University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Department of Electrical & Computer Engineering, Department
Electrical and Computer Engineering of

11-29-1993

Simple high-quality lossy image coding scheme
Shaolin Bi

Khalid Sayood

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub

6‘ Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from
the Department of Electrical and Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.


https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Electronic Imaging 3(1), 81-91 (January 1994).

Simple high-quality lossy image coding scheme

Shaolin Bi
Khalid Sayood
University of Nebraska-Lincoln
Department of Electrical Engineering
Lincoln, Nebraska 68588-0511

Abstract. A simple yet efficient image data compression method is
presented. This method is based on coding only those segments of
the image that are perceptually significant to the reconstruction of
the image. Sequences of image pixels whose gray-level differences
from the pixels of the previous row exceed two prespecified thresh-
olds are considered significant. These pixels are coded using a dif-
ferential pulse code modulation scheme that uses a 15-level recur-
sively indexed nonuniform quantizer for the first pixel in a segment
and a 7-level recursively indexed nonuniform quantizer for all other
pixels in the segment. The quantizer outputs are Huffman coded.
Simulation results show that this scheme can obtain subjectively sat-
isfactory reconstructed images at low bit rates. It is also computa-
tionally very simple, which makes it amenable to fast implementa-
tion.

1 Introduction

Because of the large amount of data required to represent an
image, the past decades have seen the appearance of a large
number of image compression algorithms. Many of these
algorithms are designed to minimize some mathematically
tractable distortion measure. In image coding this is generally
some form of average squared error, such as normalized mean
squared error (NMSE), signal-to-noise ratio (SNR), and peak
signal-to-noise ratio (PSNR). Because the final consumers of
the information are humans who do not necessarily use the
squared error distortion measure as a performance metric, a
design that maximizes the PSNR may not necessarily provide
visually acceptable reconstructed images. Unfortunately, a
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definitive model of the human visual system (HVS) does not
yet exist that can be used for developing or evaluating image
compression algorithms. This is not to say that there have
not been significant contributions to the development of an
HVS model, and algorithms that make use of these models.

The best-known model in the compression literature is the
modulation transfer function (MTF) model developed by
Mannos and Sakrison.! This model is used by Griswold? to
weight a ‘‘cosine energy function,”” which is then used to
obtain the bit allocation for a discrete cosine transform (DCT)
coding scheme. Nill* has shown how to use a transformation
of basis, so as to use an MTF model developed using a sine
basis with the DCT. The MTF models incorporate global
properties of the HVS. Therefore, when they are incorporated
into image compression schemes, they provide little local
sensitivity. Because images are globally nonstationary, this
can be a drawback. This drawback can be overcome to some
extent by using the MTF over small sections of the image,
such as an 8 X 8 block.

Compression schemes that operate in the spatial domain
avoid this drawback by using the properties of the HVS to
drive local adaptation strategies. Netravali and Prasada* use
the properties of the HVS to develop 2-D masking functions.
These masking functions are used on a local level to improve
the performance of a differential pulse code modulation
(DPCM) system. Ramamoorthy and Jayant,” Ramamurthi
and Gersho,® and Parthasarathy, Thygarajan, and Abut,’
among others, have developed codebook design techniques
for vector quantizers (VQ).

Some of these techniques, such as vector quantization,
impose an artificial block structure. This can result in an
unnecessary expenditure of resources. For example, a block
may be classified as containing an edge and, therefore, need
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additional resources, even though only a small fraction of
the pixels in the block actually belong to an edge.

In this paper we present a spatial compression technique
that imposes minimal structure while making use of the idea
of just-noticeable distortion. The method introduced in this
paper processes an image in the spatial domain row by row,
from top to bottom. Segments of image pixels of varying
lengths called significant segments are extracted using two
prespecified thresholds. The thresholds are sufficiently robust
to changes in image statistics to be considered image inde-
pendent. These segments represent perceptually significant
accumulated gray-level differences in the vertical direction.
In the compressed form only the significant segments and
their locations are stored/transmitted. The remainder of the
image is discarded. At the decoder the image is reconstructed
using only the significant segments. In addition to the pixel
values in a significant segment, the address and length of the
segment must also be specified for reconstructing the image.

Simulation results are presented to show the efficiency of
the scheme. Two types of simulations were conducted. One
set of simulations were conducted to obtain ‘‘acceptable’’
quality images. We call this level-1 compression. Another
set of simulations were conducted to obtain ‘‘transparent’’
quality images. A reconstructed image is said to be of trans-
parent quality if, when it is displayed side by side with the
original, it takes a trained observer more than 20 s to discover
a coding distortion.> As reported by Ramamoorthy and Jay-
ant,” this is a rather stringent requirement and many simple
and two-stage VQ schemes could not pass this requirement.
We call compression resulting in transparent quality level-2
compression.

In the following sections we describe the proposed scheme
in more detail. The simulation results are presented in Sec. 6
with a summary in Sec. 7.

2 Extraction of Significant Segments

As mentioned in Sec. 1, we consider significant segments to
be those portions of an image that are essential for its re-
construction. A significant segment is defined as follows:

Definition. Given an image of size M X M, where the cur-
rent pixel value is denoted by f(i,j) and the reconstructed
pixel value denoted by f(i,j), where i is the row number and
J is the column number, we define a segment of pixels from
(i,j) to (i,j+n—1) to be significant if

lfil)—Fi—1,0|2T,  k=j, . j+n—1 )

and

Jjtn—1 .

2 fel=fa-10[=T, )
=j

where T and T, are two thresholds and # is the length of the
segment. The segment length n can vary from segment to
segment. For computational ease we impose the restriction
that a significant segment be confined to a single row.

The first condition guarantees that every pixel in a sig-
nificant segment has a gray-level-value difference greater
than or equal to 7', from the reconstructed pixel in the row
above. The second condition says that the sum of gray-level
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differences of all the pixels in the segment is greater than or
equal to T,.The first row of pixels in an image is considered
to be a significant segment of length M.

While the need for the first condition is self-evident, the
need for the second condition is less so. The first condition
ensures that the auxillary segments are close, on a point-to-
point basis, to a significant segment. Therefore, if the aux-
illary segments are not available, they can be obtained from
the significant segment. The second condition arose as an
outcome of our experiments to determine the value of T).
We found that values of T, that permitted a perceptually
acceptable or transparent reproduction tended to declare a
large number of short segments to be significant, even though
when we forced these segments to be auxillary, the perceptual
quality did not change. If we put a restriction on the segment
length (forbidding small segments) this prevented segments
with large (perceptually significant) deviations from the pre-
vious row to be declared significant. The second condition
effects a compromise between these two situations. If the
deviation between the segment being examined and the pre-
vious row is large, the second condition could be satisfied
regardless of the length of the segment. However, if the de-
viations are small, the segment length will have to be large
for the second condition to be satisfied.

The thresholds 7', and T, are chosen to achieve designated
bit rates or reconstructed image qualities. Larger values for
T, and T, give lower bit rates but introduce more distortion
in the reconstructed image and vice versa. Because evaluation
of lossy image data compression schemes is generally a sub-
jective matter, it is difficult to obtain a mathematical rela-
tionship between the values of T, and T, and the subjective
quality of the reconstructed image. Therefore, it is difficult
to determine the values of T, and T, analytically. The values
of T, and T, in our simulations were obtained based on ex-
perimentation. Fortunately, we found that 7, and 7, were
robust to changing image statistics, and as can be seen from
the simulation results, for the same values of T, and T, we
obtained reconstructed images with very similar qualities and
bit rates.

The address and length of each significant segment must
be transmitted to the receiver. This can constitute significant
overhead. To reduce this overhead, significant segments that
are separated by less than d pixels are connected into one
segment. This has the effect of reducing the overall bit rates.
For the original images in Figs. 1 and 2 at 7, = 8 and T, = 26,
Figs. 3 and 4 are the significant segment maps.

When the decoder has received the coded pixel values in
the significant segments along with the location of these seg-
ments, the image is reconstructed using the following pro-
cedures:

1. The reconstructed pixels in the row above are first
filtered using the following low-pass filter and then
copied to the corresponding pixels in the current row,

- 1. .
fa) = =1 j=D+2fG=1. )

+fi—1,j+D] . 3)

2. If the current pixel being decoded is part of a significant
segment, the pixel values obtained from procedure 1
are replaced by the decoded pixel values received.
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Fig. 1 “Lena” original image.

Fig. 2 “Tiffany” original image.

We see that a new row in an image is reconstructed by either
copying the low-pass-filtered version of the pixels in the
above row or by assigning pixel values in the significant
segments. Procedure 1 is used to smooth the reconstructed
image. Originally in our simulation the pixel values in the
above row were copied directly to the pixels in the current
row. We found that there were some noticeable vertical lines
in the reconstructed image, as shown in Figs. 5 and 6. The
cause of these vertical lines is obvious from the nature of the
scheme. Procedure 1 solved this problem to a great extent.
Besides smoothing these vertical lines in the reconstructed
image, procedure 1 also has the effect of improving the per-
formance of the scheme, i.e., lowering the bit rate or en-
hancing the reconstructed image quality. We see that Eq. (3)
is in fact a predictor of order 3. Better predictors might exist
but this one worked better than the others we tried. In level-1
compression the value of 7 is around the limit of the range
of gray-level changes that the HVS can detect. Therefore,
some reconstruction artifacts exist in spite of procedure 1. A

Fig. 4 Significant segments in the “Tiffany” image.

postsmoothing algorithm was developed to deal with this
problem and is described in Sec. 5.

3 Quantization and Coding

Image data in the significant segments must be stored or
transmitted for the reconstruction of the image. In our initial
simulations each pixel in the significant segments was quan-
tized and coded. However, it was later found that for level-1
compression if only one pixel in two is quantized and coded,
i.e., 2:1 subsampling, and the unsampled pixel values esti-
mated, the overall bit rates can be further reduced, or a better
reconstructed image can be achieved at the same bit rate.
With this approach some horizontal resolution is sacrificed
to improve the overall quality of the reconstructed image.
Various methods could be used to interpolate the unsampled
pixels in the segment. In the current work we use mean in-
terpolation, i.e., the average of the left and right pixels, to
estimate the unsampled pixels. We found that this simple
approach produced results as good or better than other, more

Journal of Electronic Imaging / January 1994 / Vol. 3(1) / 83



Bi and Sayood

Fig. 5 Nonsmoothed reconstruction of the “Lena” image.

Fig. 6 Nonsmoothed reconstruction of the “Tiffany” image.

complicated, interpolation schemes. This subsampling can-
not be used for level-2 compression or transparent coding.
A DPCM scheme?® with a 2-D linear predictor” is used to
code the image data in the significant segments. The first
pixel in a significant segment is more important to the pre-
diction of the following pixels in the same segment and its
prediction error variance is greater than those of the other
pixels in the segment. For level-1 compression, a 15-level
max nonuniform quantizer'® and a 7-level Max nonuniform
quantizer are used to quantize the prediction errors for the
first pixel and the remaining pixels in the segment, respec-
tively. To reduce the quantization errors while keeping the
bit rate relatively low, in level-2 compression, a 15-level
recursively indexed'' Max nonuniform quantizer and a
7-level recursive Max nonuniform quantizer are used for the
first pixel and the remaining pixels in the segment, respec-
tively. The distributions of the inputs to the 15- and 7-level
quantizers were both supposed to be Gaussian and the quan-
tizer output points in Ref. 10 were used directly. The quantizer

84 / Journal of Electronic Imaging / January 1994 / Vol. 3(1)

input in both cases is the difference between the current pixel
value and the predicted value, which is computed as follows:

Fap=Faj) . @)
for the first pixel in a segment, and by

FGj)=0.75FG,j—1)+0.75f(i—1,))
—05fi—1,j—1) 5

for the rest of the pixels in the segment in transparent re-
construction, or by

G, j)=0T5FG, j—2)+0.75F(i—1,))
—05f(i—1,j-2) (6)

for level-1 compression with subsampling, where £, j)is the
predicted value of f(i,j) and f(i,j) is the reconstructed pixel
value. Equation (5) is obtained from Ref. 12. Other prediction
functions were tried and were found inferior to the current
ones. All of the pixel values in the first row of the image are
coded using a DPCM system with a 15-level nonuniform
quantizer.

To match the dynamic range of the Max quantizers, the
quantizer input is scaled by a factor X that is experimentally
chosen. A small value of N will blur the image and a large
value N will cause the bit rates to increase without a corre-
sponding increase in image quality. In our simulations, X is
chosen so that the quantizers have a small amount of overload
(several hundreds pixels for the 7-level quantizer and dozens
for the 15-level quantizer). The value of A is fixed for the
images used in this simulation.

Fixed sets of Huffman codes are used for the 15- and
7-level quantizers for the same categories of reconstructed
images. These Huffman codes were obtained from the com-
bined frequencies of the quantizer outputs in images ‘‘Lena’’
and ‘‘Tiffany.”” Table 1 shows the output points, the fre-
quencies that the output points are used, and the correspond-
ing Huffman codewords for level-1 compression. The Huff-
man codewords were obtained similarly for level-2
compression.

4 Data Structure

Along with the actual DPCM-coded pixel data, for every
significant segment we also have to send some overhead
information, which informs the decoder of the position and
length of the significant segment. This information consti-
tutes a large part of the total information needed to represent
an image. For example, in monochrome images, overhead
information constitutes nearly half of the total information
in the level-1 compression and it takes about 0.35 bit/pixel
in level-2 compression. We describe how we encode over-
head information in the following.

The position of a significant segment is given by the dis-
tance from the beginning of the current significant segment
to the end of the previous significant segment. Here we in-
troduce a concept of an empty segment. If L(L=2", m is an
integer) consecutive pixels are not part of a significant seg-
ment, these L consecutive pixels are labeled as an empty
segment. An empty segment is represented by a 0. If the
distance between two significant segments is D, then there
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Table 1 Maximum quantizer outputs, frequency of outputs, and
Huffman codewords for a level-1 compression.

7-Level Quantizer 15-Level Quantizer
Quantizer Frequency Codeword | Quantizer Frequency Codeword
Output Lena Tiffany Output Lena Tiffany
0.0 13343 16947 0 0.0 1018 653 0001
0.5606 4942 4996 11 0.2739 3919 4228 1
-0.5606 4470 4197 100 -0.2739 2032 2168 01
1.188 1105 818 1011 0.5548 601 699 0000
-1.188 982 743 10100 -0.5548 470 636 0010
2.033 144 39 101011 0.8512 114 337 00110
-2.033 253 141 101010 -0.8512 96 106 001111
1.175 16 65 0011100
-1.175 19 33 00111010
1.546 0 10 001110111
-1.546 13 8 0011101100
2.007 0 0 0011101101011
-2.007 3 2 001110110100
2.681 0 2 00111011011
-2.681 0 0 0011101101010

are K, =|D/L| empty segments in it and K, bits of 0’s will
be used to represent these K| empty segments. The remaining
value of D — (K, X L) is represented by an m-bit binary num-
ber that is preceded by a 1 to indicate the end of a sequence
of empty segments. The remaining distance can also be Huff-
man coded. However, from our simulations we found that
the performance improvement obtained is minimal.

To see how the coding works, consider the following ex-
ample. Suppose L=16(m=4) and D=71, then D would be
represented by the codeword 000010111. In this codeword
the first four 0’s represent four empty segments at a length
of 16 each. The first 1 after the four 0’s is a marker to show
that the next 4 bits represent the remainder of the distance,
which in this case is seven. Therefore, D=4X16+7=71.
As mentioned in Sec. 2, segments with distance between them
less than or equal to d are connected together to form a single
segment. Therefore, we know that all of the distances between
segments are greater than or equal to d+ 1 and, hence, we
can always subtract d + 1 from the distance. This will further
reduce the number of bits required to represent the distance.
For reasons of computational convenience, only segments in
the same row were connected in our simulation.

The length of the significant segment has to be specified
to separate the binary numbers representing the position of
the segment from the binary numbers representing the pixel
data. The length of the segment is represented by a t-bit binary
word. If we specify ¢ to be too large, then during the times
that specifying the length of a significant segment would have
required fewer bits we would be wasting resources; however,
specifying ¢ to be too small would limit the length of the
significant segment. This would lead to breaking up a long
segment into smaller segments, which in turn would result
in an increase in the overhead. To avoid this problem we
employed recursive indexing'' to represent the length of the
significant segments. The recursive indexing scheme func-
tions as follows: Given ¢ bits we can represent values between
0 and 2'— 1. If the actual value we need to represent is less
than 2'— 1, we send the #-bit codeword corresponding to that
value. If however the value is greater than or equal to 2'— 1,

Table 2 Data structure for a segment.

Position Length | First Pixel | Following Pixels

Ky +m + 1 bits | (ot bits | 1 to 14 bits | 1 to 6 bits / each

we send the codeword corresponding to 2’ — 1, and subtract
2" — 1 from the value. If the remainder is less than 2" — 1, then
we send the r-bit code corresponding to the difference. If not,
we repeat the process. This process is repeated until the re-
mainder is less than 2'— 1. For example, suppose t=3 and
we wished to encode a value of 5. Because 5 is less than 7
we would simply transmit the codeword 101. A value of 9
however would be encoded as 111010. The receiver, on
seeing the 111 codeword, recognizes that the index will be
7+ whatever comes after, and keeps adding the values cor-
responding to the 3-bit codewords until it obtains a value less
than 7.

Note that in level-1 reconstruction the segment pixels are
subsampled as described in Sec. 3, and, hence, the real length
of the segment is about two times the number of the sampled
pixels. If we define the minimum length of the segment to
be [, we can also subtract /,;, from the binary number
representing the length of the segment as we do for the po-
sition of a segment. Suppose the length of a segment is /, it
would be represented by K, = (/= [,;,)/(2’— 1) |+ 1 binary
numbers, and the number of bits to be used is K,¢. Note also
that in transparent quality image compression if we restrict
the length of significant segments to be even, we can also
use this method to reduce the overhead information.

Table 2 shows the data structure and bits required to rep-
resent a segment. Table 2 shows that a significant segment
is represented by three pieces of information: the position of
the segment, the length of the segment, and the actual pixel
data in the segment. If recursive quantizers are used, the pixel
data will be different from the ones shown in the table. For
example, suppose we have a significant segment with length
12 that is at a distance of 63 from the last significant segment.
If we define L=16, d=8, t=3, and [;, =1, then there are
(63—9)/16=3 empty segments. The remaining distance is
63—9—-3X16=6, so the position of the segment can be
represented by 000101 10. By subsampling, there are 12/2=6
pixels left in the segment. Now the length of the segment
can be represented by |(6—1)/7]+ 1 =1 binary number of
3 bits, i.e., 101.

The coding of the overhead information, as described
above, is basically run-length coding with some small tricks
in coding the ‘‘run’’ and the ‘‘length.”” Besides the method
of coding the overhead information described above, we tried
the method described in Ref. 13, which differentially ad-
dresses the significant segments. We also tried to use a special
‘‘end-of-segment’’ symbol to indicate the ending of the seg-
ment data. Both of these produced worse results than the
method described above.

5 Image Postsmoothing

As mentioned in Sec. 2, because the values of threshold T,
are close to the range of gray-level changes that human eyes
can detect in level-1 compression, some reconstruction ar-
tifacts are noticeable, especially in low-activity (quasicon-
stant) regions. The effect is that in these regions if you look
at the image carefully you can notice the gray-level changes
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caused by the significant segments and low-pass filtering. A
postsmoothing algorithm is developed to solve this problem.
Usually smoothing will eliminate image details to some ex-
tent that will, in turn, degrade the subjective quality of the
image. Our method, introduced below, tries to avoid this
problem.

We know that significant segments in our scheme repre-
sent gray-level changes and they are usually located on edges
and contours of objects in the image. To preserve the details
of the image, only those pixels that are not on segments can
be smoothed, while pixels on segments should not be touched.
But segments also exist in some quasiconstant regions such
as the forehead and the cheeks of the face, where abrupt gray-
level changes would be very noticeable in the reconstructed
images. Because the density of segments in these regions is
lower than the density in other regions with higher gray-level
activities, we can identify the pixels in these regions as  ‘scat-
tered’’ segment pixels and smooth them. Labeling is carried
out in a moving local window: Suppose the current pixel is
in the center of the window. If the following two conditions
are both satisfied, that is, the current pixel is on a segment
and the number of pixels not on segments in the local window
exceeds a threshold T, the current pixel is labeled as ‘‘scat-
tered’” and is smoothed.

A 3X3 window and T5;=6 is used in our simulation.
Smoothing is implemented by assigning the average gray-
level values of the pixels in the window to the current pixel.
We can see that this is a conservative smoothing procedure
at T, =6, i.e., the current pixel is smoothed only when there
is at most one other pixel on a significant segment in the
window. Smoothing can be carried out several times for the
same reconstructed image. It should be pointed out that post-
smoothing is only carried out in low-rate (level-1) compres-
sion. In level-2 or transparent coding the reconstructed image
is so good that postsmoothing is unnecessary.

6 Simulation Results

We ran two types of simulations for both monochrome and
color images, in which color images were processed in the
Y, I, and Q planes, separately. In the first case we found
thresholds T, T5, and the scale factor X for which we obtained
images of ‘‘acceptable’’ quality. These images had PSNR
values of around 30 dB. The PSNR for images of size M X M
is defined as

(255)%

PSNR(dB)= 10 log —— .
O LG~ TGP
and the bit rate is defined as
total bit d
bits/pixel =~ > WEC )

M2

In all of the simulations, the image sizes were 512 X 512. We
chose the empty segment length L = 16, connecting gap d =4.
To recursively represent the length of the significant seg-
ments, we chose the number of binary bits ¢ to be two for
the low-rate case and three for the transparent case. For a
given quality we used the same coder parameters for all im-
ages; that is, the coder parameters are quality dependent, not
image dependent. This allows for a straightforward imple-
mentation of the compression scheme. In the case of color
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Fig. 7 Low-rate reconstruction of the “Lena” image (rate =0.51 bit/
pixel).

Fig. 8 Low-rate reconstruction of the “Tiffany” image (rate = 0.55 bit/
pixel).

images, we used two different values of T, (T,; and T5,) for
the even and odd rows for the I and Q planes. We found that
allowing slightly higher distortion in every other row of the
I and Q planes did not perceptually degrade the overall quality
while lowering the average rate.

The monochrome images coded using the acceptable cri-
terion, or level-1 compression, are shown in Figs. 7 and 8.
Another set of images and their level-1 compression are
shown in Figs. 9 through 12. A set of color images (printed
here in black and white) and their level-1 compression are
shown in Figs. 13 and 14. The monochrome images were
coded using an average rate of approximately 0.52 bit/pixel
while the average rate for the color images ranged from 1.08
bits/pixel for the popular ‘‘Lena’” image to 1.34 bits/pixel
for the high-detail ‘‘Peppers’’ image, as shown in Tables 3
and 4. The PSNRs for the reconstructed images in level-1
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UG MRFORCE ¢

Fig. 10 “Peppers” original image.

compression are computed before the postsmoothing is per-
formed.

Thresholds and scale factors were obtained to get trans-
parent quality images. The results are shown in Tables 5 and
6 and Figures 15 and 16. To obtain transparent quality images,
we did not subsample the significant segments. However, we
restricted the length of the significant segments to be even
and the minimum length to be two. In this way, we can still
use half of the bits to represent the length of the segments
just as we did in the subsampled cases.

Because this is a differential encoding scheme in the spa-
tial domain, we compared our results to a DPCM system with
entropy coding. The proposed system significantly outper-
forms entropy-coded DPCM. For example, taking the
“‘Lena’’ image, DPCM with Huffman coding gives a bit rate
of 2.57 bits/pixel and a PSNR of 36.23 dB with a 15-level
max nonuniform quantizer, and a bit rate of 1.26 bits/pixel
and PSNR of 30.50 dB with a 7-level max nonuniform quan-
tizer. The qualities of the reconstructed images in these two

Fig. 11 Low-rate reconstruction of the “F-16” image (rate = 0.52 bit/
pixel).

Fig. 12 Low-rate reconstruction of the “Peppers” image (rate =0.51
bit/pixel).

cases are similar to those of the transparent and low-rate
reconstructed images by our scheme. However, the rates for
the transparent quality and low-rate images are 1.15 and 0.51
bits/pixel, respectively. Thus it takes roughly twice the bit
rates for entropy-coded DPCM to obtain reconstructed im-
ages of similar quality as the proposed scheme.

We also compared the proposed scheme with the Joint
Photographic Experts Group (JPEG) implementation devel-
oped by the Independent JPEG Group. The PSNR perfor-
mance at lower rates (around 0.5 bit/pixel) was 2 to 3 dB
higher for the JPEG implementation. However, the perfor-
mance at level-2 rates was more comparable. The PSNR for
the “‘Tiffany’’ and ‘‘Peppers’’ images was higher for the
proposed system, and the PSNR for ‘‘Lena’” and “‘F-16"’
was higher for the JPEG implementation. In the subjective
comparisons, the level-1 results for JPEG were slightly better
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(a)

(c)

(b)

(d)

Fig. 13 Original color images presented in black and white: (a) “Lena,” (b) “Tiffany,” (c) “F-16,” and

(d) “Peppers.”

than those for the proposed system, while the level-2 results
were very similar. This performance advantage is obtained
at the cost of more complexity. In our view, the JPEG al-
gorithm has a substantially more complex implementation,
and in multimedia applications in which special purpose hard-
ware may not be available, its implementation may be prob-
lematic. The proposed algorithm is a spatial domain algorithm
that is easily amenable to low-complexity implementation.

7 Summary

We have presented a simple and efficient image data compres-
sion method in this paper. Segments of image pixels are
obtained by an extraction procedure. Segment pixels are
coded with a DPCM scheme that uses a 15-level nonuniform
quantizer for the first pixel in a segment and a 7-level non-
uniform quantizer for the remaining pixels. Simulation results
show that this method can achieve very satisfactory recon-
structed images at low bit rates. The other advantages of this

88 / Journal of Electronic Imaging / January 1994 / Vol. 3(1)

method are low complexity, fast implementation, and image
independence.
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