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Abstract The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by

mutations in the synaptic vesicle (SV) protein CSPa. We developed animal models of CLN4 by

expressing CLN4 mutant human CSPa (hCSPa) in Drosophila neurons. Similar to patients, CLN4

mutations induced excessive oligomerization of hCSPa and premature lethality in a dose-

dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPa accumulated

abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and

LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and

neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4

mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by

increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4

phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain

of function mutations that drive excessive oligomerization and impair membrane trafficking.

DOI: https://doi.org/10.7554/eLife.46607.001

Introduction
NCLs comprise a group of progressive neurodegenerative diseases with 14 known disease-associ-

ated genes, termed CLN1-14 (Haltia, 2003; Haltia and Goebel, 2013; Jalanko and Braulke, 2009;

Mole and Cotman, 2015). NCLs have mostly an infantile or juvenile symptomatic onset and are

characterized by loss of vision, gait abnormalities, seizures, dementia, and premature death. In gen-

eral, NCLs are considered lysosomal storage diseases due the accumulation of lipofuscin and are

typically caused by recessive loss of function mutations with one exception, CLN4. Accordingly, lyso-

somal dysfunction, dysregulated ER-lysosomal trafficking, or aberrant lipid modifications are thought

to be the basis for most NCLs, consistent with the known function of the mutated genes

(Bennett and Rakheja, 2013; Cárcel-Trullols et al., 2015; Mole and Cotman, 2015; Warrier et al.,

2013). Understanding disease mechanisms of NCLs has implications as well for more prevalent dis-

eases since mutations in a growing number of CLN genes also cause other diseases like frontotem-

poral lobar degeneration, progressive epilepsy with mental retardation, spinocerebellar ataxia,

retinitis pigmentosa, juvenile cerebellar ataxia, or Parkinson disease 9 (Bras et al., 2012; Mole and

Cotman, 2015; Yu et al., 2010).
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The autosomal dominantly inherited NCL CLN4 has an adult onset between 25 and 46 years.

CLN4 is caused by either the amino acid (aa) substitution L115R or the single amino acid deletion

L116D in the SV protein CSPa, which is encoded by the human DNAJC5 gene (Benitez et al., 2011;

Cadieux-Dion et al., 2013; Nosková et al., 2011; Velinov et al., 2012). CSPa is unique among

NCL-associated genes since it encodes a SV protein with no known lysosome-associated functions.

Accordingly, there is no CLN4 model explaining lysosomal failure.

CSPa is an evolutionary conserved neuroprotective co-chaperone of Hsc70 and required to main-

tain synaptic function and prevent neurodegeneration (Burgoyne and Morgan, 2011;

Burgoyne and Morgan, 2015; Zinsmaier, 2010). Gene deletions in flies and mice cause progressive

locomotor defects, paralysis and premature death due to neurodegeneration (Chandra et al., 2005;

Fernández-Chacón et al., 2004; Umbach et al., 1994; Zinsmaier, 2010; Zinsmaier et al., 1994).

On SVs, CSPa forms a molecular chaperone complex with Hsc70 for a selected set of clients, which

include SNARE proteins and dynamin (Chandra et al., 2005; Nie et al., 1999; Sharma et al., 2012;

Sharma et al., 2011; Zhang et al., 2012). Maintaining SNARE and dynamin function is likely key to

CSP’s neuroprotective role (Burgoyne and Morgan, 2011; Rozas et al., 2012; Sharma et al., 2012;

Sharma et al., 2011).

The CLN4 causing dominant mutations L115R and L116D are clustered in the palmitoylated cyste-

ine-string (CS) domain of CSPa, which mediates CSPa’s secretory trafficking to axon terminals, its SV

association, and its dimerization (Arnold et al., 2004; Chamberlain and Burgoyne, 1998;

Greaves and Chamberlain, 2006; Greaves et al., 2008; Ohyama et al., 2007; Stowers and Isacoff,

2007; Swayne et al., 2003). Palmitoylation of the CS domain enables CSPa’s export from the ER

and Golgi (Chamberlain and Burgoyne, 1998; Greaves and Chamberlain, 2006; Greaves et al.,

2008; Ohyama et al., 2007; Stowers and Isacoff, 2007). Palmitoylation must then be maintained

for CSPa’s association with synaptic vesicle precursors (SVPs) and/or SVs, presumably to due to the

short lifetime of palmitoylation (Fukata and Fukata, 2010). The latter has been indicated by much

reduced synaptic levels of CSP in loss of function mutants of the synaptic palmitoyl-transferase

HIP14/DHHC17 (Ohyama et al., 2007; Stowers and Isacoff, 2007). Notably, there is a link between

CSPa’s degree of lipidation and lysosomal dysfunction. In a lysosomal disease mouse model of

Mucopolysaccharidosis type IIIA (MPS-IIIA), palmitoylation of CSPa was decreased and its proteaso-

mal degradation was increased (Sambri et al., 2017). Since overexpression (OE) of CSPa in MPS-IIIA

mice ameliorated their presynaptic defects, neurodegeneration, and prolonged survival, CSPa could

be a critical factor for the progression of many lysosomal diseases (Sambri et al., 2017).

Post-mortem analysis of CLN4 patient brains suggests that dominant CLN4 mutations have two

key pathological effects: to reduce monomeric levels of lipidated CSPa and promote the formation

of high-molecular weight CSPa protein aggregates/oligomers that are ubiquitinated (Greaves et al.,

2012; Henderson et al., 2016; Nosková et al., 2011). Similar effects of the mutations were seen in

HEK293T, PC12 cells, and fibroblasts from CLN4 carriers (Benitez and Sands, 2017; Greaves et al.,

2012; Zhang and Chandra, 2014). In vitro, CLN4 mutant CSPa aggregates form in a time-, concen-

tration- and temperature-dependent manner (Zhang and Chandra, 2014). Palmitoylation of CSPa

promotes aggregation (Greaves et al., 2012), although it is not essential (Zhang and Chandra,

2014). In addition, post-mortem brains of CLN4 patients exhibit large scale changes in protein pal-

mitoylation (Henderson et al., 2016). CLN4 mutations have no adverse short-term effects on CSPa’s

co-chaperone functions in vitro, including activation of Hsc70’s ATPase activity, or the binding to

chaperone clients like SNAP25 and dynamin (Zhang and Chandra, 2014). However, during pro-

longed incubation, the ability of mutant CSPa to stimulate Hsc70’s ATPase activity declines consider-

ably (Zhang and Chandra, 2014).

Several mechanisms of CLN4-induced neurodegeneration have been suggested. As with other

neurodegenerative diseases, progressive aggregation of mutant CSPa alone may account for the

dominant nature of CLN4 mutations (Greaves et al., 2012; Henderson et al., 2016; Nosková et al.,

2011; Zhang et al., 2012). In turn, this may progressively deplete total CSPa levels such that it

causes a haplo-insufficiency that triggers neurodegeneration (Greaves et al., 2012; Nosková et al.,

2011; Zhang and Chandra, 2014). Consistent with this possibility, one-year old heterozygous CSPa

KO mice develop a moderate motor defect that is characterized by a reduced ability to sustain

motor unit recruitment during repetitive stimulation (Lopez-Ortega et al., 2017). Alternatively,

aggregating CSPa may have a dominant-negative effect and sequester WT CSPa (Greaves et al.,

2012; Henderson et al., 2016; Zhang et al., 2012). However, the link between CLN4 mutations,
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lysosomal dysfunction and neurotoxicity remains unclear. Therefore, an animal model may provide

critical insight into molecular and cellular mechanisms underlying CLN4 disease.

Here, we generated two Drosophila models for CLN4 by expressing either CLN4 mutant hCSPa

or dCSP in fly neurons. The humanized fly model has the unique advantage of being able to differen-

tially visualize CLN4 mutant hCSPa and WT dCSP. We show that both fly models replicate all key

pathogenic biochemical properties of CLN4, including decreased monomeric CSP levels, increased

levels of high-molecular weight, and ubiquitinated CSP oligomers. Further analysis revealed novel

insights into mechanisms underlying CLN4 pathology.

Results

Generation of a Drosophila CLN4 model
We generated a Drosophila model of CLN4 by expressing the disease-causing human proteins

hCSPa-L115R, hCSPa-L116D (Figure 1A; denoted as L115 and L116 from now on) and the corre-

sponding WT hCSPa control from a common genomic phi31-attP insertion site under the transcrip-

tional control of the yeast Gal4-UAS expression system (Brand and Perrimon, 1993). Unless

Figure 1. Generation of a Drosophila CLN4 model. (A) Structure of CSP and position of CLN4 mutations in

the cysteine-string (CS) domain of hCSPa and dCSP. CSP’s N-terminal J domain, linker domain and C-terminus are

indicated. (B) Larval VNC of animals expressing WT hCSPa in neurons from a single transgene with an elav driver

immunostained for hCSPa and endogenous dCSP. Scale bar, 20 mm. (C) Larval NMJs of control and animals

expressing WT hCSPa immunostained for hCSPa, dCSP, and HRP marking the presynaptic plasma membrane.

Scale bar, 5 mm. (D) Adult lifespan of control (dcspX1/+, black), cspX1/R1 deletion mutants (green) and cspX1/R1

mutants expressing WT hCSPa (blue), hCSP-L115, (orange), hCSPa-L116 (red), or dCSP2 (purple) with an elav

driver.

DOI: https://doi.org/10.7554/eLife.46607.002

The following figure supplement is available for figure 1:

Figure supplement 1. Phenotypic effects of CLN4 mutations.

DOI: https://doi.org/10.7554/eLife.46607.003
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otherwise indicated, we used the pan-neuronal elav-Gal4 driver C155 (Lin and Goodman, 1994) to

express these proteins exclusively in otherwise WT neurons (w1118).

To evaluate whether WT hCSPa is at least partially functional in fly neurons, we first determined

whether neuronally expressed hCSPa is properly palmitoylated and targeted to SVs. This analysis

was aided by the availability of species-specific antibodies that discriminate between hCSPa and

dCSP (Figures 1B–C and 2A; Figure 1—figure supplement 1A). Neuronally expressed hCSPa was

efficiently trafficked to axon terminals and co-localized with endogenous dCSP in the neuropil of the

larval ventral nerve cord (VNC; Figure 1B) and larval neuromuscular junctions (NMJs; Figure 1C).

Consistent with the normal trafficking of hCSPa, the majority of neuronally expressed hCSPa was

palmitoylated, which was confirmed by treating larval protein extracts with 0.5 M hydroxylamine

(Figure 1—figure supplement 1A).

Figure 2. CLN4 mutations cause dose-dependent oligomerization of hCSPa in neurons. WT and mutant hCSPa (L115/L116) were expressed in larval

neurons of white1118 animals (control) with an elav driver from one or two transgenes (2x). (A) Western blot of larval brain protein extracts probed for

hCSPa. Signals for SDS-resistant hCSPa oligomers (OM), lipidated monomeric hCSP (LM), and non-lipidated hCSP (NLM) are indicated. b-tubulin was

used as loading control. (B) Western blots probed for hCSPa or lysine-linked-ubiquitin of hCSPa-immunoprecipitated extracts from adult heads of

indicated genotypes. Signals for IgG heavy chain are indicated. (C) Average oligomer/monomer ratios (N = 5). (D–F) Levels of lipidated (D), non-

lipidated (E), and total hCSPa (F) normalized to WT hCSPa (N = 6). (G–I) Dosage-dependent increase of hCSPa oligomer (G), lipidated (H), and non-

lipidated monomer levels (I). Signals were normalized to loading control and plotted as n-fold change from 1-copy expression of WT hCSPa (N = 6). (J)

Levels of monomeric dCSP shown as n-fold change from control (N = 3). Graphs display mean ± SEM. Statistical analysis used one-way ANOVA (C–F, J)

or two-tailed unpaired t test (G–I); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.004
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Next, we tested whether hCSPa can functionally replace endogenous dCSP and restore the pre-

mature lethality of flies lacking dCSP (Zinsmaier et al., 1994). Flies and mice lacking CSP due to a

gene deletion exhibit progressive neurodegeneration, paralysis and premature death (Fernández-

Chacón et al., 2004; Zinsmaier et al., 1994). Pan-neuronal elav-driven expression of normal hCSPa

from one transgenic copy in homozygous dcsp deletion mutants significantly restored adult lifespan

from ~4–5 days to 15–20 days (LD50 p<0.001; Figure 1D). In comparison, expression of fly dCSP2

also restored adult lifespan only partially (Figure 1D). Even though this rescue was only partial, it

confirms that hCSPa is functional in flies, which made a CLN4 Drosophila model using human pro-

teins tenable.

Notably, neuronal expression of hCSP-L115 and -L116 in a dcsp null background was able to par-

tially rescue the lifespan deficit (p<0.001, LD50), although not nearly to the extent of WT hCSPa

(Figure 1D). This indicates that CLN4 mutant hCSPa proteins are at least partially functional.

CLN4 mutations cause formation of SDS-resistant and ubiquitinated
hCSPa protein oligomers in neurons
In humans, CLN4 mutations reduce levels of lipidated monomeric hCSPa and drive the formation of

high-molecular weight, SDS-resistant hCSPa protein oligomers that are ubiquitinated (Benitez et al.,

2015; Greaves et al., 2012; Henderson et al., 2016; Nosková et al., 2011). Both features were

also present when mutant hCSP-L115 or -L116 were expressed in non-neuronal and neuronal mam-

malian cell cultures with L115 exhibiting stronger effects than L116 (Diez-Ardanuy et al., 2017;

Greaves et al., 2012; Henderson et al., 2016; Zhang and Chandra, 2014).

To test whether expression of CLN4 mutant hCSPa in Drosophila neurons recapitulates the path-

ological features of post-mortem human brains, we analyzed the properties of CLN4 mutant hCSPa

by immunoblotting, using protein extracts from larval VNCs. When expressed from a single trans-

gene with an elav-Gal4 driver, lipidated monomeric protein levels of WT hCSPa were estimated to

be 0.98 ± 0.23 times of endogenous dCSP levels (data not shown). In comparison, levels of lipidated

monomeric hCSP-L115 and -L116 were significantly reduced to 13% and 40% of WT hCSPa levels,

respectively (p<0.003, Figure 2A,D). Levels of lipidated hCSP-L115 monomers were significantly

lower than hCSP-L116 (p<0.01, Figure 2D). Levels of non-lipidated monomeric hCSP-L115 and -

L116 were comparable to WT hCSPa levels (p>0.2; Figure 2A,E).

Both CLN4 mutations induced the formation of SDS-resistant, high-molecular weight hCSPa

oligomers in Drosophila neurons (p<0.002; Figure 2A,C). In contrast, WT hCSPa oligomers were

barely detectable (Figure 2A,C). The mutation L115 triggered oligomerization to a significantly

larger degree than L116 (p<0.006; Figure 2C), which is consistent with the lower levels of hCSP-

L115 monomers (Figure 2D). Increasing levels of DTT in the buffer to reduce disulfide bonds had lit-

tle to no effect on the levels and size of hCSP-L115 and -L116 oligomers, which varied widely

from ~250 kDa to more than 500 kDa (not shown).

To determine whether CLN4 mutant hCSPa oligomers are ubiquitinated, we immunoprecipitated

hCSPa from larval brain cell lysates and probed western blots with an antibody that specifically

detects K29-, K48-, and K63-linked mono- and poly-ubiquitinated proteins but not free ubiquitin

monomers (Fujimuro et al., 1994). hCSPa antibodies immunoprecipitated both hCSPa monomers

and oligomers (Figure 2B) but not endogenous dCSP (not shown). The anti-ubiquitinated protein

antibody only recognized a strong ~250 kD protein band in precipitates from L115 and L116 mutant

brains, which correlated in size with high-molecular weight hCSPa oligomers (Figure 2B). No ubiqui-

tin-positive signals corresponding to CLN4 mutant hCSPa monomers, WT hCSPa monomers or

oligomers were detected (Figure 2B). Taken together, these data suggest that expression of CLN4

mutant hCSPa in fly brains reproduces the critical biochemical pathological features of post-mortem

human CLN4 brains (Greaves et al., 2012; Henderson et al., 2016; Nosková et al., 2011).

Oligomerization of CLN4 mutant hCSPa is dose-dependent
Oligomerization of purified CLN4 mutant hCSPa proteins is dose-dependent in vitro (Zhang and

Chandra, 2014). To test whether this is also the case in vivo, we doubled the gene dosage of WT

and CLN4 mutant hCSPa by expressing two copies of the respective transgenes with a single elav-

Gal4 driver. In comparison to the expression from one transgene, levels of lipidated and non-lipi-

dated monomeric WT hCSPa increased ~2.4 fold and ~3.3 fold, respectively (p<0.01, Figure 2A,D–
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E,H–I). Yet, WT hCSP oligomer levels increased only 1.5-fold (p<0.005; Figure 2G) and remained

low such that the oligomer/monomer ratio was not altered (p=0.9; Figure 2C).

In comparison to single copy gene expression, doubling gene dosage increased levels of lipi-

dated hCSP-L115 monomers only modestly by 1.5-fold (p<0.04) while hCSP-L116 levels were not sig-

nificantly affected (p=0.3; Figure 2H). However, levels of hCSP-L115 and -L116 oligomers increased

4.6- and 3.6-fold, respectively (p<0.04; Figure 2G). Due to the disproportional increase of CLN4

mutant oligomers, the oligomer/monomer ratio increased from 0.9 to 2.8 for hCSP-L115 and from

0.4 to 1.8 for hCSP-L116 (Figure 2C). Hence, oligomerization of hCSP-L115 and -L116 is dose-

dependent.

Doubling expression disproportionally increased levels of non-lipidated hCSP-L115 and -L116

monomers 8.6- and 4.6-fold, respectively (p<0.002, Figure 2I). The increase of non-lipidated mutant

monomers is unlikely due to a rate limiting effect on mechanisms mediating palmitoylation because

levels of non-lipidated WT monomers increased much less than mutant monomers, even though

overall levels of lipidated WT monomers were much higher (Figure 2E).

Doubling gene dosage of hCSP-L115 and -L116 expression increased total overall protein levels

3.0 and 3.9-fold, respectively (p<0.002; Figure 1—figure supplement 1D). It also preserved the rel-

ative difference in overall protein levels between WT and CLN4 mutants (Figure 2F). Since lipidated

mutant monomer levels remained unaltered (p>0.1; Figure 2D), the increase in overall protein levels

of CLN4 mutant hCSPa is essentially due to increased levels of oligomers and non-lipidated mono-

mers (p<0.03; Figure 2C,E).

Levels of endogenous dCSP monomers were not affected by low or high expression of CLN4

mutant hCSPa (Figure 2J). Notably, high-molecular weight oligomers of endogenous WT dCSP

were not detectable after expression of CLN4 mutant hCSPa (Figure 1—figure supplement 1C),

which contrasts a previous study detecting small amounts of overexpressed GFP-tagged WT hCSPa

in CLN4 mutant hCSPa oligomers (Greaves et al., 2012).

Oligomerization of neuronally expressed CLN4 mutant hCSPa precedes
lethality
Elav-driven neuronal expression of WT or CLN4 mutant hCSPa from a single transgene had no effect

on viability during development (Figure 3A) and adult lifespan (not shown). However, doubling

gene expression levels severely reduced viability during development of hCSP-L115 and -L116 ani-

mals in comparison to WT hCSPa expression (p<0.0001; Figure 3A). Adult L115- and L116-mutant

escapers were initially sluggish in comparison to WT hCSPa but improved within ~10 days and exhib-

ited a normal lifespan (not shown), which may be due to a decrease in the elav-driven expression.

There was no significant difference in the viability between L115 and L116 mutant animals (p=0.91;

Figure 3A). The sharp drop in viability induced by 2-copy expression of hCSP-L115 and -L116 indi-

cates a tight threshold of neurotoxicity, which might be linked to the more than 3.6-fold increase of

Figure 3. CLN4 mutations cause dose-dependent lethality and eye degeneration. (A) Viability of animals expressing WT, L115, or L116 mutant hCSPa

pan-neuronally from one or two transgenes (2x) with an elav driver (N � 3, n � 740). (B) Images of adult fly eyes expressing WT hCSPa or hCSPa-L116

with a GMR-Gal4 driver at 23˚C and 28˚C. (C) Semi-quantitative assessments of CLN4-induced eye phenotypes (N � 9). Graphs display mean ± SEM.

Statistical analysis used one-way ANOVA (A) and Kruskal-Wallis test (C); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.005
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CLN4 mutant CSPa oligomers and/or the more than 4.6-fold increase of non-lipidated monomers

(Figure 2G,I).

Expression of CLN4 mutant hCSPa with the pan-neuronal nSyb-Gal4 driver also caused a dose-

dependent lethality, which was similar to that of the elav-Gal4 driver (data not shown). In contrast to

the elav-driven expression, CLN4 mutant adult escapers were very sluggish and hardly moved. They

were also unable to properly inflate their wings (Figure 1—figure supplement 1B) and died prema-

turely within 1–3 days.

To further examine potential degenerative effects in adults, we exclusively expressed hCSP-L116

in the eye by using the eye-specific GMR-Gal4 driver (Hay et al., 1997). High-level expression of WT

hCSPa from a line with multiple transgene insertions (see Materials and methods) had essentially no

effect at 23˚C or 28˚C in comparison to non-expressing control (p>0.9; Figure 3B–C). In comparison,

expression of hCSP-L116 at 23˚C severely impaired the size, integrity, and pigmentation of the eye

(p<0.0001; Figure 3B–C). Raising flies at 28˚C to increase Gal4 activity and thereby gene expression

enhanced the severity of the degenerative phenotype of L116-mutant eyes (p<0.0001; Figure 3B–

C). This enhancement correlates with the dose-dependent increase in hCSP-L116 oligomerization

(Figure 2C,G) but the higher temperature may also increase misfolding and/or oligomerization of

mutant hCSPa.

CLN4 mutations impair hCSPa’s synaptic localization
Previously, it has been suggested that CLN4 mutations may disrupt anterograde trafficking of CSPa

due to either oligomer formation or impaired palmitoylation of monomers (Benitez et al., 2011;

Greaves et al., 2012; Nosková et al., 2011). However, whether CLN4 mutations indeed affect the

synaptic localization of CSPa remained unclear. To assess this, we triple-immunostained 3rd instar

larval NMJs with antibodies against hCSPa, endogenous dCSP marking SVs, and HRP marking the

neuronal plasma membrane. In comparison to WT hCSPa, levels of mutant hCSP-L115 and -L116

were significantly reduced at synaptic boutons (p<0.013; Figure 4A,H). Expression of CLN4 mutant

or WT hCSPa had no effect on synaptic levels of endogenous WT dCSP at NMJs (p>0.6; Figure 4A,

I). Despite the reduced synaptic levels, mutant hCSPa still partially rescued the lifespan deficit of

dcsp deletion mutants, although not nearly to the extent of WT hCSPa (Figure 1D). This indicates

that CLN4 mutant hCSPa proteins are at least partially functional.

While hCSPa co-localized with endogenous dCSP uniformly in the periphery of synaptic boutons

(Figure 4A,C), hCSP-L115 and -L116 were enriched in brightly stained clusters that were more dis-

tant from the presynaptic membrane (Figure 4A,C). In comparison to control, CLN4 mutant hCSPa

also accumulated abnormally in axons of segmental nerves (Figure 4G) and the larval brain

(p<0.009; Figure 4B,J; Figure 4—figure supplement 1A). The size of CLN4 mutant hCSPa accumu-

lations in the larval brain was heterogeneous, ranging from ~500 nm in diameter to ~3 mm. Occasion-

ally, extreme accumulations of mutant hCSPa were observed at synaptic boutons of larval NMJs

(Figure 4—figure supplement 1C). The occurrence of abnormal hCSP-L115 and -L116 accumula-

tions was dose-dependent (not shown), which was most pronounced in axons of segmental nerves

(Figure 4G). Hence, CLN4 mutations reduce synaptic levels of hCSPa and cause a severe

mislocalization.

Abnormal accumulations of CLN4 mutant hCSPa contain WT dCSP and
ubiquitinated proteins
A fraction of the abnormal accumulations of hCSP-L115 and -L116 in axons (not shown) and somata

(Figure 4E and Figure 4—figure supplement 1A) contained significant amounts of endogenous WT

dCSP. Since WT dCSP was not detected together with high-molecular weight oligomers of CLN4

mutant hCSPa on Western blots (Figure 1—figure supplement 1C), this indicates that CLN4 mutant

hCSPa and WT dCSP may co-accumulate on intracellular membranes.

Theoretically, CLN4 mutant hCSPa could accumulate on ER, Golgi, or abnormal SVP membranes

during secretory trafficking. Alternatively, mutant hCSPa could accumulate on endosomal mem-

branes that are targeted for degradation. To test whether mutant hCSPa accumulations contain

ubiquitinated proteins indicative of prelysosomal membranes, we used antibodies that exclusively

detect ubiquitinated proteins but not monomeric ubiquitin (Fujimuro et al., 1994). Indeed, essen-

tially all CLN4 mutant hCSPa accumulations were immunopositive for ubiquitinated proteins in
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Figure 4. CLN4 mutations reduce synaptic hCSPa levels and cause abnormal accumulations with endogenous dCSP and ubiquitinated proteins in

axons and somata. WT, L115 or L116 mutant hCSPa were expressed in larval neurons with an elav-Gal4 driver from one (D–E, J–L) or two (A, H–I)

transgenes. Genotypes are indicated. (A) Larval NMJs immunostained for hCSPa, endogenous dCSP, and the neuronal membrane marker HRP. White

lines denote line scans shown in C. (B) Larval VNCs stained for hCSPa. (C) Plots of hCSPa and dCSP fluorescence from single line scans through

synaptic boutons (white lines in A). (D) Larval VNC segments stained for hCSPa (red) and lysine-linked-ubiquitin visualizing ubiquitinated proteins (Ubi-

protein). (E) Larval brain segments stained for hCSPa and dCSP. (F) Synaptic bouton of larval NMJ stained for hCSPa and Ubi-proteins. (G) Proximal

larval segmental nerves stained for hCSPa. (H–I) Average levels of hCSPa (H) and dCSP (I) at synaptic boutons of larval NMJs (N > 4). (J) Cumulative

area of abnormal hCSPa accumulations in larval brains (N � 3). (K–L) Average number of accumulations immunopositive for both hCSPa and ubiquitin

(K), or only positive for ubiquitin (L) but not hCSPa (N � 4). Scale bars: 5 mm (A), 20 mm (B, G), 15 mm (D), 10 mm (E), 5 mm (F). Graphs display

mean ± SEM. Statistical analysis used one-way ANOVA (H–L); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.006

The following figure supplements are available for figure 4:

Figure supplement 1. hCSP-L115 and -L116 abnormally accumulate with endogenous dCSP and ubiquitinated proteins.

Figure 4 continued on next page
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somata and synaptic boutons of NMJs (Figure 4D,F, and Figure 4—figure supplement 1B). In com-

parison to larvae expressing WT hCSPa, the amount of hCSPa accumulations containing ubiquiti-

nated proteins was significantly increased in CLN4 mutants (p<0.001; Figure 4K). Hence, the

abnormal accumulations of CLN4 mutant hCSPa are either enriched in ubiquitinated hCSPa oligom-

ers and/or contain other ubiquitinated proteins that are potentially destined for protein

degradation.

The co-immunostainings against hCSPa and ubiquitinated proteins also revealed a substantial

increase in the levels of ubiquitinated proteins that was not associated with accumulations of CLN4

mutant hCSPa (Figure 4D and Figure 4—figure supplement 1B). Brains of control (w1118) and lar-

vae expressing WT hCSPa contained a similar amount of ubiquitinated protein foci that were nega-

tive for hCSPa (Figure 4L), indicating that expression of WT hCSPa exerts little to no effect on

protein ubiquitination. In comparison, the amount of ubiquitinated protein foci that were not associ-

ated with mutant hCSPa was significantly increased in brains expressing hCSPa-L115 or -L116

(p<0.03; Figure 4L). Hence, CLN4 mutant hCSPa may directly or indirectly affect a step of protein

homeostasis that that leads to excessive protein ubiquitination of unrelated proteins.

CLN4 mutations in fly and human CSP have similar effects
To validate the observed phenotypes of CLN4 mutant hCSPa and exclude that they are not an arti-

fact of expressing mutant human proteins in fly neurons, we expressed CLN4 mutant dCSP2 (dCSP2)

containing the mutations V117R and I118D, which are analogous to the mutations L115R and L116D

in hCSPa (Figure 1A). All fly transgenes were inserted at the same transgenic insertion site as the

human transgenes. Elav-driven neuronal expression of dCSP2, dCSP-V117, or -I118D from a single

transgene had no effect on viability during development at 23˚C (not shown) and 27˚C (p>0.4; Fig-

ure 4—figure supplement 2A). Adult lifespan at 27˚C was also normal (Figure 4—figure supple-

ment 2D). However, doubling gene expression levels severely reduced the viability of animals

expressing WT dCSP, dCSP-V117 or -I118D (Figure 4—figure supplement 2B). Notably, the few

adult WT dCSP and dCSP-V117 animals exhibited rough eyes, abnormally inflated wings, impaired

locomotion and died within a day (not shown). Adult flies expressing dCSP-I118 were never

observed.

Like for CLN4 mutant hCSPa, levels of monomeric lipidated dCSP-V117 and -I118 were reduced

in comparison to WT dCSP (Figure 4—figure supplement 2C). Similar to its human analog L115

(Figure 2A), V117 reduced levels of monomeric dCSP more severely (Figure 4—figure supplement

2C). In addition, both V117 and I118 triggered the formation of SDS-resistant, high-molecular weight

oligomers (Figure 4—figure supplement 2C), which were absent for WT dCSP2 expression.

Expressing dCSP2-V117 and -I118 in dcsp deletion mutants had similar effects (Figure 4—figure

supplement 2C). Hence, the pathological features of the dominant CLN4 mutations reducing levels

of lipidated CSP monomers and triggering protein oligomerization are conserved between fly and

human CSP.

To determine the subcellular localization of CLN4 mutant dCSP in fly neurons, we expressed nor-

mal and CLN4 mutant proteins from a single transgene in neurons of homozygous dcsp deletion null

mutants. Like for mutant hCSPa, levels of dCSP-V117 and -I118 were reduced at synaptic boutons of

larval NMJs and the neuropil of the larval VNC (Figure 4—figure supplement 2E–F). Mutant dCSPs

also accumulated abnormally in axons and neuronal somata of the larval brains (Figure 4—figure

supplement 2E).

CLN4 mutant hCSPa accumulates on prelysosomal endosomes
To further define the nature of the co-accumulations of CLN4 mutant hCSPa with ubiquitinated pro-

teins, we tested a number of organelle markers for a potential colocalization. Mutant hCSPa

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.46607.007

Figure supplement 2. Effects of CLN4-analogous mutations in dCSP.

DOI: https://doi.org/10.7554/eLife.46607.008
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accumulations did not colocalize with the endoplasmic reticulum (ER), cis-, or trans-Golgi complexes

(Figure 5A), which excluded a major defect in ER or Golgi trafficking.

A large fraction of mutant hCSPa co-accumulated with hLAMP1-GFP (Figure 5B–C), which labels

a heterogeneous population of organelles ranging from pre-degradative endosomal species to deg-

radative lysosome (Cheng et al., 2018; Saftig and Klumperman, 2009; Yap et al., 2018). A similar

large fraction of mutant hCSPa co-accumulated with hepatocyte growth factor regulated tyrosine

kinase substrate (HRS, Figure 5C,E), which is a critical component of ‘endosomal sorting complexes

required for transport’ (ESCRT) mediating the transition from early to late endosomes (Raiborg and

Stenmark, 2009). Only a small fraction co-localized with coexpressed Rab5-GFP (not shown) or the

autophagosomal marker ATG8/LC3-GFP (Figure 5D). No co-localization was observed with lyso-

somal Spinster-GFP (Figure 5B; Rong et al., 2011; Sweeney and Davis, 2002) or the late endoso-

mal protein Rab7 (not shown; Guerra and Bucci, 2016).

Notably, endosomes accumulating mutant hCSPa did not co-localize with the co-expressed phos-

phatidylinositol 3-phosphate (PI3P) sensor FYVE-GFP (Figure 5B), even though HRS requires PI3P for

membrane association (Mayers et al., 2013; Raiborg et al., 2001a). Hence, this suggests that all

Figure 5. CLN4 mutant hCSPa accumulates on LAMP1- and HRS-positive endosomes. hCSP-L116 was expressed

in larval neurons with an elav-Gal4 driver from one transgene. As indicated, respective reporter transgenes were

co-expressed. (A) Neurons of larval VNCs co-immunostained for hCSPa and the ER marker GFP-KDEL, the cis-

Golgi marker GMAP, or the trans-Golgi marker Golgin 245. (B) Neurons co-immunostained for hCSPa (red) and

co-expressed hLAMP1-GFP, Spinster-GFP or the PI3P marker FYVE-GFP. (C) Fraction of organelle markers

colocalizing with hCSPa accumulations (mean ± SEM; n � 65, N � 4). (D–E) Segments of larval brains costained for

hCSPa and ATG8/LC3-GFP (D) or HRS (E). (F) Synaptic boutons at larval NMJs co-stained for hCSPa and HRS. (G)

Neuron co-immunostained for hCSPa and coexpressed GFP-nSyb. Scale bars: 10 mm (D–E), 5 mm (A–B, F–G).

DOI: https://doi.org/10.7554/eLife.46607.009

The following figure supplement is available for figure 5:

Figure supplement 1. RNAi-mediated KD of TSG101 causes accumulation of dCSP on HRS-positive endosomes.

DOI: https://doi.org/10.7554/eLife.46607.010
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PI3P binding sites may be occupied on the abnormal endosomes accumulating mutant hCSPa. Alter-

natively, PI3P may be absent from these endosomes, which would imply an abnormal retention of

HRS. Taken together, these data suggest that CLN4 mutant hCSPa accumulates on prelysosomal

endosomes that are inefficiently processed for lysosomal fusion.

Consistent with the colocalization of mutant hCSPa with ubiquitinated proteins at axon terminals

(Figure 4F), HRS also colocalized with mutant hCSPa at synaptic boutons of NMJs (Figure 5F). This

raised the possibility that hCSPa-positive endosomes may originate from synaptic terminals. Consis-

tently, hCSPa-positive accumulations co-localized with SV-associated Synaptobrevin-GFP (Syb-GFP;

Figure 5C,G) while a small subset co-localized with the synaptic plasma membrane protein Syntaxin

1A (not shown). The CSPa chaperone clients Dynamin and SNAP-25 (Sharma et al., 2011;

Zhang et al., 2012) did not co-localize with hCSPa-positive endosomes (not shown).

CLN4 mutations cause various ultrastructural endo-membrane
abnormalities in axons and neuronal somata
Since CLN4 mutant hCSPa abnormally accumulates on prelysosomal endosomes, we used electron

microscopy to detect potential ultrastructural defects in membrane trafficking. Expression of hCSPa-

L115 and -L116 induced highly abnormal membrane structures in neuronal somata, the neuropil of

the larval VNC, and axons of segmental nerves (Figure 6). The most prominent and frequent abnor-

mal structures were multilamellar ‘membrane whirls’ of various shapes and density that contain

highly electron-dense membranes (arrowheads, Figure 6A–B,C–D,F–G). Like endosomal hCSPa-pos-

itive accumulations detected by confocal microscopy, membrane whirls were most frequently

observed in the neuropil of the VNC and axons of segmental nerves (Figure 6C–D). To a lesser

degree, they were present in the cytoplasm of neuronal somata (Figure 6A–B,F–G) and occasionally

the nucleoplasm (not shown). Sporadically, whirls were found on opposite sides of plasma mem-

branes of neighboring cells (arrowhead, Figure 6B).

In addition to electron-dense membrane whirls, a number of secondary (residual) lysosomes

(Figure 6A,E) and abnormal autophagosome- and/or amphisome-like structures were present (white

arrowhead, Figure 6F–I). Interestingly, EM-dense membranes forming whirls may interact with auto-

phagosomes (arrow, Figure 6G). Notably, somewhat similar ‘membrane whirl’ and autophagosome-

like structures were observed in various ESCRT loss of function mutants including TSG101, Snf7/

CHMP4B, VPS4 and CHMP2B (Doyotte et al., 2005; Lee et al., 2007; Razi and Futter, 2006).

Next to abnormal membranes structures, homogenous electron-dense accumulations of unknown

nature were frequently present in cellular regions of CLN4 mutant larval brains (arrow, Figure 6B,H).

A limiting membrane was not detectable for these EM-dense accumulations, which are reminiscent

but not identical of granular osmophilic deposits (GRODs) seen in post-mortem human tissue of

CLN4 patients (Anderson et al., 2013; Burneo et al., 2003; Nosková et al., 2011; Virmani et al.,

2005). Since these structures were absent from the VNC neuropil and segmental nerves, they are

unlikely a correlate for the abnormal endosomal accumulations of mutant hCSPa in axons.

Finally, a number of neurons that contained abnormal membrane structures also exhibited a

severe fragmentation of the nuclear envelope and bloated Golgi cisternae (Figure 6B), which

together likely indicate a late stage of neuronal dysfunction and neurodegeneration (Nixon, 2006).

Loss of ESCRT function causes endosomal accumulations of
endogenous dCSP but no oligomerization
To verify that WT CSP is normally trafficked through the endo-lysosomal pathway, we impaired

ESCRT function by an RNAi-mediated knock down (KD) of tumor suppressor gene 101 (TSG101),

which is part of the ESCRT-I complex acting downstream of HRS and required for late endosome for-

mation (Doyotte et al., 2005; Razi and Futter, 2006). Neuronal KD of TSG101 caused a mislocaliza-

tion of endogenous dCSP, which accumulated on HRS-positive endosomes in the neuropil and

neuronal somata of the larval VNC (Figure 5—figure supplement 1A). Abnormal dCSP accumula-

tions were also present in central regions of synaptic boutons of larval NMJs (Figure 5—figure sup-

plement 1B). Hence, WT CSP is likely being degraded though the endo-lysosomal pathway. This

conclusion is consistent with the low amounts of lysosome-associated CSPa in human fibroblasts,

N2A cells, mouse neurons, and lysosome-enriched fractions (Benitez and Sands, 2017;

Chapel et al., 2013; Schröder et al., 2007; Tharkeshwar et al., 2017).
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Figure 6. CLN4 mutations cause abnormal endomembrane structures and EM-dense accumulations. TEM micrographs of ultrathin (70 nm) sections

from larval VNCs expressing hCSP-L115 or -L116 with an elav driver from two transgenic copies. Genotypes are indicated. (A–B) Neuronal somata

containing electron-dense membrane whirls (black arrowheads), large electron-dense extracellular deposits (black arrow, (B), and occasionally ‘residual

lysosomes’ (white arrow, (A), bloated Golgi Apparati (B), and degenerating nuclear membranes (white arrow, (B). (C) Neuropil of larval VNC containing

membrane whirls in neuronal processes (black arrowheads). (D) Sagittal section of larval segmental nerve containing membrane whirls and abnormal

autophagosome-like structures in axons of sensory and motor neurons. (E–H) High magnification images showing residual lysosome with a diverse

variety of intraluminal vesicles (E), various forms of EM-dense membrane whirls (F–G) and autophagosome-like structures (white arrowheads, (G–I) that

may interact with EM-dense structures (white arrow, (G), and an electron-dense extracellular deposit (H). Scale bars: 1 mm (A–C), 200 nm (D–E).

DOI: https://doi.org/10.7554/eLife.46607.011
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Notably, KD of TSG101 essentially mimicked the abnormal endosomal accumulation of CLN4

mutant hCSPa-L115 and -L116 with one important exception. In contrast to hCSPa-L115 and -L116

expression, KD of TSG101 did not cause the formation of high-molecular weight dCSP oligomers

(Figure 5—figure supplement 1C), indicating that CSP oligomer formation is independent of

impaired ESCRT function. In contrast to a recent report showing that impaired lysosomal activity in

mouse neurons decreases CSPa’s palmitoylation (Sambri et al., 2017), impaired prelysosomal

ESCRT function had no effect on the palmitoylation state of dCSP.

The CLN4 alleles hCSP-L115 and -L116 are hypermorphic gain of
function mutations
Several hypotheses regarding the genetic nature of the dominant CLN4 mutations have been sug-

gested. Mutant hCSPa monomers and/or oligomers could act as dominant-negatives that progres-

sively sequester WT hCSPa and deplete the functional hCSPa pool, which in turn could trigger

neurodegeneration (Greaves et al., 2012; Nosková et al., 2011; Zhang and Chandra, 2014). Alter-

natively, CLN4 mutant alleles may induce toxicity via a different gain of function (GOF) mechanism

(Greaves et al., 2012; Henderson et al., 2016; Zhang et al., 2012). Such a GOF mutation could

increase a normal activity of the protein (hypermorphic mutation) or introduce a new activity (neo-

morphic mutation). In theory, either type of mutation could trigger neurotoxicity.

To genetically address the genetic nature of CLN4 mutations, we examined to what degree alter-

ations of WT dCSP or hCSPa levels may affect L115 and L116 phenotypes. The rationale behind

these genetic experiments is simple: lowering WT levels should enhance dominant-negative pheno-

types, reduce hypermorphic phenotypes due to an increased normal activity, or have no effect on

neomorphic phenotypes due to a new protein activity (Muller, 1932; Wilkie, 1994).

Reducing endogenous WT dCSP levels by expressing two transgenic copies of CLN4 mutant

hCSP in heterozygous dcsp deletion mutants significantly suppressed the lethality induced by CLN4

mutations such that significantly more animals reached adulthood (p<0.02, Figure 7A). Conversely,

increasing levels of WT hCSPa by co-expressing WT hCSPa with either one copy of hCSP-L115 or -

L116 significantly reduced viability to ~54% and 48%, respectively (p<0.001, Figure 7B–C). The

lethality induced by co-expression of WT and CLN4 mutant hCSPa was significantly higher than the

lethality induced by two copy expression of WT hCSPa (p<0.03, Figure 7B–C). Hence, the modulat-

ing effects of altered WT dCSP or hCSPa levels on L115- and L116-induced lethality essentially

exclude the possibility that either mutation acts as a dominant-negative. Instead, these effects are

consistent with the genetic characteristics of a hypermorphic GOF mutation (Muller, 1932;

Wilkie, 1994).

Next, we determined whether altered WT CSP levels may modulate the tendency of CLN4 mutant

hCSPa to form abnormal high-molecular weight oligomers. Reducing WT dCSP levels by expressing

CLN4 mutant hCSPa in hetero- or homozygous dcsp deletion mutants significantly attenuated the

levels of SDS-resistant hCSP-L116 and -L115 oligomers (p<0.05; Figure 7D,F). Levels of hCSP-L116

and -L115 oligomers were attenuated to a similar degree (p>0.5; Figure 7F). Conversely, increasing

WT dCSP levels by co-expressing a WT transgene together with a single CLN4 mutant transgene

increased the amount of hCSP-L115 and L116 oligomers (p<0.007, Figure 7D,I). Coexpression of

WT hCSPa also significantly increased oligomerization of both hCSP-L116 and -L115 (p<0.008;

Figure 7E,L). In comparison, high-level overexpression of WT hCSPa from two transgenes did not

induce significant oligomerization (Figures 7E and 2A,C).

In contrast to the modulatory effects of WT CSP on mutant hCSPa oligomer levels, reducing or

even abolishing WT dCSP levels had no effect on the levels of lipidated monomeric hCSP-L115 and -

L116 (p>0.4; Figure 7G). Coexpressing WT dCSP2 or hCSPa with CLN4 mutant hCSPa increased

lipidated mutant hCSPa monomers (p<0.05; Figure 7J,M). Notably, coexpression of WT hCSPa

increased lipidated hCSP-L115 and -L116 monomers to levels that were similar to those of two copy

WT hCSPa expression (Figure 7M). This indicates that WT hCSPa may stabilize CLN4 mutant hCSPa

monomers.

Levels of non-lipidated monomeric CLN4 mutant hCSP were unaffected by reducing the gene

dosage of endogenous WT dCSP2 (p>0.3; Figure 7H). However, coexpression of either WT dCSP2

or hCSPa with CLN4 mutant hCSPa increased levels of non-lipidated mutant hCSPa monomers

(p<0.05; Figure 7K,N). At least the increase induced by WT hCSPa was non-additive since it was sig-

nificantly larger than the increase induced by doubling WT hCSPa expression (p<0.013; Figure 7N).
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Hence, increased levels of WT CSP may outcompete CLN4 mutant hCSPa for palmitoylation or,

alternatively, promote its depalmitoylation.

Finally, we tested whether altering levels of endogenous dCSP also affects other phenotypes of

the CLN4 fly model. Indeed, reducing dCSP levels by one gene copy significantly suppressed the

endosomal accumulation of both hCSP-L115 and -L116 in larval VNCs (p<0.05; Figure 8A–B). Reduc-

ing dCSP gene dosage also decreased the amount of accumulating ubiquitinated proteins in the

Figure 7. Altering wild type CSP levels modifies CLN4 phenotypes. WT hCSPa, hCSP-L115 or -L116 were expressed in neurons from one or two

transgenes (2x) with an elav driver in control (w1118), heterozygous cspX1/+, and homozygous cspX1/R1 deletion mutants, or co-expressed with WT hCSPa

or dCSP. Genotypes are indicated. (A–C) Effects of reducing endogenous dCSP (A) or co-expressing WT hCSPa (B–C) on the viability of hCSP-L115 and

-L116 mutant flies (N > 3; n > 144). (D–E) Immunoblots of protein extracts from larval VNC of indicated genotype probed for hCSPa and b-tubulin

(loading control). hCSPa oligomers (OM), lipidated (LM), non-lipidated hCSPa monomers (NLM), and unspecific signals (*) are denoted. (F–N) Effects of

reduced endogenous dCSP (F–H), increased dCSP (I–K), and increased WT hCSPa (L–N) levels on hCSPa oligomers (F, I, L), lipidated monomers (G, J,

M), and non-lipidated monomers (H, K, N). Signals were normalized to loading control and plotted as n-fold change of L115 or L116 levels when

expressed in a WT background (N = 5). Graphs display mean ± SEM. Statistical analysis used unpaired t test (A, I–L) or one-way ANOVA (B–C, F–H, M–

N); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.012
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larval VNC (p<0.04; Figure 8C). However, reduced dCSP levels significantly enhanced the already

reduced synaptic protein levels of hCSP-L115 and -L116 at larval NMJs (p<0.03; Figure 8D). The

underlying cause for the latter effect is unclear.

Taken together, the modulating effects of altering WT fly and human CSP levels on L115- and

L116-induced phenotypes in viability, mutant hCSPa oligomerization, accumulation on endosomes

and ubiquitinated proteins suggest that the hCSP-L115 and -L116 alleles are hypermorphic gain of

function mutations that increase an intrinsic activity. This conclusion is consistent with a recent study

showing similar gene dosage effects of WT CSPa on hCSP-L115R phenotypes in mouse CSPa-defi-

cient fibroblasts (Benitez and Sands, 2017). In addition, these findings uncover a correlation

between the reduced viability of CLN4 mutant flies, the degree of mutant hCSPa oligomerization

and the failure of degrading oligomers.

Partial loss of CSPa’s chaperone partner Hsc70-4 suppresses CLN4-
induced phenotypes
The hypermorphic nature of CLN4 mutations raised the possibility that at least some of the induced

phenotypes are caused by an abnormally increased co-chaperone activity of CSP with the molecular

chaperone Hsc70, which normally ensures efficient SV exo- and endocytosis by likely chaperoning

SNARE proteins and Dynamin (Chandra et al., 2005; Nie et al., 1999; Sharma et al., 2012;

Sharma et al., 2011; Zhang et al., 2012). To address this possibility, we tested whether altered lev-

els of SNARE proteins or Hsc70 may modify the eye phenotypes induced by GMR-driven expression

of CLN4 mutant hCSPa (Figure 9A).

Reducing endogenous Hsc70-4 (Hsc4) levels by expressing hCSP-L116 in heterozygous hsc4D356

deletion mutants (Bronk et al., 2001) significantly suppressed both the structural and depigmenta-

tion defects of L116 mutant eyes (p=0.005; Figure 9A,E). Co-expression of a UAS hairpin transgene

knocking down Hsc4 also suppressed the L116 eye phenotype (p=0.007; Figure 9A,E). However,

reducing the gene dosage of Hsc70-3 or Hsc70-5 had no effect (not shown), indicating that the sup-

pression of L116-mutant eye phenotypes by reduced levels of Hsc4 is not a general effect of Hsc70

proteins. Co-expression of either Syntaxin 1A (Syx1A) or neuronal Synaptobrevin (nSyb) with hCSP-

L116 enhanced the L116 eye phenotype (p<0.01; Figure 9A,D). Overexpression or RNAi-mediated

knockdown of SNAP25 had no effect (not shown), even though a heterozygous deletion of SNAP25

enhanced degenerative phenotypes of hCSPa knockout mice (Sharma et al., 2012). Individual

Figure 8. Effects of reduced dCSP levels on CLN4 mutant hCSPa localization and protein ubiquitination. WT hCSPa, hCSP-L115 or -L116 were

expressed in neurons with an elav driver in control (w1118), heterozygous cspX1/+, or homozygous cspX1/R1 deletion mutants. (A) Larval VNC stained for

hCSPa and dCSP. Genotypes are indicated. Scale bar, 20 mm. (B–D) Effects of reduced dcsp gene dosage on the accumulation of hCSP-L115 and -L116

in larval VNC (B, N � 3), ubiquitinated protein levels in larval VNCs (C, N � 4), and synaptic levels of hCSP-L115 and -L116 at larval NMJs (D, N � 4).

Signals were normalized and plotted as n-fold change to levels of elav-L115 and -L116 expression in WT control background. Graphs display

mean ± SEM. Statistical analysis used a paired (D) and unpaired t test (B–C); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.013
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overexpression of Syntaxin 1A (Syx1A), neuronal Synaptobrevin (nSyb), or SNAP25 had no effect on

the eye (not shown).

To further test whether Hsc4 may at least in part contribute to CLN4 phenotypes, we examined

effects of altered Hsc4 levels on the lethality induced by pan-neuronal expression of CLN4 mutant

hCSPa. Reducing the gene dosage of hsc4 by expressing mutant hCSP-L115 or L116 in

Figure 9. Reducing the gene dosage of Hsc4 attenuates CLN4 phenotypes. (A) Adult eyes of flies expressing WT hCSPa (control) or hCSP-L116 with a

GMR-Gal4 driver in the absence or presence of a heterozygous Hsc4+/- (hsc4D356) deletion, a Hsc4 KD (34836), OE of Syx1A or Syb. (B–D) Immunoblots

of extracts from larval VNCs of indicated genotypes were probed for hCSPa. Lipidated monomeric hCSP (LM), non-lipidated hCSP (NLM) and hCSPa

oligomers (OM) are indicated. Respective transgenes were expressed with an elav-driver; control was w1118. b-tubulin was used as loading control.( E)

Semi-quantitative assessments of genetic modifier effects on L116-induced eye phenotypes (N � 12).( F) Viability of animals expressing hCSPa-L115 or -

L116 from two transgenes driven by elav-Gal4 in a control (w1118) or a heterozygous hsc4D356 deletion background (N � 3; n > 74). (G-K) Effects of

reduced hsc4 gene dosage on levels of hCSPa oligomers (G), lipidated monomers (H), non-lipidated monomers (I) and total protein levels (J). Signals

were normalized to loading control and plotted as n-fold change to levels induced by elav-driven expression of hCSP-L115 or -L116 in a WT control

background (N > 6). (K) Effect of reduced hsc4 gene dosage on lipidated WT hCSPa monomer levels (N = 4). (L) Effects of reduced hsc4 gene dosage

on endosomal accumulations of hCSP-L115/L116 in larval VNC (N � 4). (M–N) Effects of reduced hsc4 gene dosage on ubiquitinated protein levels in

larval VNCs (M, N = 5) and synaptic hCSP-L115/L116 expression levels at larval NMJs (N, N = 6). Signals were normalized and plotted as n-fold change

from levels of elav-L115/L116 expression in WT control background. (O) Motor neuron somata of larval VNCs co-expressing HA-tagged Hsc4 with

mutant hCSPa-L115 or -L116 stained for HA and hCSPa. Scale bars: 20 mm (K), 15 mm (M). Graphs display mean ± SEM. Statistical analysis used an

unpaired t test (F, M), paired t test (L, N), or one-way ANOVA (E, G–J); *, p<0.05; **, p<0.01; ***, p<0.001.

DOI: https://doi.org/10.7554/eLife.46607.014

The following figure supplement is available for figure 9:

Figure supplement 1. Effects of altered hsc4 gene dosage on CLN4 mutant hCSPa protein expression and localization.

DOI: https://doi.org/10.7554/eLife.46607.015
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heterozygous hsc4D356 deletion mutants significantly suppressed their lethality (p<0.0001;

Figure 9F). Hence, Hsc4 contributes to the toxicity of CLN4 mutations.

Next, we examined to what degree altered Hsc4 levels may attenuate the oligomerization of

CLN4 mutant hCSPa. Hsc4 OE had no significant effects on the amount of hCSP-L115 and -L116

oligomers, monomers and overall protein levels (p>0.05; Figure 9—figure supplement 1A–D).

However, reducing Hsc4 levels by expressing mutant hCSP-L115 or L116 in heterozygous hsc4D356

deletion mutants significantly reduced the amount of hCSP-L115 and -L116 oligomers (p<0.02;

Figure 9B–C,G) but had no differential effects (p>0.8). It also reduced the levels of lipidated and

non-lipidated hCSP-L115 and -L116 monomers, as well as overall protein levels (p<0.05; Figure 9H–

J). The overall reduction of CLN4 mutant hCSPa could have been due to a general dependence of

hCSPa expression on normal Hsc4 levels. However, this is unlikely the case since reducing Hsc4 lev-

els had no effect on the levels of monomeric WT hCSPa (Figure 9K), which was consistent with the

normal dCSP levels observed in hsc4 deletion mutants (Bronk et al., 2001).

Reducing Hsc4 levels also suppressed the amount of hCSP-L115 and -L116 protein accumulations

on endosomes in the larval VNC (p<0.05; Figure 9L and Figure 9—figure supplement 1E). It also

suppressed the amount of ubiquitinated protein accumulations induced by hCSP-L116 (p<0.05) but

had no effect on L115-induced levels (p=0.8; Figure 9M). Reducing hsc4 gene dosage had no effect

on the synaptic levels of hCSP-L116 at larval NMJs (p=0.7; Figure 9N). However, it further lowered

the synaptic levels of hCSP-L115 (p<0.01; Figure 9N). The underlying cause for these differential

effects is unclear.

In conclusion, the suppression effects of a reduced hsc4 gene dosage on the oligomerization and

abnormal accumulation of CLN4 mutant hCSPa on endosomes suggest that Hsc4 significantly con-

tributes to this pathology. Since HA-tagged Hsc4 colocalized with the abnormal accumulations of

hCSP-L115 and -L116 (Figure 9O), it may interfere with the prelysosomal trafficking and subsequent

degradation of mutant hCSPa. Consistently, lower Hsc4 levels reduced the overall protein levels of

mutant but not WT hCSPa (Figure 9J–K).

Discussion
To better understand pathological mechanisms underlying CLN4, we developed two Drosophila

models by expressing either CLN4 mutant hCSPa or dCSP in neurons. Neuronal expression of either

mutant hCSPa or dCSP mirrored key pathological features of post-mortem human CLN4 brains,

including reduced levels of palmitoylated hCSPa monomers and excessive formation of oligomers.

Consistent with the idea that ubiquitination is likely a consequence of oligomerization, only ubiquiti-

nated mutant hCSPa oligomers were detected but no ubiquitinated monomers. In general, the L115

mutation had stronger effects than L116, which has also been observed in post mortem brains and

mammalian cell cultures (Diez-Ardanuy et al., 2017; Greaves et al., 2012; Henderson et al., 2016;

Zhang and Chandra, 2014). Accordingly, expression of CLN4 mutant hCSPa or dCSP in fly neurons

provides a valid CLN4 disease model.

Dose-dependency of phenotypes in the Drosophila CLN4 model
To assess the dose-dependency of CLN4 phenotypes in the fly model, we controlled the gene dos-

age of transgenically expressed CLN4 mutant hCSPa by neuronally expressing either one or two

mutant transgenes in the presence of two endogenous WT dCSP gene copies.

Single copy expression of CLN4 mutant hCSPa did not cause detectable degeneration or lethal-

ity, even though significant levels of ubiquitinated hCSPa oligomers and abnormal prelysosomal

accumulations of hCSPa were present. However, doubling the gene dosage reduced the viability of

CLN4 mutant flies, which is likely due to neurodegeneration as indicated by fragmentated nuclear

envelopes and ‘bloated’ Golgi cisternae of larval neurons (Figure 6B). The significant drop in viability

indicated a sharp threshold of neurotoxicity, which was correlated with an increase in the levels of

hCSPa oligomers and prelysosomal accumulations. Consistent with a neuronal failure, adult escapers

showed reduced locomotor activity.

A similar dose-dependent effect was observed for the eye phenotype induced by GMR-driven

expression of CLN4 mutant hCSPa. The build-up of these pathological features in the CLN4 fly

model agrees with the assumed general concept of late onset neurodegenerative diseases, which

typically show a progressive accumulation of protein aggregates and defects in protein homeostasis
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over a long period that is met by a declining age-dependent capacity of protein homeostasis

(Labbadia and Morimoto, 2015).

CLN4 mutations impair hCSPa’s synaptic localization
Previous studies speculated that CLN4 mutations may disrupt the trafficking and/or SV localization

of hCSPa (Benitez et al., 2011; Greaves et al., 2012; Nosková et al., 2011), mainly because

they reside in CSP’s palmitoylated CS domain. The CLN4 fly model confirms this prediction in two

ways: First, CLN4 mutations reduced the synaptic levels of mutant hCSPa. Second, they caused

abnormal accumulations of mutant hCSPa in axons and neuronal somata. Analogous CLN4 muta-

tions in fly dCSP had similar effects excluding the possibility that these defects are the consequence

of expressing a human protein in fly neurons.

In principle, there are two possibilities how CLN4 mutations may mislocalize CSP: 1) CLN4 muta-

tions may primarily impair palmitoylation of the CS domain, which is required for ER and Golgi exit,

and for a stable association with SVPs and/or SVs (Greaves and Chamberlain, 2006; Greaves et al.,

2008; Ohyama et al., 2007; Stowers and Isacoff, 2007). However, this possibility is unlikely the

case since mutant hCSPa was not detectable in the ER or Golgi of fly neurons. In addition, levels of

non-lipidated CLN4 mutant hCSPa were similar to WT hCSPa when expressed from one transgenic

copy. 2) CLN4 mutations may primarily induce oligomerization by exaggerating the dimerization

properties of the CS domain (Xu et al., 2010) such that self-association leads mostly to misfolded

high-molecular weight oligomers. Notably, oligomerization of CLN4 mutant hCSPa can be sup-

pressed by alanine or leucine substitutions of a cluster of palmitoylated cysteines (C122-125) located

next to the L115/116 mutations (Diez-Ardanuy et al., 2017), which is consistent with the idea that

CLN4 mutations primarily induce oligomerization.

In fly neurons, the oligomerization of mutant hCSPa is apparently triggered after exiting the

Golgi, either during its association with SVPs, or after arriving at axon terminals and associating with

SVs. The transition of SVP cargo onto SVs or endosomes is not well understood but in principle SVPs

can fuse with SVs, the synaptic plasma membrane, and endosomes (Rizzoli, 2014). In contrast, SVs

are linked to endosomes either by ultrafast endocytosis, or the ability of freshly endocytosed individ-

ual SVs to fuse with endosomes (Hoopmann et al., 2010; Soykan et al., 2017; Watanabe and Bou-

crot, 2017; Watanabe et al., 2013a; Watanabe et al., 2013b). Mutant hCSPa oligomers are

potentially re-routed from both SVPs and SVs because some mutant hCSPa colocalizes with SVs at

axon terminals. Nevertheless, re-routing of ubiquitinated oligomers is likely the main factor reducing

synaptic levels of CLN4 mutant hCSPa.

The ubiquitination of CLN4 mutant hCSPa oligomers likely indicates that they are misfolded and

thus targets for ubiquitination and degradation like other misfolded proteins (Wang et al., 2017).

Consistently, only ubiquitinated mutant hCSPa oligomers but no ubiquitinated monomers were

detected in fly neurons. Since WT dCSP (Figure 5—figure supplement 1) and hCSPa are mostly

degraded by lysosomes (Benitez and Sands, 2017; Chapel et al., 2013; Sambri et al., 2017;

Schröder et al., 2007; Tharkeshwar et al., 2017), one expects that ubiquitinated mutant hCSPa

oligomers are sorted into the endolysosomal pathway if they remain associated with membranes.

This appears to be the case since the majority of abnormal mutant hCSPa accumulations in fly neu-

rons represented prelysosomal endosomes, which were defined by the colocalization of ubiquiti-

nated proteins and the prelysosomal markers LAMP1-GFP and HRS. Finally, the suppression of

mutant hCSPa phenotypes by reduced dCSP or Hsc4 levels revealed a strong link between the olig-

omerization of mutant hCSPa, its re-routing onto prelysosomal membranes, and its induced lethality

(Figures 7–8). Hence, these data suggest that CLN4 mutations may primarily induce oligomerization

of membrane-associated hCSPa, which causes ubiquitination and re-routing into lysosomal

pathways.

CLN4 mutations impair prelysosomal trafficking of hCSPa
Axonal prelysosomal endosomes containing mutant hCSPa are likely retrogradely trafficked for lyso-

somal processing since degradative lysosomes containing cathepsin B/D are essentially absent from

distal axons (Cai et al., 2010; Cheng et al., 2018; Gowrishankar et al., 2015). Both the axonal traf-

ficking as well as the maturation of prelysosomal endosomes containing mutant hCSPa are poten-

tially impaired. A physical defect in axonal trafficking is indicated by the large size of the hCSPa
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accumulations and by the frequent occurrence of large and abnormal EM-dense membrane struc-

tures in axons of CLN4 mutants, which have the potential to ‘clog’ axons.

A reduced efficiency in the maturation of mutant hCSPa-positive prelysosomal endosomes is indi-

cated by their abnormally large size and by their failure to co-label with the PI3P lipid reporter FYVE-

GFP. The latter may be due to two alternatives: First, hCSPa-positive endosomes may have normal

PI3P levels but most of it is bound by PI3P-binding proteins. At least in part, this could be facilitated

by HRS (Raiborg et al., 2001a), which strongly co-labels with hCSPa accumulations. Alternatively,

PI3P could be depleted from these endosomal membranes, which then would imply that HRS is

abnormally retained.

Since only a small number of mutant hCSPa accumulations co-localized with the early endosome

marker Rab5 but essentially no accumulations colocalized with the late endosomal or lysosomal

markers Rab7 and spinster, it is possible that mutant hCSPa may impair the transition from early to

late endosomes.

The frequent occurrence of abnormal, multi-laminar structures containing EM-dense membranes

and abnormal autophagosome-like structures further indicate that CLN4 mutations impair steps of

membrane trafficking in axons and somata. Since similar ultrastructural defects were observed after

disruption of ESCRT function (Doyotte et al., 2005; Lee et al., 2007), the abnormal endosomal

membranes of CLN4 mutants suggest a defect in prelysosomal trafficking. This is further supported

by the accumulation of mutant hCSPa on prelysosomal membranes including ATG8/LC3-GFP posi-

tive autophagosomes. Alternatively, at least some of the abnormal membrane structures of CLN4

mutants could be the consequence of defects in the unconventional secretion of misfolded cytosolic

proteins, which is facilitated by CSP proteins at least in non-neuronal cells (Xu et al., 2018).

The CLN4 fly model also provides evidence for a general protein ubiquitination defect. Both of

the CLN4 mutations caused an increase in ubiquitinated protein accumulations in axons and neuro-

nal somata that were not associated with accumulations of CLN4 mutant hCSPa. Consistent with an

altered protein homeostasis, significant proteomic and lipidomic changes were found in CLN4

mutant post-mortem brains (Henderson et al., 2016). Even though CLN4 mutant CSPa’s ability to

stimulate the ATPase activity of Hsc70 progressively deteriorates in vitro (Zhang and Chandra,

2014), the excessive ubiquitination phenotype of the fly model is unlikely due to a reduced CSP/

Hsc70 chaperone function since reducing WT dCSP levels suppressed the ubiquitination effects.

Hence, the excessive ubiquitination may be a secondary consequence of the prelysosomal trafficking

defects induced by CLN4 mutations.

CLN4 alleles genetically resemble hypermorphic gain of function
mutations
Previously, it has been suggested that the progressive oligomerization of CLN4 mutant hCSPa may

cause a dominant-negative effect by sequestering and depleting WT CSPa (Greaves et al., 2012;

Henderson et al., 2016; Nosková et al., 2011; Zhang and Chandra, 2014). However, CLN4 mutant

hCSPa had no effect on the synaptic and overall levels of endogenous WT dCSP in the fly model. In

addition, decreasing or even abolishing WT dCSP reduced oligomer formation of mutant hCSPa.

Both effects are inconsistent with a dominant-negative effect of L115 and L116 mutations. In addi-

tion, genetic analysis of other phenotypes found no evidence supporting dominant-negative effects

in the CLN4 fly model. Instead, this analysis suggests that most of the observed phenotypes are due

to gain of function effects.

Reducing or abolishing WT dCSP levels suppressed the oligomerization and endosomal accumu-

lation of CLN4 mutant hCSPa, the elevated protein ubiquitination, and the premature lethality.

Increasing WT dCSP or hCSPa levels enhanced the oligomerization and lethality of CLN4 mutations.

Taken together, these results suggest that the respective phenotypes are due to a hypermorphic

gain of function mutation that increases an activity of hCSPa. A similar dependence of CLN4 pheno-

types on increased WT CSPa levels was observed in primary fibroblasts of CSPa-deficient mice after

co-expressing WT CSPa with CSPa-L115R, which increased levels of CSPa oligomers and lysosomal

lysotracker signals (Benitez and Sands, 2017).

Notably, there are also CLN4 phenotypes of the fly model that could not be genetically classified

in an unambiguous manner. These phenotypes include the effects of altered dCSP levels on mono-

meric and synaptic levels of CLN4 mutant hCSPa, which were either not affected or further reduced

by lower dCSP levels.
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The primary effect of the gain of function mutation induced by L115 and L116 is not known. How-

ever, the fly model revealed a correlation among the degree of mutant hCSPa oligomerization, accu-

mulation on endosomes, and lethality. Accordingly, it seems possible that CLN4 mutations primarily

drive the excessive oligomerization of hCSPa by exacerbating the known dimerization properties of

the CS domain (Xu et al., 2010). Such an effect would explain the excessive routing of the likely mis-

folded oligomers into prelysosomal pathways and the depletion of mutant hCSPa at synapses. The

impaired processing of the endosomes containing accumulating mutant hCSPa is then potentially a

secondary effect of misfolded oligomers.

Another possibility for the gain of function effect arises from the recently described role of hCSPs

on late endosomes for an unconventional secretion pathway, termed misfolding-associated protein

secretion (MAPS) (Xu et al., 2018). Even though it is unclear whether neuronal hCSPa participates in

MAPS, the gain of function effect could exacerbate the trafficking of hCSPa onto late endosomes

for MAPS after exiting the Golgi. Together, an excessive routing onto endosomes and oligomeriza-

tion of mutant hCSPa may then impair membrane trafficking pathways requiring late endosomes like

the lysosomal and MAPS pathways.

The dependence of key CLN4 phenotypes on WT CSP levels paralleled the modulatory effects of

hCSPa’s main interaction partner, Hsc70. Similar to reducing WT dCSP levels, reducing levels of

Hsc4 by one gene copy suppressed the lethality and eye phenotypes induced by CLN4 mutant

hCSPa, its oligomerization and endosomal accumulation. These modulatory effects are driven either

by an individual activity of Hsc70 itself, or by a synergistic activity of the CSP/Hsc70 complex. Nei-

ther of these activities are necessarily localized to SVs. In support of the latter, co-expressed HA-

tagged Hsc70-4 co-localized with the accumulations of CLN4 mutant hCSPa on endosomes, which

may interfere with the dissociation of clathrin coats that are anchored by the ESCRT component HRS

(Raiborg et al., 2001b). Alternatively, the respective Hsc70 activity may be associated with endoso-

mal microautophagy (Sahu et al., 2011; Uytterhoeven et al., 2015) or the unconventional secretion

of misfolded cytosolic proteins (Xu et al., 2018). At least for this fly model, an activity of Hsc70 asso-

ciated with chaperone-mediated autophagy (Kaushik and Cuervo, 2012) can be excluded since the

critical lysosomal translocator LAMP-2 is absent in flies (Uytterhoeven et al., 2015).

Concluding remarks
This initial study of the CLN4 fly model revealed a number of novel and important insights into the

pathology of CLN4, most notably, the unexpected genetic nature of CLN4 mutations, the mislocali-

zation of mutant hCSPa, a general ubiquitination defect, and prelysosomal processing defects. The

modulating effects of altered WT CSP or Hsc70 levels on key CLN4 phenotypes provided a strong

correlation between the premature lethality of CLN4 mutant flies, oligomerization and accumulation

of mutant hCSPa on prelysosomal endosomes. Accordingly, the neurotoxicity of CLN4 mutant

hCSPa may be at least in part due to the formation of ubiquitinated hCSPa oligomers that then pro-

gressively accumulate on prelysosomal endosomes and interfere with their processing for lysosomal

fusion and potentially their retrograde axonal trafficking.

The pathological mechanisms underlying CLN4 appear to be different from those of most other

NCLs, which are typically due to loss of function mutations in genes that mediate lysosomal function,

ER-lysosomal trafficking, or protein lipidation (Cárcel-Trullols et al., 2015; Cooper et al., 2015;

Cotman et al., 2013; Mole and Cotman, 2015; Warrier et al., 2013). As such, the pathological

mechanisms underlying CLN4 appear similar to those of ‘classical’ neurodegenerative diseases that

are induced by a progressive build-up of protein oligomers/aggregates that then leads to a failure

of protein homeostasis and/or lysosomal pathways (Abramov et al., 2009; Labbadia and Mori-

moto, 2015; Lansbury and Lashuel, 2006; Muchowski and Wacker, 2005; Neefjes and van der

Kant, 2014). While we are just beginning to understand the complicated nature of CLN4, the fly

model provides a valuable tool for future work to dissect pathological mechanisms underlying CLN4.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene (Drosophila
melanogaster)

csp Flybase FLYB:FBgn0004179 Cysteine
string protein

Gene (human) DNAJC5 NCBI GeneID:80331 Encodes CSPa

Transcript
(Drosophila
melanogaster)

dCSP-2/CSP-PC NCBI Genbank NM_168950.4 Reference Sequence
used for synthesis of
dCSP constructs,
ORF: 186–872

Recombinant
DNA reagent

pBID-UASC Wang et al., 2012 RRID:Addgene_35200 PhiC31 attB 10xUAS
vector for site specific
recombinase
insertions

Recombinant
DNA reagent

pUC57-dCSP2.WT Genscript; This paper Full length wildtype
dCSP2
ORF with Kozak
sequence and
NotI/KpnI
restrictions sites
cloned into pUC57

Recombinant
DNA reagent

pUC57-dCSP2.V117R Genscript; This paper As above with V117R
mutation

Recombinant
DNA reagent

pUC57-dCSP2.I118D Genscript; This paper As above with I118D
mutation

Recombinant
DNA reagent

PGEX-KG_rCSPa Zhang and Chandra, 2014 Wildtype rat CSPa cDNA
sequence with
V112F point
mutation to match
human aa sequence

Recombinant
DNA reagent

PGEX-KG_
hCSPa.L115R

Zhang and Chandra, 2014 As above with L115R
mutation

Recombinant
DNA reagent

PGEX-KG_
hCSPa.L116D

Zhang and Chandra, 2014 As above with L116D
mutation

Recombinant
DNA reagent

pBID-UASC_
CSPa.WT

This study full length wildtype ORF
encoding
rat/human CSPa
cloned into pBID-UASC
transformation vector

Recombinant
DNA reagent

pBID-UASC_
CSPa.L115R

This study As above with L115R
mutation

Recombinant
DNA reagent

pBID-UASC_
CSPa.L116D

This study As above with L116D
mutation

Recombinant
DNA reagent

pBID-UASC_
dCSP2.WT

This study Full length
wildtype ORF
encoding dCSP2
cloned into
pBID-UASC
transformation
vector

Recombinant
DNA reagent

pBID-UASC_
dCSP2.V117R

This study As above with V117R
mutation

Recombinant
DNA reagent

pBID-UASC_
dCSP2.I118D

This study As above with I118D
mutation

Sequenced-
based reagent

rCSP NotI for Sigma 5’-GAGCGGCC
GCCAAAATG
GCTGACCAGAGG
CAGCGCTC-3’

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequenced-
based reagent

rCSP KpnI rev Sigma 5’-CATGGTACCT
TAGTTGA
ACCCGTCGGTGT
GATAGCTGG-3’

Genetic reagent
(D. melanogaster)

w[1118] Caltech collection:
Seymour Benzer,
Caltech

FlyB:FBal0018186 Genotype: w[1118];
isogenized genetic
background

Genetic reagent
(D. melanogaster)

elav::Gal4[C155] Bloomington
Drosophila Stock
Center

FlyB:FBst0000458;
RRID:BDSC_458

Genotype:
P{w[+mW.hs]=GawB}
elav[C155]

Genetic reagent
(D. melanogaster)

nSyb::Gal4 Hugo Bellen,
Baylor College
of Medicine

FlyB:FBst0051635;
RRID:BDSC_51635

Genotype: y[1] w[*];
P{w[+m*]=nSyb-GAL4.S}3

Genetic reagent
(D. melanogaster)

GMR::Gal4 Bloomington
Drosophila Stock
Center

FlyB:FBst0001104;
RRID:BDSC_1104

Genotype: w[*];
P{w[+mC]=GAL4 ninaE.
GMR}12

Genetic reagent
(D. melanogaster)

UAS::nsyb-EGFP Bloomington
Drosophila Stock
Center

FlyB:FBst0006921;
RRID:BDSC_6921

Genotype: w[*];
P{w[+mC]=UAS nSyb.
eGFP}2

Genetic reagent
(D. melanogaster)

UAS::GFP-myc-2xFYVE Bloomington
Drosophila Stock
Center

FlyB:FBst0042712;
RRID:BDSC_42712

Genotype: w[*];
P{w[+mC]=UAS-
GFP-myc-2xFYVE}2

Genetic reagent
(D. melanogaster)

UAS::TSG101 RNAi Bloomington
Drosophila Stock
Center

FlyB:FBst0035710;
RRID:BDSC_35710

Genotype: y[1] sc[*]
v[1] sev[21];
P{y[+t7.7] v[+t1.8]=TRiP.
GLV21075}attP2

Genetic reagent
(D. melanogaster)

UAS:GFP-KDEL Bloomington
Drosophila Stock
Center

FlyB:FBst0009898;
RRID:BDSC_9898

Genotype: w[*];
P{w[+mC]=UAS GFP.
KDEL}11.1

Genetic reagent
(D. melanogaster)

UAS::hLAMP1-GFP Bloomington
Drosophila Stock
Center

FlyB:FBti0150347;
RRID:BDSC_42714

Genotype: w[*];
P{w[+mC]=UAS-
GFP-LAMP}2;
P{w[+m*]=nSyb-GAL4.S}3/
T(2;3)TSTL,
CyO: TM6B, Tb[1]

Genetic reagent
(D. melanogaster)

UAS::GFP-Rab5 Bloomington
Drosophila Stock
Center

FlyB:FBst0043336;
RRID:BDSC_43336

Genotype: w[*];
P{w[+mC]=UAS-
GFP-Rab5}3

Genetic reagent
(D. melanogaster)

UAS::spin-myc.EGFP Bloomington
Drosophila Stock
Center

FlyB:FBst0039668;
RRID:BDSC_39668

Genotype: w[*];
P{w[+mC]=UAS spin.
myc-EGFP}B

Genetic reagent
(D. melanogaster)

UAS::GFP-LC3(ATG8) Bloomington
Drosophila Stock
Center

FlyB:FBst0008730;
RRID:BDSC_8730

Genotype: w[*];
P{w[+mC]=UASp-
eGFP-huLC3}1;
P{w[+mC]=GAL4::
VP16-nos.
UTR}CG6325[MVD1]

Genetic reagent
(D. melanogaster)

UAS::syx-1A Bloomington
Drosophila Stock
Center

FlyB:FBst0051619;
RRID:BDSC_51619

Genotype:
y[1] w[*];
P{w[+mC]=UAS-
Syx1A.B}6

Genetic reagent
(D. melanogaster)

UAS::hsc70-4 KD1 Bloomington
Drosophila Stock
Center

FlyB:FBst0054810;
RRID:BDSC_54810

Genotype: y[1] v[1];
P{y[+t7.7]
v[+t1.8]=TRiP.
HMJ21529}attP40

Continued on next page

Imler et al. eLife 2019;8:e46607. DOI: https://doi.org/10.7554/eLife.46607 22 of 34

Research article Neuroscience

https://scicrunch.org/resolver/BDSC_458
https://scicrunch.org/resolver/BDSC_51635
https://scicrunch.org/resolver/BDSC_1104
https://scicrunch.org/resolver/BDSC_6921
https://scicrunch.org/resolver/BDSC_42712
https://scicrunch.org/resolver/BDSC_35710
https://scicrunch.org/resolver/BDSC_9898
https://scicrunch.org/resolver/BDSC_42714
https://scicrunch.org/resolver/BDSC_43336
https://scicrunch.org/resolver/BDSC_39668
https://scicrunch.org/resolver/BDSC_8730
https://scicrunch.org/resolver/BDSC_51619
https://scicrunch.org/resolver/BDSC_54810
https://doi.org/10.7554/eLife.46607


Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS::hsc70-4 KD2 Bloomington
Drosophila Stock
Center

FlyB:FBst0028709;
RRID:BDSC_28709

Genotype: y[1] v[1];
P{y[+t7.7]
v[+t1.8]=TRiP.
JF03136}attP2

Genetic reagent
(D. melanogaster)

UAS::hsc70-4 KD3 Bloomington
Drosophila Stock
Center

FlyB:FBst0034836;
RRID:BDSC_34836

Genotype: y[1] sc[*] v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
HMS00152}
attP2/TM3, Sb[1]

Genetic reagent
(D. melanogaster)

attP-22A Bloomington
Drosophila Stock
Center

FlyB:FBst0024481;
RRID:BDSC_24481

Genotype: y[1] M
{vas-int.Dm}
ZH-2A w[*]; M
{3xP3-RFP.attP’}
ZH-22A PhiC31 Insertion
background,
all generated
lines outcrossed
into w[1118]

Genetic reagent
(D. melanogaster)

UAS::venus-Rab7.WT R Hisinger (Freie
Universität, Berlin,
Germany);
Cherry et al., 2013

FlyB:FBal0294208

Genetic reagent
(D. melanogaster)

hsc70-4[D356] Bronk et al., 2001 FlyB:FBal0124174 Genotype: w[1118];;
hsc70-4[D356]

Genetic reagent
(D. melanogaster)

UAS::Hsc70-4 Karen Palter,
Temple University;
Elefant and Palter, 1999,

FlyB:FBst0005846;
RRID:BDSC_5846

Genotype: w[126];
P{w[+mC]=UAS-
Hsc70-4.WT}B

Genetic reagent
(D. melanogaster)

UAS:HA-Hsc70-4.WT P Verstreken;
Uytterhoeven
et al., 2015

FlyB:FBal0318413 Genotype: w[1118];
P{w[+mC]=UAS-
Hsc70-4.HA}

Genetic reagent
(D. melanogaster)

UAS::SNAP25 Bloomington
Drosophila Stock
Center

FlyB:FBst0051997;
RRID:BDSC_51997

Genotype: y[1] w[*];
P{w[+mC]=UAS-
Snap25.L}9

Genetic reagent
(D. melanogaster)

UAS::SNAP25 KD Bloomington
Drosophila Stock
Center

FlyB:FBst0027306;
RRID:BDSC_27306

Genotype: y[1] v[1];
P{y[+t7.7] v[+t1.8]=TRiP.
JF02615}attP2

Genetic reagent
(D. melanogaster)

csp[R1] Zinsmaier et al., 1994 FlyB:FBst0032035;
RRID:BDSC_32035

Genotype: w[1118];
csp[X1]/TM6Tb[1]Sb[1];
partial deletion of csp
(genetic null)

Genetic reagent
(D. melanogaster)

csp[X1] Zinsmaier et al., 1994 FlyB:FBst0051998;
RRID:BDSC_51998;

Genotype: w[1118];
csp[R1]/TM6Tb[1]Sb[1];
complete deletion of csp
locus, maintained
in this lab

Genetic reagent
(D. melanogaster)

UAS::dCSP2 this study Genotype: w[1118];
M{UAS-dCSP2}ZH-22A

Genetic reagent
(D. melanogaster)

UAS::dCSP2.V117R this study Genotype: w[1118];
M{UAS-dCSP2.V117R}
ZH-22A

Genetic reagent
(D. melanogaster)

UAS::dCSP2.I118D this study Genotype: w[1118];
M{UAS-dCSP2.I118D}
ZH-22A

Genetic reagent
(D. melanogaster)

UAS::hCSPa this study Genotype: w[1118];
M{UAS-hCSPa}ZH-22A

Genetic reagent
(D. melanogaster)

UAS::hCSPa.L115R this study Genotype: w[1118];
M{UAS-hCSPa.L115R}
ZH-22A

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS::hCSPa.L116D this study v: w[1118];
M{UAS-hCSPa.
L116R}ZH-22A

Antibody anti-CSPa
(rabbit polyclonal)

Enzo Life Sciences Cat#: VAP-SV003E;
RRID:AB_2095057

Immunostaining
(IS, 1:2000);
Western Blot
(WB, 1:20000);
IP (1:250)

Antibody anti-dCSP
(mouse monoclonal)

Zinsmaier et al., 1990 Cat# DSHB:DCSP-1
(ab49);
RRID:AB_2307345

IS (1:20);
WB (1:250)

Antibody anti-GFP
(mouse monoclonal)

Developmental
Studies Hybridoma
Bank

Cat# DSHB:
GFP-12A6;
RRID:AB_2617417

IS (1:1000)

Antibody anti-HRS (guinea-
pig polyclonal)

HJ Bellen, Baylor
College of Medicine,
Houston, TX;
Lloyd et al., 2002

IS (1:2000);
WB (1:2000)

Antibody anti-HA
(rat monoclonal)

Roche Cat#: 3F10;
RRID:AB_2314622

IS (1:200)

Antibody anti-GM130
(rabbit polyconal)

Abcam Cat# ab31561,
RRID:AB_2115328

IS (1:200)

Antibody anti-Golgin245
(goat polyclonal)

Developmental
Studies Hybridoma
Bank

Cat#: Golgin245;
RRID:AB_2618260

IS (1:2000)

Antibody anti-GMAP
(goat polyclonal)

Developmental
Studies Hybridoma
Bank

Cat#: GMAP;
RRID:AB_2618259

IS (1:2000)

Antibody anti-Rab7
(mouse monoclonal)

Developmental
Studies Hybridoma
Bank

Cat#: Rab7;
RRID:AB_2722471

IS (1:100)

Antibody anti-Syx1A
(mouse monoclonal)

Developmental
Studies Hybridoma
Bank

Cat#: 8C3;
RRID:AB_528484

IS (1:200)

Antibody anti-b-tubulin
(mouse monoclonal)

Developmental
Studies Hybridoma
Bank

Cat#: E7;
RRID:AB_528499

WB (1:1000)

Antibody anti-conjugated-
ubiquitin
(mouse monoclonal)

Enzo Life Sciences Cat#: BML-PW8810;
RRID:AB_10541840;
Clone FK2

IS (1:2000); WB
(1:2000)

Antibody anti-HRP Alexa Fluor
647-conjugated
(goat polyclonal)

Jackson Immuno
Research Labs

Cat#: 123-605-021;
RRID:AB_2338967

IS (1:500)

Antibody anti-mouse IgG1
AlexaFluor
488-conjugated
(goat polyclonal)

Thermo Fisher
Scientific

Cat#: A-21121;
RRID:AB_2535764

IS (1:500)

Antibody anti-rabbit IgG (H+L)
Cy3-conjugated
(donkey polyclonal)

Jackson Immuno
Research Labs

Cat#: 711-165-152;
RRID:AB_2307443

IS (1:500)

Antibody anti-guinea pig IgG
(H+L) Alexa Fluor
488-conjugated
(goat polyclonal)

Thermo Fisher
Scientific

Cat#: A-1107;
RRID:AB_2534117

IS (1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-rat IgG (H+L)
Alexa Fluor
488-conjugated
(goat polyclonal)

Jackson Immuno
Research Labs

Cat#: 112-545-167;
RRID:AB_2338362

IS (1:500)

Antibody anti-rabbit IgG
(H+L) HRP-conjugated
(goat polyclonal)

Thermo Fisher
Scientific

Cat#: A16096;
RRID:AB_2534770

WB (1:10000)

Antibody anti-mouse IgG
HRP-conjugated
(goat polyclonal)

Thermo Fisher
Scientific

Cat#: 32430;
RRID:AB_1185566

WB (1:5000)

Commercial
assay or kit

Western
Clarity ECL kit

BioRad Cat#: 1705061

Commercial
assay or kit

A/G PLUS-
Agarose Beads

Santa Cruz
Biotechnology

Cat#: sc-2003

Software,
algorithm

FIJI/ImageJ NIH RRID:SCR_002285

Software,
algorithm

Prism Graphpad RRID:SCR_002798

Software,
algorithm

Adobe
Photoshop CC

Adobe RRID:SCR_014199

Software,
algorithm

Quantity One 1-D
Analysis Software

BioRad RRID:SCR_014280

Drosophila strains and husbandry
All flies were raised at 23˚C on standard cornmeal culture media with a 12/12 light-dark cycle unless

otherwise specified. Gal4 driver strains nSyb-Gal4, elav-Gal4(C155) and GMR-Gal4, and UAS strains

expressing EGFP-nSyb, GFP-myc-2xFYVE, TSG101 KD, hLAMP1-GFP, Spin-myc-EGFP, GFP-LC3

(ATG8), GFP-KDEL, nSyb-EGFP, Rab5-YFP, Rab7-YFP, Hsc70-4 KD (1-3), Syx1A, SNAP25, and

SNAP25 KD were obtained from the Bloomington Drosophila Stock Center (BDSC, Bloomington,

Indiana). UAS strains expressing Venus-Rab7 (Cherry et al., 2013), Hsc70-4 (Elefant and Palter,

1999), and HA-Hsc70-4 (Uytterhoeven et al., 2015) were obtained from P.R. Hiesinger (Freie Uni-

versität, Berlin, Germany), K. Palter (Temple University, Philadelphia, PA) or P. Verstreken (VIB Cen-

ter for the Biology of Disease, Leuven, Belgium), respectively. The csp (R1, X1) and hsc70-4 (D356)

gene deletion alleles were generated previously by us (Bronk et al., 2001; Zinsmaier et al., 1994).

Generation of UAS transgenes
To generate transgenes that individually express human WT, L115R- and L116D-mutant CSPa under

the transcriptional control of the Gal4/UAS system (Brand and Perrimon, 1993), the open reading

frames of modified rat cDNAs encoding human WT and mutant CSPa (Zhang and Chandra, 2014)

were PCR amplified using a forward primer containing a NotI restriction site and a Drosophila con-

sensus Kozak sequence (5’ GAGCGGCCGCCAAAATGGCTGACCAGAGGCAGCGCTC 3’) and a

reverse primer containing a KpnI site just after the stop codon (5’ CATGGTACCTTAGTTGAACCCG

TCGGTGT GATAGCTGG 3’). The obtained PCR products were cleaved with NotI and KpnI and

directionally cloned into a NotI/KpnI cleaved pBID-UASC vector (Wang et al., 2012). cDNAs encod-

ing WT and CLN4 mutant dCSP were synthesized de novo (GenScript, Piscataway, NJ) using cDNA

sequences encoding the open reading frame of CSP2 (CSP-PC, accessionID: NM_168950.4)) as tem-

plate (Nie et al., 1999). The mutations V117R and I118D were introduced into dCSP2 to generate

CLN4 mutant dCSP. Both V117R and I118D are analogous to the human CLN4 mutations L115R and

L116D, respectively. The synthesized cDNAs contained a NotI site followed by a Kozak sequence at

the 5’ end and a Kpn1 site after the stop codon at the 3’ end and were inserted into pUC57 plas-

mids. For transgene expression, the cDNAs were then directionally subcloned into a pBID-UASC

vector using the NotI and KpnI cleavage sites.
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Transgenic animals were generated by fC31-based integration (Bischof et al., 2007) of the UAS

transgenes into the attP site at 22A2 on chromosome 2 (2L:1476459..1476459). pBID-UASC-CSP-x

plasmids were injected into y1 M[vas-int.Dm]ZH-22A w*; M[3xP3-RFP.attP’]ZH-22A (BDSC #24481)

embryos (Rainbow Transgenic Flies, Camarillo, CA). At least two independent recombinant strains

were obtained for each transgene and out-crossed to exchange non-recombinant chromosomes.

The 3xP3-RFP cassette was removed by loxP-mediated recombination as described (Bischof et al.,

2007). Homozygous strains containing UAS transgenes were established in a genetic background

representing WT control (w1118) and dcsp deletion mutants (w1118; dcspX1).

Crosses for single copy transgene expression were made by crossing homozygous male w1118,

elav-Gal4[C155] flies to homozygous w1118; M[UAS::CSP-x.]ZH-22A female flies yielding female F1

progeny expressing CSP-x (w1118, elav-Gal4[C155]/w1118; M[UAS::CSP-x]ZH-22A /+) and male prog-

eny containing a silent (non-expressed) transgene (w1118; M[UAS::CSP-x]ZH-22A/+). Crosses for two

copy expression were made by crossing females w1118, elav-Gal4[C155]; M[UAS::CSP-x]ZH-22A/

CyO, Actin-GFP to male w1118; M[UAS::CSP-x]ZH-22A. Female F1 progeny heterozygous for the elav

driver and homozygous for the UAS transgene (w1118, elav-Gal4[C155]/w1118; M[UAS::CSP-x}ZH-

22A) were selected for analysis.

dCSP null rescue
All genetic rescue experiments employing a csp-/- deletion null genetic background expressed WT

or CLN4 mutant hCSPa from a single transgene. Female w1118, elav-Gal4[C155]; cspR1/TM6 Tb Sb

flies were crossed to w1118; M[UAS::hCSP-x]ZH-22A; cspX1/TM6 Tb Sb males or w1118; cspX1/TM6 Tb

Sb males for control. Flies were raised at 23˚C. Male progeny (w1118, elav-Gal4[C155]; M[UAS::hCSP]

ZH-22A/+; cspX1/R1) were used because of higher expression and better rescue. 10–15 freshly

enclosed flies of the respective genotypes were cultured in separate vials and transferred weekly to

fresh food. Dead flies were scored daily.

Viability and adult lifespan
The following crossing scheme was used: For single copy expression, hemizygous w1118, elav-Gal4

[C155] males were crossed to homozygous w1118; UAS::CSP-x females yielding non-expressing F1

control males (w1118; UAS::CSP-x/+) and CSP-expressing F1 females (w1118, elav-Gal4[C155]/w1118;

UAS::CSP-x/+). For two copy expression, hemizygous w1118, elav-Gal4[C155]; UAS::CSP-x/CyO,

Actin-GFP males were crossed to homozygous w1118; UAS::CSP-x females yielding non-expressing

F1 males (w1118; UAS::CSP-x) and CSP-expressing F1 females (w1118, elav-Gal4[C155]/w1118; UAS::

CSP). Flies were raised at 23˚C or 28˚C. Viability was determined by scoring the ratio of freshly

enclosed females and male flies. Adult lifespan was determined by culturing freshly enclosed males

and females in separate vials and scoring dead flies daily or every 2nd day. Adult flies were trans-

ferred weekly to fresh food.

Immunostainings
Wandering 3rd instar larvae were dissected in Sylgard-coated dishes containing cold Ca2+ free HL3

solution (in mM: 70 NaCl, 5 KCl, 20 MgCl2, 10 NaHCO3, 5 Trehalose, 115 sucrose, 5 HEPES, pH 7.2).

Dissected larvae were fixed for 20 (VNC) or 45 min (NMJs) in 4% formaldehyde solution (Electron

Microscopy Sciences, Hatfield, PA) in phosphate-buffered saline (PBS), pH 7.3 at room temperature

(RT). PBS (pH 7.3) supplemented with 0.2% Triton X-100 (PBST) was used for immunostainings of lar-

val NMJs while PBS (pH 7.3) supplemented with 0.4% Triton X-100 was used for immunostainings of

larval VNCs. After washing 3 times for 10 min in PBST at RT, larvae were incubated with primary anti-

bodies diluted in PBST overnight at 4˚C, washed 3x for 15 min at RT, incubated with secondary anti-

bodies diluted in PBST for 2 hr at RT or overnight at 4˚C and finally washed 3x with PBST for 15 min

at RT. Confocal images were acquired the same day, otherwise preparations were post-fixed.

The following antibodies and dilutions were used: rabbit anti-CSPa, 1:2000 (Enzo Life Sciences

Cat# VAP-SV003E, RRID:AB_2095057); mouse anti-dCSP, 1:250 (DSHB Cat# DCSP-1 (ab49), RRID:

AB_2307345; Zinsmaier et al., 1990); mouse anti-GFP, 1:1000 (DSHB Cat# DSHB-GFP-12A6, RRID:

AB_2617417); guinea pig anti-HRS, 1:2000; (Lloyd et al., 2002), H. Bellen, Baylor College of Medi-

cine, Houston, TX); rat anti-HA, 1:200 (Roche Cat# 3F10, RRID:AB_2314622); rabbit anti-GM130,

1:200 (Abcam Cat# ab31561, RRID:AB_2115328); goat anti-Golgin245, 1:2000 (DSHB Cat#
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Golgin245, RRID:AB_2618260), goat anti-GMAP, 1:2000 (DSHB Cat# GMAP, RRID:AB_2618259);

mouse anti Rab7, 1:100 (DSHB Cat# Rab7, RRID:AB_2722471; Riedel et al., 2016); mouse anti-

Syx1A, 1:200 (DSHB Cat# 8c3, RRID:AB_528484); mouse anti-ubiquitin-conjugated protein, 1:2000

(Enzo Life Sciences Cat# BML-PW8810, RRID:AB_10541840); goat anti-HRP Alexa Fluor 647-conju-

gated, 1:500 (Jackson ImmunoResearch Labs Cat# 123-605-021, RRID:AB_2338967); goat anti-

mouse IgG1 Alexa Fluor 488-conjugated, 1:500 (Thermo Fisher Scientific Cat# A-21121, RRID:AB_

2535764); donkey anti-rabbit IgG (H+L) Cy3-conjugated, 1:500 (Jackson ImmunoResearch Labs Cat#

711-165-152, RRID:AB_2307443); goat anti-guinea pig IgG (H+L) Alexa Fluor 488-conjugated,

1:1000 (Thermo Fisher Scientific Cat# A-11073, RRID:AB_2534117); goat anti-rat IgG (H+L) Alexa

Fluor 488-conjugated, 1:500 (Jackson ImmunoResearch Labs Cat# 112-545-167, RRID:AB_2338362).

Confocal imaging
Stained preparations were imaged with an Olympus microscope BX50WI equipped with a confocal

laser scanner (FluoView 300), a 60X water-immersion objective (LUMPLFL; N.A., 0.9), a multi-argon

(630), a green HeNe (430), and a red HeNe (630) laser. Optical sections in the vertical axis were

acquired using 0.8 mm (NMJs) or 1.5 mm (VNC) intervals for optical sectioning using Fluoview soft-

ware. Images were analyzed offline using ImageJ software (FIJI v1.50, NIH).

For quantification of fluorescence signals, control and mutant larvae were dissected in the same

dish such that fixation and antibody incubation were performed identically. All samples were imaged

with the same laser settings. Fluorescence intensity per area was determined from a region of inter-

est (ROI) encompassing single synaptic boutons by using Image J Software.

For quantification of CSP accumulations in VNC, z-projections with maximal intensity of optical

sections were generated and cropped to a defined volume of 60 � 80 � 45 mm (216,000 mm3).

These image stacks represented the dorsal-most part of hemi-segments A4 and A5. After threshold-

ing for background subtraction, ROIs were drawn around all visible CSP-positive punctae; for those

appearing in multiple optical sections only the section with the brightest signal was used. ROI areas

were compiled to compare the cumulative area among genotypes.

Western blot analysis
Larval brains were dissected from wandering 3rd instar larvae in in phosphate-buffered saline (PBS,

pH 7.3) and five brains transferred to 60 mL buffer (2% SDS, 10% Glycerol, 60 mM Tris pH 6.8,

0.005% Bromophenol Blue, and 100 mM DTT). Brains were homogenized with a p200 pipette tip,

boiled for 5 min and centrifuged for 3 min at 2000 g. The soluble fraction was transferred to a fresh

tube, boiled for 1 min and an equivalent of ~1.5 brains was immediately loaded onto a 10% acrylam-

ide gel for SDS-PAGE at 80V (Mini-Protean Cell, BioRad, Hercules, CA). Separated proteins were

blotted onto nitrocellulose membranes at 20 V for 6 min using an iBlot system (Invitrogen, Carlsbad,

CA). After transfer, the blot was blocked for 30 min using 1% bovine serum albumin fraction V

(#BP1600-100, Fisher Scientific) in PBS supplemented with 0.2% Tween-20, pH 7.3 (PBSTw). Blots

were incubated with primary antibodies overnight at 4˚C, washed, and incubated with HRP-conju-

gated secondary antibodies for 2 hr at 4˚C. To normalize for protein loading, blots were stripped

(#21059; ThermoFisher Scientific) for 15 min at RT and immunostained for b-tubulin. Blots were

imaged using a BioRad Western Clarity ECL kit and ChemiDoc XRS imaging system. Protein band

intensities were quantified via densitometry analysis with Quantity One software (Bio-Rad). Raw

intensity values were normalized to the measurement of a b-tubulin loading control and expressed

as the n-fold change to an appropriate control genotype. Antibodies were diluted in PBSTw and

used at the following concentrations: rabbit anti-CSPa 1:20,000 (Enzo Life Sciences Cat# VAP-

SV003E, RRID:AB_2095057); mouse anti-dCSP, 1:20 (DSHB Cat# DCSP-1 (ab49), RRID:AB_2307345;

Zinsmaier et al., 1990); mouse anti-ubiquitin-conjugated protein, 1:2000 (Enzo Life Sciences Cat#

BML-PW8810, RRID:AB_10541840); mouse anti-b-tubulin, 1:1000 (DSHB Cat# E7, RRID:AB_528499);

goat anti-mouse IgG HRP-conjugated, 1:5000 (Thermo Fisher Scientific Cat# 32430, RRID:AB_

1185566; goat anti-rabbit IgG (H+L) HRP-conjugated 1:10,000 (Thermo Fisher Scientific Cat#

A16096, RRID:AB_2534770).
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Hydroxylamine treatment
Adult heads were homogenized in 2% SDS, 100 mM DTT, 60 mM Tris pH 6.8, and then treated with

0.5M hydroxylamine pH 7.0 or 0.5 M Tris pH 7.0 (final concentration) for 24 hr at RT before being

diluted 3-fold using 1x Laemmli buffer. Samples were boiled for 5 min before use for SDS-PAGE.

Immunoprecipitation
Young adult flies (1–3 day post-eclosion) were flash frozen in liquid N2 and stored at �80˚C. Heads

were enriched by brushing frozen heads on double metal sieves under liquid N2. Approximately 100

mL of heads were homogenized in 500 mL IP buffer containing: 1% Triton X-100, 30 mM Tris-HCl (pH

7.2), 150 mM KCl, 0.5 mM MgCl2. Homogenates were repeatedly centrifuged at 22,000 rpm to

remove insoluble debris. The cleared supernatant was incubated with rabbit anti-CSPa at 1:200 (f.c.)

for 1 hr on a rotator at 4˚C and then incubated with 50 mL protein A/G PLUS-Agarose (#sc-2003,

Santa Cruz Biotechnology, Dallas, Texas) for 2 hr at 4˚C. Agarose beads were spun down with a

tabletop centrifuge at 2000 g and the supernatant was removed and stored. The beads were

washed 4x with IP buffer by repeated resuspension and centrifugation. Beads were finally resus-

pended in Laemmli buffer, boiled for 5 min, centrifuged for 2 min and transferred to a fresh tube for

SDS-PAGE.

Electron microscopy
Larvae were rapidly dissected in 4% PFA and then fixed overnight in fresh fixative containing: 3%

glutaraldehyde, 1.5% formaldehyde, 2 mM CaCl2, 0.1M sodium cacodylate, pH 7.3. Samples were

rinsed in 0.1M cacodylate before being fixed with 2% OsO4 for 2 hr. Next, samples were washed

with HPLC grade H2O before being dehydrated with ethanol in a stepped series (30%, 50%, 70%,

90%, 95%,100%) followed by 100% acetone. Tissue was infiltrated with Durcupan ACM plastic

embedding media (#14040, Electron Microscopy Sciences, Hatfield, PA) through progressive mix-

tures with acetone (25%, 50%, 75%, 100%), hardened at 60˚C, trimmed and sectioned with a dia-

mond knife (70 nm). Sections were poststained with 4% uranyl acetate and lead citrate. Images were

obtained on a JEOL 1200EX with an AMT XR80M-B camera running AMT software. For publication,

figures were compiled and prepared with Photoshop CC (Adobe). Contrast and intensity of images

was minimally adjusted. Images were cropped as needed.

Quantification of eye phenotypes
This analysis was essentially done as described by others with some modifications

(Papanikolopoulou and Skoulakis, 2011; Santa-Maria et al., 2015). Briefly, eye phenotypes of 1–2

day old adults were digitally imaged using a stereomicroscope. A semi-quantitative phenotype

assessment was achieved by serially coding the obtained images and blind scoring by several naive

researchers. Each individual eye was given a relative roughness score in comparison with known

scoring classes: (1) normal WT-like eye. (2) Slightly ‘rough’ eye surface, slight dis-colorization, and/or

least reduction in eye size. (3) Rough eye surface, significant dis-colorization, disorganized omma-

tidia, and/or reduced in size. (4) Rougher eye surface; loss of organized ommatidia, malformed and

fused; more pronounced reduction in eye size. (5) Roughest eye surface, most pronounced loss of

organization, and/or most pronounced reduction in eye size. Scores were collected for at least eight

individual flies per genotype.

Data and statistical analysis
Data from at least three independent animals or experimental trials were used for statistical analysis.

Data are represented as mean, and error bars represent SEM. Gaussian distribution of data was

assessed using a D’Agostino and Pearson omnibus or Shapiro-Wilk normality test using Prism soft-

ware (GraphPad Software). Statistical significance was assessed by either a paired or unpaired t test,

Mann-Whitney, or one-way ANOVA (Kruskal-Wallis for non-parametric data) test with appropriate

post-hoc tests using Prism software). P values < 0.05,<0.01, and <0.001 are indicated in graphs with

one, two, and three asterisks, respectively.
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Andermann F, Faught E, Leonberg S, Damiano JA, Berkovic SF, Rouleau GA, Cossette P. 2013. Recurrent
mutations in DNAJC5 cause autosomal dominant kufs disease. Clinical Genetics 83:571–575. DOI: https://doi.
org/10.1111/cge.12020, PMID: 22978711

Cai Q, Lu L, Tian JH, Zhu YB, Qiao H, Sheng ZH. 2010. Snapin-regulated late endosomal transport is critical for
efficient autophagy-lysosomal function in neurons. Neuron 68:73–86. DOI: https://doi.org/10.1016/j.neuron.
2010.09.022, PMID: 20920792
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Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J,
Gasnier B, Journet A. 2013. An extended proteome map of the lysosomal membrane reveals novel potential
transporters. Molecular & Cellular Proteomics 12:1572–1588. DOI: https://doi.org/10.1074/mcp.M112.021980,
PMID: 23436907

Cheng X-T, Xie Y-X, Zhou B, Huang N, Farfel-Becker T, Sheng Z-H. 2018. Characterization of LAMP1-labeled
nondegradative lysosomal and endocytic compartments in neurons. The Journal of Cell Biology 217:3127–
3139. DOI: https://doi.org/10.1083/jcb.201711083

Cherry S, Jin EJ, Ozel MN, Lu Z, Agi E, Wang D, Jung WH, Epstein D, Meinertzhagen IA, Chan CC, Hiesinger PR.
2013. Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial
loss of function. eLife 2:e01064. DOI: https://doi.org/10.7554/eLife.01064, PMID: 24327558

Cooper JD, Tarczyluk MA, Nelvagal HR. 2015. Towards a new understanding of NCL pathogenesis. Biochimica
Et Biophysica Acta (BBA) - Molecular Basis of Disease 1852:2256–2261. DOI: https://doi.org/10.1016/j.bbadis.
2015.05.014

Cotman SL, Karaa A, Staropoli JF, Sims KB. 2013. Neuronal ceroid lipofuscinosis: impact of recent genetic
advances and expansion of the clinicopathologic spectrum. Current Neurology and Neuroscience Reports 13:
366. DOI: https://doi.org/10.1007/s11910-013-0366-z, PMID: 23775425

Imler et al. eLife 2019;8:e46607. DOI: https://doi.org/10.7554/eLife.46607 30 of 34

Research article Neuroscience

https://doi.org/10.1242/jeb.00898
http://www.ncbi.nlm.nih.gov/pubmed/15010483
https://doi.org/10.1371/journal.pone.0026741
http://www.ncbi.nlm.nih.gov/pubmed/22073189
https://doi.org/10.1186/s40478-015-0256-5
http://www.ncbi.nlm.nih.gov/pubmed/26610600
https://doi.org/10.1038/s41598-017-06710-1
https://doi.org/10.1038/s41598-017-06710-1
http://www.ncbi.nlm.nih.gov/pubmed/28740222
https://doi.org/10.1002/ddrr.1118
http://www.ncbi.nlm.nih.gov/pubmed/23798013
https://doi.org/10.1073/pnas.0611511104
http://www.ncbi.nlm.nih.gov/pubmed/17360644
http://www.ncbi.nlm.nih.gov/pubmed/8223268
https://doi.org/10.1093/hmg/dds089
https://doi.org/10.1093/hmg/dds089
http://www.ncbi.nlm.nih.gov/pubmed/22388936
https://doi.org/10.1016/S0896-6273(01)00292-6
https://doi.org/10.1016/S0896-6273(01)00292-6
http://www.ncbi.nlm.nih.gov/pubmed/11395008
https://doi.org/10.1038/ncb0111-8
http://www.ncbi.nlm.nih.gov/pubmed/21173802
https://doi.org/10.1016/j.semcdb.2015.03.008
http://www.ncbi.nlm.nih.gov/pubmed/25800794
https://doi.org/10.1046/j.1528-1157.2003.39802.x
https://doi.org/10.1046/j.1528-1157.2003.39802.x
http://www.ncbi.nlm.nih.gov/pubmed/12790899
https://doi.org/10.1111/cge.12020
https://doi.org/10.1111/cge.12020
http://www.ncbi.nlm.nih.gov/pubmed/22978711
https://doi.org/10.1016/j.neuron.2010.09.022
https://doi.org/10.1016/j.neuron.2010.09.022
http://www.ncbi.nlm.nih.gov/pubmed/20920792
https://doi.org/10.1016/j.bbadis.2015.04.027
https://doi.org/10.1016/j.bbadis.2015.04.027
https://doi.org/10.1042/bj3350205
https://doi.org/10.1042/bj3350205
http://www.ncbi.nlm.nih.gov/pubmed/9761715
https://doi.org/10.1016/j.cell.2005.09.028
http://www.ncbi.nlm.nih.gov/pubmed/16269331
https://doi.org/10.1074/mcp.M112.021980
http://www.ncbi.nlm.nih.gov/pubmed/23436907
https://doi.org/10.1083/jcb.201711083
https://doi.org/10.7554/eLife.01064
http://www.ncbi.nlm.nih.gov/pubmed/24327558
https://doi.org/10.1016/j.bbadis.2015.05.014
https://doi.org/10.1016/j.bbadis.2015.05.014
https://doi.org/10.1007/s11910-013-0366-z
http://www.ncbi.nlm.nih.gov/pubmed/23775425
https://doi.org/10.7554/eLife.46607


Diez-Ardanuy C, Greaves J, Munro KR, Tomkinson NC, Chamberlain LH. 2017. A cluster of palmitoylated
cysteines are essential for aggregation of cysteine-string protein mutants that cause neuronal ceroid
lipofuscinosis. Scientific Reports 7:10. DOI: https://doi.org/10.1038/s41598-017-00036-8, PMID: 28127059

Doyotte A, Russell MR, Hopkins CR, Woodman PG. 2005. Depletion of TSG101 forms a mammalian "Class E"
compartment: a multicisternal early endosome with multiple sorting defects. Journal of Cell Science 118:3003–
3017. DOI: https://doi.org/10.1242/jcs.02421, PMID: 16014378

Elefant F, Palter KB. 1999. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes
developmental defects and lethality. Molecular Biology of the Cell 10:2101–2117. DOI: https://doi.org/10.
1091/mbc.10.7.2101, PMID: 10397752

Fernández-Chacón R, Wölfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Muñoz M, Rosenmund C,
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