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Abstract. We use aircraft observations of carbon monox-
ide (CO) from the NASA ARCTAS and NOAA ARCPAC
campaigns in April 2008 together with multiyear (2003–
2008) CO satellite data from the AIRS instrument and a
global chemical transport model (GEOS-Chem) to better un-
derstand the sources, transport, and interannual variability
of pollution in the Arctic in spring. Model simulation of
the aircraft data gives best estimates of CO emissions in
April 2008 of 26 Tg month−1 for Asian anthropogenic, 9.4
for European anthropogenic, 4.1 for North American anthro-
pogenic, 15 for Russian biomass burning (anomalously large
that year), and 23 for Southeast Asian biomass burning. We
find that Asian anthropogenic emissions are the dominant
source of Arctic CO pollution everywhere except in surface
air where European anthropogenic emissions are of similar

Correspondence to:J. A. Fisher
(jafisher@fas.harvard.edu)

importance. Russian biomass burning makes little contribu-
tion to mean CO (reflecting the long CO lifetime) but makes
a large contribution to CO variability in the form of com-
bustion plumes. Analysis of two pollution events sampled
by the aircraft demonstrates that AIRS can successfully ob-
serve pollution transport to the Arctic in the mid-troposphere.
The 2003–2008 record of CO from AIRS shows that interan-
nual variability averaged over the Arctic cap is very small.
AIRS CO columns over Alaska are highly correlated with
the Ocean Nĩno Index, suggesting a link between El Niño and
Asian pollution transport to the Arctic. AIRS shows lower-
than-average CO columns over Alaska during April 2008,
despite the Russian fires, due to a weakened Aleutian Low
hindering transport from Asia and associated with the mod-
erate 2007–2008 La Niña. This suggests that Asian pollu-
tion influence over the Arctic may be particularly large under
strong El Nĩno conditions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The Arctic is a major receptor for mid-latitudes pollution
(Shaw, 1995; Quinn et al., 2007). Radiative forcing by pollu-
tants in the Arctic including ozone, aerosols, and black car-
bon deposited on snow could make a major contribution to
regional and global warming (Koch and Hansen, 2005; Shin-
dell et al., 2006a; McConnell et al., 2007; Quinn et al., 2008;
Shindell and Faluvegi, 2009). Several studies have identi-
fied pollution transport pathways to the Arctic on the basis
of model simulations and meteorological analyses (Eckhardt
et al., 2003; Klonecki et al., 2003; Koch and Hansen, 2005;
Stohl, 2006; Shindell et al., 2008), but our ability to ver-
ify these pathways through chemical observations has been
limited. Polar-orbiting satellites offer unique platforms for
this purpose. We present here an analysis of the sources and
transport of Arctic pollution in spring using the GEOS-Chem
chemical transport model (CTM) to interpret satellite obser-
vations of carbon monoxide (CO) from the Atmospheric In-
fraRed Sounder (AIRS) together with aircraft measurements
from the NASA ARCTAS (Arctic Research of the Compo-
sition of the Troposphere from Aircraft and Satellites) and
NOAA ARCPAC (Aerosol, Radiation, and Cloud Processes
affecting Arctic Climate) campaigns.

Despite 50 years of observations of Arctic pollution, there
remains considerable uncertainty concerning the sources.
Surface-based studies conducted in the 1970s and 1980s fo-
cused on anthropogenic pollution transported from Eastern
Europe and Siberia (Carlson, 1981; Rahn, 1981; Raatz and
Shaw, 1984; Barrie, 1986). Wintertime influence from these
regions is facilitated by cold surface temperatures and sta-
ble conditions, enabling low-altitude isentropic transport to
the Arctic (Barrie, 1986; Klonecki et al., 2003; Stohl, 2006;
Law and Stohl, 2007). Pollutants from Asia and North Amer-
ica, emitted at lower latitudes and therefore warmer temper-
atures, were thought to be inhibited from entering the Arctic
by the “polar dome”, an isentropic transport barrier.

Recent research has called into question the predominance
of Europe as the main source of Arctic pollution. Model-
ing studies have shown that while near-surface pollution may
still be dominated by European sources, transport from Asia
and North America is possible at higher altitudes, facilitated
by lofting of pollutants by warm conveyor belts (WCBs)
(Koch and Hansen, 2005; Stohl, 2006; Shindell et al., 2008).
Furthermore, with the collapse of the Soviet Union, strict
emission controls in the European Union, and the rapid in-
dustrialization of China and Southeast Asia, the global dis-
tribution of emissions has changed dramatically over the past
20 years. Several studies show increasing contributions from
Asia but disagree quantitatively on the importance of this
source for overall Arctic pollution (Koch and Hansen, 2005;
Stohl, 2006; Shindell et al., 2008). As interest in Arctic
pollution has broadened from air quality to climate impacts,
there is a pressing need to understand pollution sources not
only at the surface but throughout the troposphere.

Biomass burning has recently been suggested as an addi-
tional important source of Arctic pollution. Black carbon
records in Greenland ice cores show large concentrations at-
tributable to fire emissions dating back to the pre-industrial
era (McConnell et al., 2007), and more recent measurements
in snow suggest that biomass burning accounts for more than
90% of the black carbon deposited in the Arctic in spring
(Hegg et al., 2009). Fires in Eastern Europe and Russia have
been shown to cause substantial increases in the atmospheric
loading of pollutants including CO, ozone, and aerosols mea-
sured at surface sites in the European Arctic (Stohl et al.,
2007). Early analysis of the ARCPAC aircraft data identified
a substantial contribution from Russian forest fires and cen-
tral Asian agricultural burning to atmospheric pollution over
Alaska (Warneke et al., 2008).

CO is emitted by incomplete combustion, and we use it
here as a tracer of pollution. Its atmospheric lifetime against
oxidation by the hydroxyl radical (OH) is on average two
months, long enough to track transport on intercontinental
scales but short enough to show well-defined concentration
gradients (Staudt et al., 2001; Heald et al., 2003a; Liu et al.,
2003; Liang et al., 2004; Turquety et al., 2008; Yashiro et al.,
2009). In a recent intercomparison of 11 CTMs, simulated
CO concentrations disagreed by a factor of 2–3 at all altitudes
in the Arctic due to model differences in emissions, transport,
and OH concentrations (Shindell et al., 2008). There is a
need to better understand CO sources and transport to the
Arctic as an indicator of pollution influence.

Satellite observations present a unique perspective to ad-
dress these issues. CO is readily detectable from space at
infrared (IR) wavelengths, and data are available from a num-
ber of satellite instruments, including MOPITT, AIRS, TES,
SCIAMACHY, and IASI. AIRS is particularly promising for
studying pollution transport to the Arctic because of its high
spatial density (up to 70% global coverage daily) (McMil-
lan et al., 2005), sensitivity at high latitudes, cloud-clearing
capabilities (Susskind et al., 2003), and multi-year record
(continuous observations since mid-2002). It is a nadir-
viewing thermal IR sounder onboard NASA’s polar-orbiting
Aqua satellite and retrieves CO at 4.7 µm (McMillan et al.,
2009). As with all thermal IR sounders, the sensitivity to
CO is strongest in the mid-troposphere and generally weak
in the boundary layer, with little vertical resolution (Warner
et al., 2007; McMillan et al., 2008); however, in some in-
stances, AIRS can see CO enhancements down to the top of
the boundary layer (McMillan et al., 2009, 2010). Valida-
tion of AIRS CO retrievals in the northern hemisphere in-
dicates AIRS is biased approximately 10% high from 300–
900 mb, with little quantitative sensitivity to the boundary
layer (McMillan et al., 2009). AIRS CO observations have
been shown to successfully track the transpacific transport of
Asian pollution to North America (Zhang et al., 2008) and
the transatlantic transport of North American wildfire emis-
sions to Europe (McMillan et al., 2008). Total column AIRS
CO retrievals have been validated at three high-latitude sites
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(Yurganov et al., 2009), but application to Arctic pollution
transport had not previously been tested.

Aircraft data from the ARCTAS and ARCPAC campaigns
based in Alaska in April 2008 can help evaluate the utility
of the AIRS data for observing long-range transport to the
Arctic. The in situ measurements provide highly accurate in-
formation on the structure of Arctic CO distributions, allow-
ing an independent test of the AIRS CO data. The aircraft
observations can further provide quantitative constraints on
sources of CO in the Arctic.

We examine here the influence of different source types
(fuel combustion, biomass burning) and mid-latitude source
regions on Arctic pollution in spring, using the GEOS-Chem
CTM as a platform for intercomparing the aircraft and satel-
lite datasets. We first use the aircraft observations to con-
strain the CO sources in the CTM and subsequently use the
CTM to quantify the source contributions to Arctic CO pol-
lution. The aircraft observations together with the CTM are
used to test the ability of AIRS to observe high-latitude pollu-
tion transport. We then use AIRS observations to investigate
the interannual variability of CO transport to the Arctic.

2 Model description

We use the GEOS-Chem CTM version 8-01-04 (http://acmg.
seas.harvard.edu/geos/index.html) driven by GEOS-5 assim-
ilated meteorology from the NASA Global Modeling and As-
similation Office (GMAO) Goddard Earth Observing System
(GEOS). The native resolution of GEOS-5 is 0.5◦

×0.667◦

with 72 vertical levels; we regrid to 2◦×2.5◦ for input to
GEOS-Chem. The GEOS-Chem simulation of CO has pre-
viously been used to track intercontinental transport of pol-
lution (Li et al., 2002; Heald et al., 2003a; Liu et al., 2003;
Duncan and Bey, 2004; Jaffe et al., 2004; Liang et al., 2004;
Zhang et al., 2008) and has been extensively compared to in
situ and satellite observations (Jaeglé et al., 2003; Kiley et al.,
2003; Liu et al., 2003; Heald et al., 2006; Koike et al., 2006;
Duncan et al., 2007; Duncan and Logan, 2008; Hudman et
al., 2008).

We simulate April 2008 preceded by a 10-month spin-up.
Anthropogenic (fossil fuel and biofuel) sources of CO are
simulated using state-of-the-science regional emission inven-
tories as described in Table 1. Emissions from sources not
accounted for in the regional inventories are taken from the
EDGAR 3.2 FT2000 global emissions inventory for 2000
(Olivier et al., 1999; Olivier and Berdowski, 2001). Biomass
burning emissions are from the Fire Locating and Moni-
toring of Burning Emissions (FLAMBE) inventory (Reid et
al., 2009), which provides carbon emissions at 1◦

×1◦ spa-
tial resolution and hourly temporal resolution based on both
MODIS and GOES satellite fire counts (Naval Research Lab-
oratory,http://www.nrlmry.navy.mil/flambe/). CO emissions
are subsequently calculated using emission factors from An-
dreae and Merlet (2001). All emissions are injected into the

local planetary boundary layer as defined from the GEOS-
5 data. While this could cause an underestimate of vertical
transport of CO from the most energetic fires, recent work
has shown that direct free tropospheric injection of biomass
burning plumes is infrequent (Labonne et al., 2007; Kahn et
al., 2008; Val Martin et al., 2009).

Additional sources of CO in our simulation in-
clude oxidation of methane (CH4) and non-methane
volatile organic compounds (NMVOCs). Methane is spec-
ified using latitudinally-resolved observations from the
NOAA/ESRL/GMD network (Dlugokencky et al., 2008). A
yield of one CO molecule per oxidized CH4 molecule is as-
sumed. Oxidation of anthropogenic and biomass burning
NMVOCs is simulated by increasing direct CO emissions
from these sources by 19% and 11% respectively (Duncan
et al., 2007). Biogenic NMVOC sources in the model in-
clude isoprene, monoterpenes, methanol, and acetone. All
NMVOCs are assumed to oxidize immediately to CO with
yields given by Duncan et al. (2007). These indirect emis-
sions are not included in the regional CO emission totals
given later in the paper.

We use a linear CO simulation (Duncan et al., 2007) with
monthly mean archived OH concentrations from a previous
GEOS-Chem full-chemistry simulation (Park et al., 2004).
The annual global mean OH concentration in our simula-
tion is 10.8×105 molecules cm−3. This is close to the 25-
model mean of 11.1±1.7×105 molecules cm−3 reported in
the Shindell et al. (2006a) CTM intercomparison and higher
than the 9.4×105 molecules cm−3 reported for GEOS-Chem
in that comparison. For source attribution, the linearity of the
model permits us to include tagged CO tracers from individ-
ual sources that are consistent with the overall CO simula-
tion.

Model CO emissions for April 2008 are shown in Fig. 1
and summarized in Table 1. The highest emissions (red
hotspots in Fig. 1) are due to biomass burning, with partic-
ularly intense fire activity over Southeast Asia (Vietnam and
Myanmar) and over southern Russia near the Russia-China
border. The FLAMBE inventory includes 51 Tg month−1

of CO emissions from Southeast Asian fires in April. This
value is more than twice that reported in previous studies
(e.g., 18 Tg month−1 for April in Duncan et al. (2003), and
23 Tg month−1 in Heald et al. (2003b)) and in other inven-
tories (e.g., 6 Tg month−1 in GFED2). Satellite fire counts
for the region show no significant increases in burning in
2008 relative to other years (Acker and Leptoukh, 2007). The
FLAMBE emissions inventory is probably too high, as dis-
cussed further below. Russian fires during April 2008 were
much more intense than usual at that time of year because
of lower-than-normal snow cover during the previous win-
ter (Warneke et al., 2008). Figure 2 shows a timeseries of
2001–2008 monthly fire counts from the MODIS instrument
aboard the Terra satellite. Satellite fire counts over Russia in
April 2008 were 2.5 times the April average and higher than
for any month of the record except May 2003.
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Table 1. Global CO sources for April 2008 used in GEOS-Chem simulations.

Source CO Emission (Tgmonth−1)

Prior Simulationa Optimized Simulationb

Anthropogenicc 51 59

North Americad (172.5–17.5◦ W, 24–88◦ N) 4.2 4.2
Europee (17.5◦ W–60◦E, 33–88◦ N) 6.2 9.1
Siberiaf (60–172.5◦E, 50–88◦ N) 0.4 0.4
Asiag (60–152.5◦E, 0–50◦ N) 22 26
Rest of the worldf 9.9 9.9
Secondary production from NMVOC oxidationh 8.1 9.4

Biomass Burningi 104 50

North America (172.5–17.5◦ W, 24–88◦ N) 0.3 0.3
Europe (17.5◦ W–60◦E, 33–88◦ N) 2.0 2.0
Russia/Kazakhstan (60–152.5◦E, 33–60◦ N) 29 9.3
Southeast Asia (60–152.5◦E, 0–33◦ N) 51 21
Rest of the world 12 12
Secondary production from NMVOC oxidationh 10 4.9

Biogenicj 29 29

Methane 71 71

TOTAL 255 209

a Monthly source totals from the original GEOS-Chem emission inventories.
b Changes from the prior simulation reflect source corrections based on the ARCTAS and ARCPAC aircraft observations (Table 2).
c Anthropogenic sources include fossil fuel and biofuel emissions.
d North America includes Canada, the United States, and Mexico. Primary emissions over the US are derived by decreasing the US Environ-
mental Protection Agency National Emission Inventory (EPA-NEI99, http://www.epa.gov/ttnchie1/net/1999inventory.html) CO emissions by
60%, following Hudman et al. (2008). Canadian emissions are from the Criteria Air Contaminants (CAC) inventory (Environment Canada,
http://www.ec.gc.ca/pdb/cac/cachomee.cfm) and Mexican emissions are from the Big Bend Regional Aerosol and Visibility Observational
Study Emissions Inventory (BRAVO) (Kuhns et al., 2005).
e European anthropogenic emissions are from the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission
of Air Pollutants in Europe (EMEP) inventory (Vestreng and Klein, 2002).
f Siberian and “rest of the world” anthropogenic emissions are from the EDGAR 3.2 FT2000 inventory (Olivier et al., 1999; Olivier and
Berdowski, 2001).
g Asian emissions are derived from the NASA INTEX-B inventory for 2006 (Zhang et al., 2009) with seasonality based on monthly activity
levels of NOx emissions (Zhang et al., 2007).
h Secondary CO sources are computed by increasing direct CO emissions by 11% for biomass burning emissions and by 19% for anthro-
pogenic emissions (Duncan et al., 2007). Over the US, anthropogenic CO is increased by 39% rather than 19% to account for the improved
CO source estimate from Hudman et al. (2008).
i Biomass burning CO emissions are from the FLAMBE inventory (Reid et al., 2009) and are computed as described in the text.
j The source from the oxidation of biogenic NMVOCs is computed following Duncan et al. (2007) and includes acetone and methanol as
well as the Model of Emissions of Gases and Aerosols from Nature (MEGAN) inventory for isoprene and monoterpenes (Guenther et al.,
2006).

To compare GEOS-Chem and in situ aircraft CO, the
model is sampled along the flight track at the same time and
location as the observations. The aircraft data are averaged
over the GEOS-Chem grid and time-step. For comparison
with AIRS, GEOS-Chem is sampled at the AIRS overpass lo-
cations and averaged over a 3-h window centered at the 13:30
local overpass time. AIRS retrieves CO profiles on nine
trapezoidal pressure layers sampled from the 100 AIRS pres-

sure levels. GEOS-Chem model profiles are convolved to
AIRS retrieval space using the convolution equation (Olsen
et al., 2007; McMillan et al., 2009) and summed over the 100
pressure levels to compute the modeled total CO column:

ŷm =

∑
i

za,i exp

(
FAF′

· ln
zm,i

za,i

)
, (1)

whereŷm is the convolved model column,zm,i is the original
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model profile of partial columns interpolated onto the 100
AIRS pressure levelsi, za,i is the AIRS retrieval a priori
profile of partial columns,F is a 100×9 matrix that defines
the nine vertical trapezoidal layers on which AIRS CO is re-
trieved,F′ is its pseudo-inverse, andA is a 9×9 averaging
kernel matrix in the trapezoidal space. The degrees of free-
dom (DOF) for signal, measuring the number of pieces of
information in the vertical profile, are generally less than 1.5
(Kopacz et al., 2010), so we use total column CO rather than
profiles. The column sensitivity as indicated by the averaging
kernels is low in the boundary layer and has a broad maxi-
mum at 300–600 hPa (Warner et al., 2007; McMillan et al.,
2009; McMillan et al., 2010).

In this study we use version 5 AIRS CO retrievals (avail-
able from http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/
by-data-product/) and, following the recommendations in
McMillan et al. (2009), include only daytime AIRS observa-
tions with DOF for signal greater than 0.5 retrieved over sur-
faces with temperature above 250 K. These thresholds elim-
inate on average 20% of the available daytime observations
globally and 25% in the Arctic in April.

3 CO observations and constraints on sources

Jacob et al. (2009) give a general description of the NASA
ARCTAS campaign. A major goal was to observe long-
range transport of pollution to the Arctic using a DC-8 air-
craft based in Fairbanks, Alaska from 1 to 19 April 2008. CO
measurements were made using the Differential Absorption
of CO Measurement (DACOM) instrument at a frequency of
1 Hz and accuracy of 2% (Sachse et al., 1987). The NOAA
ARCPAC campaign (Warneke et al., 2008) took place con-
currently using a WP-3D aircraft also based in Fairbanks
with flights from 3 to 23 April 2008 (all but one after 11
April). CO measurements were made by vacuum ultraviolet
resonance fluorescence at a frequency of 1 Hz and accuracy
of 5% (Holloway et al., 2000).

Observed and modeled CO concentrations along the ARC-
TAS and ARCPAC flight tracks are shown in Fig. 3. Ob-
served concentrations during ARCTAS ranged from 23 to
296 ppbv (excluding observations south of 55◦ N from transit
flights). Less than 1% of the observations had concentrations
greater than 250 ppbv. Low values signify stratospheric air
and are removed for subsequent analysis as described below.
Observed concentrations during ARCPAC ranged from 96
to 383 ppbv. The highest CO concentrations were observed
over and around Alaska and were due to Asian pollution and
Russian fires, as discussed below. High-CO layers were also
sampled elsewhere, in particular near the North Pole by the
DC-8. The GEOS-Chem simulation with prior emissions
(Fig. 3, middle panels) shows qualitative agreement with
the observations but quantitative discrepancies are evident.
Modeled concentrations are generally too low, although they
are sometimes too high in plumes over and around Alaska,

1011 molec/cm2/s
  
0 5 10 25 50 100 250 400

Fig. 1. CO combustion sources for April 2008 (excluding secondary
CO from oxidation of biogenic NMVOCs and methane). Values are
shown for the optimized simulation but patterns are similar for the
prior simulation.
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Fig. 2. Monthly mean fire counts (cloud and overpass corrected) for
southern Russia and Kazakhstan (33–60◦ N, 60–152.5◦ E) from the
MODIS instrument aboard the Terra satellite. Fire counts for April
of each year are in red. The red solid line shows the 2001–2008
April mean. Data courtesy of NASA Goddard Earth Sciences Data
and Information Services Center.

suggesting different model errors for the different sources af-
fecting the Arctic.

Figure 4 shows the median vertical distribution of the air-
craft CO observations along with the corresponding model
values. Stratospheric observations, diagnosed as [O3]/[CO]
>1.25 mol mol−1 (Hudman et al., 2007), were removed from
the data set. The median observed CO concentration at the
surface was 160 ppbv. The data show little or no decrease
up to 5 km and a sharp decrease above. The ARCTAS data
show the most variability in the mid-troposphere (3–6 km).
The ARCPAC data show greater variability than the ARC-
TAS data at all altitudes.

The red lines in Fig. 4 show the median CO profiles from
the GEOS-Chem simulation with prior emissions. Relative
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Fig. 3. CO concentrations during ARCTAS (1 to 19 April 2008) and ARCPAC (3 to 23 April 2008). Aircraft observations (top) are compared
to model values sampled along the flight tracks and using prior (middle) or optimized (bottom) emissions. The flight tracks extend from 0 to
12 km (ARCTAS) and 8 km (ARCPAC); low values correspond to the stratosphere. Observations south of 55◦ N taken during transit flights
are excluded. For ARCTAS flights, observed CO concentrations range from 23 to 296 ppbv, while modeled concentrations range from 33 to
243 ppbv with prior emissions and 34 to 226 ppbv with optimized emissions. For ARCPAC flights, observed concentrations range from 96
to 383 ppbv, while modeled concentrations range from 112 to 255 ppbv with prior emissions and 115 to 221 ppbv with optimized emissions.

to both aircraft data sets, the model is 10 ppbv too low near
the surface. This difference decreases with altitude and dis-
appears in the upper troposphere. The underestimate of CO
at northern extratropical latitudes in spring is a general prob-
lem in current CTMs (Shindell et al., 2006b). We correct
the discrepancy here by adjusting emissions based on the as-
sumption that emission errors in the model are systematic,
model transport errors are random, and model OH errors are
small. We thus estimate the correction to emissions by per-
forming least squares multiple linear regression to the air-
craft observations of model results for five tagged tracers
of CO sources: (1) North American anthropogenic (fossil
fuel and biofuel), (2) European anthropogenic, (3) Asian an-
thropogenic, (4) Russian biomass burning, and (5) Southeast
Asian biomass burning. Emissions from these five sources
are assumed to represent the only sources of model error. The
regression is performed after first subtracting the modeled
contribution from all other sources from the total modeled
and observed CO. The resulting fit coefficients represent the
source corrections needed to minimize the discrepancy be-
tween observations and model. The fit is conducted using all

tropospheric data from both ARCTAS (1454 points from 9
flight days) and ARCPAC (1251 points from 9 flight days),
including data from transit flights to the Arctic.

Table 2 shows the emission scaling factors from the least
squares fit with confidence intervals determined using the
bootstrap method. The resulting emission estimates are given
in Table 1 and Fig. 1. We find that we need to increase an-
thropogenic emissions from East Asia and from Europe to
correct the underestimate of the background (Fig. 4) and in
the eastern part of the ARCTAS domain (Fig. 3). No correc-
tion is needed for our North American anthropogenic emis-
sions (Table 2), where our prior emissions are consistent with
other observational constraints (Hudman et al., 2008; Kopacz
et al., 2010).

Our finding that current anthropogenic emission inven-
tories for Europe and Asia are too low is consistent with
the recent inverse model analysis of Kopacz et al. (2010),
which was constrained by an ensemble of satellite data (MO-
PITT, AIRS, and SCIAMACHY) and verified against air-
craft and ground-based measurements. They found that
the inventories need to be increased in seasons other than
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Fig. 4. Median vertical distribution of CO concentrations in ARCTAS (1 to 19 April 2008) and ARCPAC (3 to 23 April 2008), averaged
over 1-km altitude bins. Observations are compared to model values with prior and optimized emissions. Black horizontal bars show the
interquartile range of the observations. Stratospheric observations identified by [O3]/[CO] >1.25 mol mol−1 have been removed.
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Fig. 5. CO columns at Eureka, Nunavut, Canada (86.4◦ W, 80.0◦ N)
from 1 to 20 April 2008. Measurements by a ground-based Fourier
Transform Spectrometer are compared to model values with both
prior and optimized sources. Black vertical bars show the uncer-
tainties of the measurements.

summer. Their optimized April anthropogenic emissions of
8.0 Tg month−1 for Europe and 28 Tg month−1 for Asia are
consistent with our estimates of 9.4 Tg month−1 for Europe
and 26 Tg month−1 for Asia. Kopacz et al. (2010) suggested
that the spring underestimate in the inventories may reflect
emissions from residential fuel use and vehicle cold starts.
These sources are included in the Zhang et al. (2009) inven-
tory used as our prior for Asia but with the assumptions that
residential fuel use peaks from November through March and
that cold starts have no seasonal variation. It is unlikely that
the discrepancy over Asia reflects growth in CO emissions
since 2006 (the base year for the emissions inventory), as
recent increased energy use has largely been offset by tech-
nology renewals (Zhang et al., 2009).

The ARCTAS and ARCPAC data suggest that we need to
decrease biomass burning emissions in the FLAMBE inven-
tory by a factor of 0.5 over southern Russia and by a factor
of 0.4 over Southeast Asia. The downward correction re-
sults in an optimized estimate of 15 Tg CO from Russian fires
and 23 Tg CO from Southeast Asian fires in April, the latter
in agreement with previous estimates of 18–23 Tg month−1

(Duncan et al., 2003; Heald et al., 2003b).

Table 2. Correction factors to prior CO combustion sources in
GEOS-Chema.

Source Correction factor

North American anthropogenic 0.96±0.16
European anthropogenic 1.52±0.18
Asian anthropogenic 1.18±0.11
Russian biomass burning 0.53±0.09
Southeast Asian biomass burning 0.45±0.11

a Source correction factors to the prior emission inventories of Ta-
ble 1, derived using a multiple linear regression between GEOS-
Chem tagged tracers and aircraft observations from ARCTAS (1 to
19 April 2008) and ARCPAC (3 to 23 April 2008) as described in
the text. Anthropogenic sources include fossil fuel and biofuel. Er-
rors show the 95% confidence interval calculated by the bootstrap
method.

Modeled CO concentrations from the optimized simula-
tion are shown along the flight tracks in Fig. 3 (lower pan-
els) and the profiles are shown as blue lines in Fig. 4. The
source correction eliminates the model error below 4 km for
both campaigns. Above 4 km, the optimization eliminates
the error relative to ARCTAS but not ARCPAC. After source
correction, the Pearson correlation coefficient between ob-
servations and simulation improves fromr = 0.50 tor = 0.60
for ARCTAS and fromr = 0.49 tor = 0.53 for ARCPAC. The
low correlation coefficients are driven by the high CO values
found in some fine-structure plumes, where large model er-
ror is expected due to both plume smearing and displacement
(Rastigejev et al., 2010). We tried removing the plumes be-
fore performing the least squares fit but this did not signifi-
cantly alter the resultant source correction factors.

To further test the optimization of sources, we con-
ducted independent comparisons with observations using
CO column data from a surface site at Eureka, Nunavut
(80◦ N, 86◦ W) and from the AIRS satellite instrument.
The measurements at Eureka were made with a Bruker
Fourier Transform Spectrometer (FTS) (Batchelor et al.,
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Fig. 6. Mean CO columns during April 2008 observed by the AIRS satellite instrument (version 5) and simulated by GEOS-Chem with
optimized sources (and AIRS averaging kernels applied). The right panel shows the percent difference between the two. GEOS-Chem was
sampled along the AIRS orbit tracks at the time of successful retrievals (see text).
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Fig. 7. Median vertical distribution along the ARCTAS and ARCPAC flight tracks of GEOS-Chem CO concentrations tagged by source
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Anth., red), Russian biomass burning (Rus. BB, orange) and Southeast Asian biomass burning (As. BB, purple). Horizontal bars are standard
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2009). Intercomparison with the DC-8 during a spiral
over the site on 8 April 2008 showed agreement within
0.01×1018 molecules cm−2 (0.5%). Figure 5 shows that the
source correction reduces the mean model bias relative to ob-
servations from−6% with prior sources to−1% with opti-
mized sources.

Figure 6 shows the mean April 2008 AIRS CO columns
compared to the GEOS-Chem model values from the opti-
mized simulation. Both AIRS and GEOS-Chem show the
highest pollution levels in the European sector of the Arc-
tic, followed by the Asian sector. The North American Arc-
tic is least polluted. Transport of European pollution takes
place directly northward over Scandinavia, while transport
from Asia is northeastward, entering the Arctic over Siberia
and Alaska. Averaged over the Arctic, GEOS-Chem is 3%
lower than AIRS. Comparison with the prior simulation (not
shown) revealed positive errors over the southern Russian fire
source and outflow regions due to the significant overesti-
mate of fire emissions. Meanwhile, the optimized GEOS-
Chem simulation shows the largest underestimate over the
region of the Russian fires, which may indicate that the fac-
tor of two downward correction to the FLAMBE inventory is
too large.

4 Sources of Arctic pollution in April 2008

We use the GEOS-Chem tagged tracers to decompose the
optimized simulated CO vertical profiles from ARCTAS and
ARCPAC (Fig. 4, blue lines) into the contributions from indi-
vidual sources. Figure 7 shows the median profiles along the
flight tracks of the five dominant sources, which on average
account for 67% of total CO during the campaigns. For both
campaigns, mean concentrations are dominated by Asian an-
thropogenic emissions along with a substantial contribution
from European anthropogenic emissions, especially at low
altitude. These mean contributions largely reflect the winter-
time accumulation of CO over the scale of the northern ex-
tratropical hemisphere. Emissions from Russian fires, which
did not begin until April (Fig. 2), have much less impact on
the mean pollution influence.

Conversely, Russian biomass burning makes a large con-
tribution to CO variability (horizontal bars in Fig. 7). Dur-
ing ARCPAC, the variability at all altitudes is dominated
by the Russian biomass burning source, consistent with
the large biomass burning plume influence observed dur-
ing the campaign (Warneke et al., 2008). The Russian
biomass burning contribution is smaller during ARCTAS and
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Fig. 8. Contributions of different mid-latitude source regions to CO pollution in the Arctic in April 2008, as indicated by the GEOS-Chem
simulation. Results are shown as mean CO mixing ratios in altitude bands of 0–2, 2–5, and 5–10 km. The Arctic Circle is indicated by a
dashed white line.

is comparable to the contributions from the continental an-
thropogenic sources, reflecting differences in sampling strat-
egy between the two campaigns. The Asian anthropogenic
and Southeast Asian biomass burning sources dominate vari-
ability in the upper troposphere for the ARCTAS flights. This
reflects the dominant pathway of Asian outflow in spring in-
volving uplift in WCBs off the Pacific coast, as was previ-
ously observed in the TRACE-P aircraft campaign (Liu et al.,

2003). Stohl (2006) identified this as the only major transport
pathway from Asia to the Arctic, with subsequent influence
at the Arctic surface involving subsidence on a time scale
of a month. The lifetime of CO is sufficiently long for this
subsidence to operate, leading to a general Asian pollution
influence in the Arctic background.
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Figure 8 shows the April 2008 mean contributions of each
tracer in different altitude bands over the scale of the Arc-
tic. Asian anthropogenic emission is the dominant contrib-
utor throughout the Arctic above 2 km, reflecting the high-
altitude WCB transport pathway. There is some lifting of
European pollution affecting the middle troposphere in the
European and Siberian sectors of the Arctic. In the bound-
ary layer, Asian and European anthropogenic influences are
of comparable magnitude but have distinct geographical sig-
natures. European influence dominates in the European sec-
tor of the Arctic, reflecting near-surface northward transport
over Scandinavia, and also over eastern Siberia, reflecting
westerly transport. We see from Fig. 8 that this trans-Siberian
transport is the dominant pathway by which European pollu-
tion affects Alaska. Our finding of European influence lifted
to the middle troposphere and transported across Siberia in
April differs from the prevailing winter situation (Klonecki et
al., 2003; Stohl, 2006) when European pollution is strongly
confined to the boundary layer and the circulation around
the Siberian high carries it to the Arctic rather than eastward
across Siberia.

Relative to other anthropogenic sources, pollution from
North America makes little contribution to Arctic back-
ground concentrations. North American influence is limited
to the lowest 5 km and to the Canadian Archipelago, Davis
Strait, and Greenland. Like Asian sources, North American
emissions reach the Arctic via uplift and transport associated
with WCBs (Stohl, 2006); however, CO emissions in North
America are much weaker than in Asia (Table 1).

Shindell et al. (2008) previously found in a multi-model
CO intercomparison that the Arctic in spring was most sensi-
tive to European sources, followed by North American then
Asian sources. The difference with our results reflects the
magnitude of emissions. The multi-model mean total emis-
sions (anthropogenic and biomass burning) in Shindell et
al. (2008) were 156, 90, and 129 Tg a−1 for East Asia, Eu-
rope, and North America, respectively; whereas our cor-
responding totals are 234, 135, and 77 Tg a−1 for anthro-
pogenic sources alone. Our higher Asian emissions and
lower North American emissions are consistent with recent
inverse analyses (Heald et al., 2004; Streets et al., 2006; Hud-
man et al., 2008; Tanimoto et al., 2008; Fortems-Cheiney et
al., 2009; Kopacz et al., 2009, 2010).

Although Southeast Asian fires were a large northern
hemispheric source of CO during April 2008 (Fig. 1 and Ta-
ble 1), their influence on the Arctic is minimal because of
the low latitude of emissions and the dominance in spring
of venting by deep convective events (Liu et al., 2003). The
small fraction of these emissions that reaches the Arctic does
so in the upper troposphere (Figs. 7 and 8), reflecting isen-
tropic transport (Klonecki et al., 2003) along with transport
by WCBs (Bey et al., 2001; Liu et al., 2003; Liang et al.,
2004). Even in the upper troposphere, the Southeast Asian
fire influence is smaller than the Asian anthropogenic influ-
ence.

5 Variability of Arctic pollution observed by AIRS

AIRS provides a unique perspective on variability of trans-
port to the Arctic. In this section we first test the ability of
AIRS to observe long-range pollution transport to the Arctic
by investigating two pollution events of different origins ob-
served by the aircraft during ARCTAS. We then assess the
representativeness of the April 2008 observations using the
AIRS multi-year record (2003–2008) and more generally in-
terpret the interannual variability observed by AIRS.

AIRS version 5 total column retrievals for 2003–2007
have been validated against FTIR data at three high latitude
sites and show excellent agreement (Yurganov et al., 2009).
At Ny Alesund (80◦ N), the mean annual bias is near zero.
Mean bias is also near zero at Kiruna (68◦ N) and Harestua
(60◦ N) for DOF for signal greater than 0.7, but negative
biases are observed at lower DOF. Overall, northern hemi-
spheric AIRS total column observations in April show an
8% negative bias relative to FTIR data. Validation of AIRS
CO retrievals in the northern hemisphere with aircraft in situ
profiles indicates AIRS is biased approximately 10% high
from 300–900 mb with little quantitative sensitivity to the
boundary layer, like all thermal IR sounders (McMillan et
al., 2009). In the Arctic, this lack of sensitivity may be com-
pounded by the cold surface. We therefore expect AIRS to
be capable of identifying transport to the Arctic in the mid-
troposphere but not at low altitude, and test this below with
two case studies of pollution plumes observed by ARCTAS.

Figure 9 shows CO concentrations on 16 April 2008 ob-
served by the DC-8 aircraft and total column CO observed
by AIRS, together with the corresponding GEOS-Chem val-
ues. CO concentrations of up to 250 ppbv, among the highest
during the ARCTAS campaign, were observed at altitudes of
3.5–5 km over western Alaska and the Norton Sound during
this flight. The enhancement was well captured by GEOS-
Chem, which shows the source to be a mix of Asian pol-
lution and Eurasian fires. Further evidence for a biomass
burning source comes from elevated observations of hydro-
gen cyanide (HCN) and acetonitrile (CH3CN). More than
half of the back trajectories shown in Fig. 10 passed directly
over the agricultural fires in southeastern Russia and Kaza-
khstan at low altitude before being lifted, likely by WCBs,
to the mid-troposphere. Turning to the satellite observations,
we see qualitative agreement between measured and simu-
lated total column CO throughout the Arctic, although AIRS
is consistently higher than GEOS-Chem as previously dis-
cussed. Both AIRS and GEOS-Chem show an extensive
plume stretching from Eastern Russia across the Pacific to
Alaska. Forward trajectories from the sampled plume indi-
cate that the plume did not travel poleward after being sam-
pled; however, it eventually entered the Arctic over the Cana-
dian Archipelago and the Davis Strait eight to ten days later.
This example illustrates AIRS’s ability to observe WCB loft-
ing and outflow from Eurasia to the Arctic.
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Fig. 9. Russian biomass burning event over Alaska sampled by the DC-8 aircraft on 16 April 2008. The top panels show aircraft observations
of CO concentrations compared to the GEOS-Chem model. The bottom panels show the AIRS CO column concentrations observed on that
day compared to the GEOS-Chem model with AIRS averaging kernels applied.

Figure 11 shows a different case on 9 April 2008, when a
CO enhancement was observed by the aircraft at the North
Pole at altitudes below 2 km. Concentrations in the plume
were 165–170 ppbv. Backward trajectories (Fig. 12) indi-
cate that the plume traveled slowly from northeastern Europe
across Siberia, remaining at low altitude. Although trajecto-
ries pass over the Russian burning region, this was before
the most intense fires began, and observed concentrations of
HCN and CH3CN were negligible. GEOS-Chem captures
the plume and indicates that the primary source was Euro-
pean pollution mixed with some Asian pollution. Forward
trajectories show that much of the polluted airmass remained

at low altitude over the pole for at least the next ten days.
We do not expect AIRS to be sensitive to such low-altitude
transport, and indeed we see from Fig. 11 that neither AIRS
nor the GEOS-Chem simulation weighted by AIRS averag-
ing kernels could detect the plume.

The limited ability of AIRS to observe low-altitude CO
enhancements prevents us from using AIRS to systemat-
ically identify near-surface transport events to the Arctic.
As we have shown with the GEOS-Chem simulation, this
mainly impacts our interpretation of pollution from European
sources, which is primarily (though not exclusively) trans-
ported at low altitude. AIRS is most useful for identifying
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Figure 10. Ten-day backward and forward trajectories from the FLEXPART model using WRF 

meteorological fields and starting from the 16 April 2008 plume shown in Fig. 9. The color scale 

indicates altitude. 

Fig. 10. Ten-day backward and forward trajectories from the FLEXPART model using WRF meteorological fields and starting from the 16
April 2008 plume shown in Fig. 9. The color scale indicates altitude.

mid-tropospheric transport, which as we have seen privileges
Asian influence.

The 2003–2008 April mean CO columns from AIRS are
shown in Fig. 13, along with the anomalies for each year.
The major features described for 2008 (Fig. 6 and Sect.
3) are also seen in the multi-year mean, with the Euro-
pean sector of the Arctic being the most polluted and the
North American sector the cleanest. The anomaly maps
show little variability north of the Arctic Circle. Mean
April CO column ranges from 2.06×1018 molecules cm−2 to
2.11×1018 molecules cm−2, despite larger year-to-year dif-
ferences at mid-latitudes, and is most strongly correlated
with mean Arctic sea level pressure (SLP) in the GEOS-
5 data (r =−0.81). We attribute this anti-correlation to the
higher degree of Arctic isolation associated with high pres-
sure conditions, preventing poleward transport of CO from
mid-latitudes.

Pollution transport to the Arctic is thought to be enhanced
under the positive phase of the North Atlantic Oscillation
(NAO) (Eckhardt et al., 2003; Duncan and Bey, 2004) due
to stronger surface westerlies and anomalous southerly flow
(Hurrell et al., 2003). Previous studies found strong posi-
tive correlations, most pronounced at the surface, between
NAO strength and Arctic pollution accumulation in winter
and spring (Eckhardt et al., 2003; Duncan and Bey, 2004).
However, we find no significant correlation of AIRS CO over
the Arctic in April 2003–2008 with the February–April mean
NAO index (taken from the NOAA Climate Prediction Cen-
ter, available athttp://www.cpc.noaa.gov). This could reflect
limitations due to (1) our focus on spring, when the NAO in-
dex is typically weak (Hurrell et al., 2003), (2) the lack of
sensitivity of AIRS to surface concentrations where the cor-
relation is strongest, and (3) the limited range of NAO index
variability (less than±1) over the 2003–2008 period of the
AIRS record.

AIRS observations for April 2008 show that despite the
anomalously large Russian fire source, pollution influence
over Alaska was much weaker than normal (Fig. 13). This
can be explained by a strong SLP anomaly, as shown in
Fig. 14. Positive pressure anomalies of more than 10 hPa
were seen over the North Pacific with weaker negative
anomalies further north, indicating that the climatological
Aleutian low pressure system was less intense and shifted
northward. Considering that the Aleutian low and associated
storm tracks are a major driver for transport of Asian pollu-
tion to the Arctic (Fuelberg et al., 2010), this transport may
have been weaker than normal in April 2008.

We further examined the interannual variability of the
AIRS April CO column over Alaska and find that it is highly
correlated (r = 0.80) with the February-April mean Ocean
Niño Index (ONI, a measure of the El Niño-Southern Oscil-
lation, again taken from the NOAA Climate Prediction Cen-
ter), as shown in Fig. 15. The correlation is significant at
thep = 0.10 level. Atmospheric teleconnections from ENSO
have long been known to affect the strength and position of
the Aleutian low pressure system (Bjerknes, 1966; Niebauer,
1988). During El Nĩno conditions, the Aleutian low inten-
sifies and shifts to the southeast of its climatological mean
position (52◦ N, 175◦ E; Rodionov et al., 2005), while dur-
ing La Niña conditions it weakens and shifts to the west.
Niebauer (1988) found that this change alters the low-level
flow over the central Pacific, bringing Asian outflow north
toward Alaska during El Nĩno years (see his Fig. 7) and
decreasing the northward flow of Asian air during La Niña
years. We suspect that this mechanism extends to higher al-
titudes and explains the correlation between the ONI and the
AIRS CO column over Alaska. While there have been no
strong El Nĩno years since the beginning of the AIRS record,
a moderate La Niña with monthly ONI values up to−1.4
occurred from fall 2007 through spring 2008, resulting in a

Atmos. Chem. Phys., 10, 977–996, 2010 www.atmos-chem-phys.net/10/977/2010/

http://www.cpc.noaa.gov


J. A. Fisher et al.: Source attribution and interannual variability of Arctic pollution 989

ppbv

DC-8

AIRS

GEOS-Chem

GEOS-Chem with AIRS AK

10   molec/cm218

50 75 100 125 150 175 200

0.80 1.20 1.60 2.00 2.40 2.80

0o 0o0o0o0o

Fig. 11. Same as Fig. 9, but for a European pollution event at the North Pole on 9 April 2008.

less intense Aleutian low and an associated decrease in Asian
pollution influence during April 2008. The La Niña persisted
through April (ONI =−0.8) and began to dissipate in May.

The specific meteorological conditions that characterized
April 2008 have important implications for the interpretation
of the ARCTAS and ARCPAC aircraft data. As discussed in
Sect. 4, we find from these data that CO pollution throughout
the Arctic is dominated by the Asian anthropogenic source,
despite the anomalously weak poleward transport from this
source in April 2008. El Nĩno conditions would be expected
to lead to larger Asian influence and consequently more CO
pollution in the Arctic. Such an effect may be further am-
plified by increased biomass burning, which has been shown
to play a dominant role in increasing CO concentrations over

Alaska during El Nĩno events (Szopa et al., 2007). In 2003,
the only El Nĩno year in our record, CO columns were indeed
anomalously high over Alaska, the Chukchi Sea, and much
of the North American Arctic (Fig. 13).

We further investigated the relationship between ENSO
and CO concentrations in the Alaskan Arctic using GEOS-
Chem. GEOS-5 meteorological fields are available only for
2005–2008, so we performed a sensitivity simulation us-
ing meteorology from 2005 (the highest ONI for those four
years, see Fig. 15) while maintaining emissions at 2008 lev-
els. Figure 16 compares simulated concentrations of the
Asian fossil fuel tagged tracer in April using 2005 and 2008
meteorology. April 2005 shows stronger northward transport
of Asian pollution over the North Pacific and Alaska than

www.atmos-chem-phys.net/10/977/2010/ Atmos. Chem. Phys., 10, 977–996, 2010



990 J. A. Fisher et al.: Source attribution and interannual variability of Arctic pollution

 

Figure 12. Same as Fig. 10, but for the European pollution event on 9 April 2008 shown in Fig. 

11. 

Fig. 12. Same as Fig. 10, but for the European pollution event on 9 April 2008 shown in Fig. 11.
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Fig. 13. 2003–2008 mean April CO columns from AIRS (top) and CO column anomalies for each April in the AIRS record.
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Fig. 14. Mean sea level pressures from GEOS-5 for April 2003–2008 (left) and 2008 only (middle). The 2008 anomaly is shown at right.
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Fig. 15. Year-to-year variability of the mean April AIRS-observed
CO column over Alaska (168–140◦ W, 54–72◦ N) and mean Ocean
Niño Index (ONI) averaged over February-April for each year. Pos-
itive values of the ONI (red) indicate El Niño conditions while neg-
ative values (blue) indicate La Niña conditions. The Pearson corre-
lation coefficient ofr = 0.80 is significant at thep = 0.10 level. The
ONI data were obtained from the NOAA Climate Prediction Center,
available athttp://www.cpc.noaa.gov.

April 2008. Whether this enhancement is indeed linked to
the more positive phase of the ONI in 2005 is unclear, and
additional data and simulations during a strong El Niño year
would be needed to verify this link.

6 Conclusions

We used CO observations from the NASA ARCTAS and
NOAA ARCPAC aircraft campaigns as top-down constraints
in a global 3-D chemical transport model (GEOS-Chem) to
quantify the sources of pollution to the Arctic in spring 2008.
Through comparisons with aircraft and GEOS-Chem, we
demonstrated that AIRS satellite measurements of CO cap-
tured the mean spatial structure of Arctic pollution in April

2008 as well as events in the free troposphere but did not de-
tect events in the boundary layer because of low sensitivity in
the thermal IR. We subsequently used the 2003–2008 record
of AIRS CO observations in the Arctic in April to investigate
the interannual variability of pollution transport from north-
ern mid-latitudes.

Least squares regression of the GEOS-Chem CO simula-
tion to the ARCTAS and ARCPAC aircraft observations sug-
gests that anthropogenic CO emissions in Europe in April
2008 are underestimated by 50% in the EMEP inventory
and anthropogenic emissions in Asia are underestimated
by 20% in the Streets et al. (2006) inventory updated for
2008. The discrepancy likely represents an underestimate
of seasonal CO emissions rather than a problem in global
annual emissions. This result is consistent with the re-
cent inverse analysis of Kopacz et al. (2010) and may re-
flect a winter-spring underestimate of emissions from res-
idential fuel use and vehicle cold starts. April 2008 saw
anomalous fire activity in southern Russia in addition to
seasonal biomass burning in Southeast Asia. We find that
the FLAMBE inventory with hourly resolution based on
MODIS and GOES fire data overestimates these emissions
by a factor of two. Optimized April 2008 emissions obtained
by fitting GEOS-Chem to the ARCTAS aircraft data are
26 Tg month−1 for Asian anthropogenic, 9.4 Tg month−1 for
European anthropogenic, 4.1 Tg month−1 for North Amer-
ican anthropogenic, 15 Tg month−1 for Russian biomass
burning, and 23 Tg month−1 for Southeast Asian biomass
burning. The resulting simulation shows no significant bias
(mean of−1%) relative to ground-based column data at Eu-
reka (80◦ N, 86◦ W). It also shows a−3% underestimate rel-
ative to AIRS in the Arctic, although this may reflect in part
a high bias in the AIRS data (McMillan et al., 2009).

We find in GEOS-Chem that CO concentrations over the
Arctic in spring are dominated at all altitudes by Asian an-
thropogenic sources. The exception is at the surface where
European anthropogenic sources are of comparable impor-
tance. This anthropogenic dominance, despite the large
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Fig. 16. Concentrations of the Asian fossil fuel CO tagged tracer in the GEOS-Chem simulation for April 2005 versus April 2008 meteorol-
ogy with identical April 2008 emissions for both years. Results are shown as April mean CO mixing ratios at 0–2, 2–5, and 5–10 km.

biomass burning emissions in April 2008, reflects the win-
tertime accumulation of anthropogenic CO on the scale of
the northern extratropics. European pollution influence in
April extends to the free troposphere and also across Siberia
following westerly flow. This contrasts with the prevailing
pattern in winter when stratification confines European pollu-
tion to the surface and the Siberian high pressure system sup-

presses westerly transport. Russian biomass burning makes
little contribution to mean CO but contributes substantially
to CO variability. Asian and biomass burning synoptic trans-
port events take place mainly in the free troposphere through
warm conveyor belts (WCBs) and are followed by slow sub-
sidence. Analysis of specific pollution events sampled by
the aircraft shows that AIRS can successfully observe the
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long-range transport of pollution to the Arctic in the middle
troposphere but not at the surface.

AIRS CO observations in April, both for 2008 and for
the multiyear record (2003–2008), show the highest lev-
els of pollution in the European Arctic sector, followed by
the Asian sector and with the North American sector being
cleanest. This is consistent with GEOS-Chem, where synop-
tic lifting of European pollution contributes to the European
sector. The North American sector is relatively clean, despite
WCB injections off the east coast of North America, because
CO emissions there are relatively small. Mean April AIRS
CO columns for 2003–2008 show little interannual variabil-
ity when averaged over the Arctic polar cap. What little vari-
ability exists is most strongly correlated with Arctic sea level
pressure (r =−0.81) and can be explained by decreased pol-
lution inflow from mid-latitudes under high-pressure condi-
tions. We find little correlation with the NAO index, which
could reflect the limited range of this index in spring over the
2003–2008 period as well as AIRS’s lack of sensitivity in the
boundary layer.

AIRS CO columns over Alaska in April 2008 are anoma-
lously low compared to other years, despite the anomalously
high Russian biomass burning influence. We find that AIRS
CO in this region is highly correlated with the Ocean Niño
Index (r = 0.80). The low CO columns over Alaska in April
2008 were associated with La Niña conditions in fall 2007
through spring 2008 that weakened the Aleutian low pressure
system. As a result, transport of Asian pollution to the Arctic
was likely suppressed. We verified this result by comparing
GEOS-Chem simulations for April 2005 (weak El Niño) and
April 2008. This suggests that the impact of Asian pollu-
tion in the Arctic could be very large under strong El Niño
conditions, so far missing from the AIRS record.
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