

∂t p̃y
j = Lj p̃y

j +
2∑

k=1

Cjk p̃y2
k p̃y

j, (B7)

∂tϕ j = Kj +
2∑

k=1

Djk p̃y2
k . (B8)

If we define φ j≡ϕ j − ϕ0, the coefficients are then given by

h̄L j = − γe + λ0 p̃x2
o [sin(θ0) − sin(θ0 − 2φ j )] + λ jsin(θ j )

(
p̃x2

0 − 2

αPSF

)
− 1

2
(T ++ − T +−) p̃x2

0 sin(−2φ j ),

h̄Cjk =
{

3λ jsin(θ j ), j = k,

2λksin(θk + 2φk − 2φ j ) + (T ++ + T +−)sin(2φk − 2φ j ), j �= k,

h̄Kj =ε j − h̄ω − T ++ p̃x2
0 [cos(θ0) − cos(θ0) − 2φ j] − λ jcos(θ j )

(
p̃x2

0 − 2

αPSF

)
− 1

2
(T ++ − T +−) p̃x2

0 cos(−2φ j ),

h̄D jk =
{−3λ jcos(θ j ) − 3

2 (T ++ + T +−), j = k,

−2λkcos(θk + 2φk − 2φ j ) − (T ++ + T +−)cos(2φk − 2φ j ), j �= k.
(B9)

Analogously to Ref. [22], we remove the phases as dynamical variables by assuming locked phases and linearization. We define
the time-dependent phase as φ j (t )≡δφ j (t ) + φ

(0)
j , where the locked phases satisfy Kj (φ

(0)
j ) = 0 and δφ j (t ) is a small deviation.

Expanding equations (B7) and (B8) up to first order in δφ j around φ
(0)
j and neglecting terms ∝ δφ j p̃y2

k leads to an explicit
expression for δφ j , which can be substituted back to obtain

∂ p̃y
j =

[
Lj (φ

(0)
j ) +

2∑
k=1

(
Cjk (φ(0)

j , φ
(0)
k ) − Djk (φ(0)

j , φ
(0)
k )L′

j (φ
(0)
j )

K ′
j (φ

(0)
j )

)
p̃y2

k

]
p̃y

j . (B10)

We rewrite these two equations in a shorter form:

∂t p̃y
1 = α̃1 p̃y

1 − β̃1 p̃y3
1 − θ̃1 p̃y2

2 p̃y
1,

∂t p̃y
2 = α̃2 p̃y

2 − β̃2 p̃y3
2 − θ̃2 p̃y2

1 p̃y
2. (B11)

We replace p̃y
j with a product of a dimensionless quantity ˆ̃py

j

and a characteristic quantity p̃y
j,c which carries the original

dimension, i.e., p̃y
j = ˆ̃py

j p̃y
j,c. We do the same for the inde-

pendent time variable t = t̂ tc, so that the derivative changes

to
∂ p̃y

j

∂t = p̃y
j,c

tc

∂ ˆ̃py
j

∂ t̂ . The characteristic values are chosen in a
way that the corresponding dimensionless quantities are of
magnitude 1. With the definitions t̂ ≡ t and ˆ̃py

j ≡ Aj , we can
finally write down the population competition model as

∂t A1 = α1A1 − β1A3
1 − θ1A2

2A1,

∂t A2 = α2A2 − β2A3
2 − θ2A2

1A2 + S, (B12)

where we have manually added a control parameter S for the
A2 mode pair.

APPENDIX C: CALCULATION OF THE
MODEL PARAMETERS

The model parameters can be calculated from the physical
parameters via equation (B10). Their values, especially the
signs, depend on the specific choice of the locked phases.
The system’s physical behavior observed in the full numerical
simulations suggests destabilizing linear terms and stabilizing
nonlinear terms in the PC model. Choosing phases satisfying
this condition, characteristic values p̃y

j,c = 1 μm−1 and tc =
1 ps, and anisotropy effects δ1 = 0.2 meV and δ2 = 0 meV
leads to the following model parameters for the switching
simulation presented in Sec. II: α1 = 0.49, α2 = 0.43, β1 =
0.007, β2 = 0.01, θ1 = 0.006, θ2 = 0.005. This corresponds
to the case of larger self-saturation. The anisotropy is suffi-
ciently high for the initial pattern formation and back switch-
ing, and also no hysteresis can occur.
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