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ABSTRACT

Soil moisture (SM) plays an important role in land surface and atmosphere interactions. It modifies energy
balance near the surface and the rate of water cycling between land and atmosphere. The lack of observed SM
data prohibits understanding of SM variations at climate scales under varying land uses. However, with simulation
models it is possible to develop a long-term SM dataset and study these issues.

In this paper a water balance model is used to provide a quantitative assessment of SM climatologies for
three land uses, namely, irrigated corn, rain-fed corn, and grass, grown under three hydroclimatic regimes in
Nebraska. These regimes are stops along an east–west decreasing precipitation gradient of the Great Plains. The
simulated SM climatologies are provided for the root zone as a whole and for the five layers of the soil profile
to a depth of 1.2 m. As expected, the soil water content in the root zone of irrigated corn was higher than rain-
fed corn or grass. The lowest levels of soil water depletion were found under rain-fed corn cultivation due to
its complete reliance on naturally available SM. The annual total evapotranspiration (ET) was 34% and 36%
higher for irrigated corn than for rain-fed corn and grass, respectively. The study suggests that due to interannual
variability the SM variability is higher for deeper depths, as compared to near-surface depths. Growing season
SM depletion and prevailing soil water content at various depths of the soil profile varies with crops, soils, and
prevailing hydroclimatic conditions.

The results show that land use affects the magnitude of SM variability at all time scales. At a daily temporal
scale, SM variability is less under irrigated land use and sharply increases under rain-fed land uses. At the
monthly scale, SM variability largely follows the trend of the daily time scale. Year-to-year SM variability is
significant. Extremely dry or wet conditions enhance and reduce, respectively, the forcing of land use on SM
variability at an annual time scale. Thus, large-scale interannual climate variations and land use jointly affect
SM variability at this scale.

1. Introduction

Soil moisture (SM) is an important mediator in the
hydrologic cycle that converts a time series character-
ized by white noise (precipitation) into a time series
characterized by red noise (soil moisture) (Delworth and
Manabe 1988; Vinnikov and Yeserkepova 1991). Re-
liable soil moisture sensors have recently become avail-
able but, due to the lack of long-term soil water data,
it is difficult to determine how soil moisture varies his-
torically (Georgakakos et al. 1995). If we can estimate
soil moisture reliably from long-term climate data, then
the role of soil moisture in regional and global water
cycles can be better understood. Two decades ago
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Schmugge et al. (1980) discussed the importance of such
SM estimates for hydroclimatological studies in the ab-
sence of observed data. Recently, Crawford et al. (2000)
suggested that SM parameterizations in numerical
weather prediction models are overly simplified. They
have also noted that, for example, the Eta Model (Black
1994) of the National Centers for Environmental Pre-
diction (NCEP) and the fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search (PSU–NCAR) Mesoscale Model (MM5; Dudhia
1993) use a climatological SM value to establish initial
conditions.

In this paper we use data from a soil moisture process
model to reconstruct and investigate past soil moisture
‘‘pseudo’’ climatologies for selected locations (Fig. 1)
and for three land uses of the northern Great Plains
(NGP). This study simulates and analyzes SM for mul-
tiple land uses for five depths up to 1.2 m at climate
scales. This paper also investigates climatic variability
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FIG. 1. Location of model application sites.

FIG. 2. Mean monthly precipitation at three locations.

of SM at multitemporal scales under contrasting land
uses and assesses forcing of land use at these scales.
This study is part of our ongoing effort to build and
analyze an SM dataset for the NGP. We also raise the
possibility that this model applied on a grid-by-grid ba-
sis could be used to initialize mesoscale meteorological
and climatological models. The SM model was applied
and successfully validated by Robinson and Hubbard
(1990, RH hereafter), and is currently offered as a tool
for irrigation scheduling in the Northern Great Plains.
In previous studies, the SM model was applied to in-
vestigate the impacts of land use change on SM and
evapotranspiration (ET) in the NGP (Mahmood and
Hubbard 2002a), the role of irrigation on near-surface
temperature records (Mahmood et al. 2002), the parti-
tioning of energy (Mahmood et al. 2001), and the timing
of precipitation in drought assessment (Meyer et al.
1993a,b). A sensitivity analysis of the SM and ET for
soils heterogeneity is also completed (Mahmood and
Hubbard 2003).

The RH model validation was completed for five pre-
dominant and representative land uses in the Great
Plains at nine locations extending from eastern to west-
ern Nebraska (Robinson and Hubbard 1990). The val-
idation was also provided for six soils layers up to the
depth of 1.8 m. Land uses included in the validation
were grass, corn, wheat, sorghum, and soybeans. The
validation sites are representative of the east–west hy-
droclimatic gradient of the Great Plains and included
several climatological zones. The data were collected
over two growing seasons (April through September
and/or October) in 1986 and 1987. This was already an
improvement over Cherkauer and Lettenmaier (1999),
for which the variable infiltration capacity (VIC) model
validation was completed for one location, and also over
Crawford et al. (2000), where validation was conducted
for 1 month of data for grass only (July 1997). In ad-
dition, validation of the RH model was completed over
a larger area than the previous studies (cf. Crawford et
al. 2000). Our assessment shows that performance of
the RH model is also superior to many land surface
schemes (LSSs). Section 3 of this paper includes a de-
tailed discussion on the RH model performance. For

additional information on the model and its validation,
the authors urge readers to consult Robinson and Hub-
bard (1990), Camargo (1993), and Camargo et al.
(1994).

For this study, as noted above, the model is applied
to three predominant land uses, namely, irrigated and
rain-fed corn, and rain-fed grass. Irrigated corn has a
longer growing season (May through late September
and/or early October) compared to rain-fed corn (May
through late August and/or early September) and grass
(May–August). Water consumption also varies accord-
ing to land use and differences in plant life cycles. Ap-
plication of water for irrigated corn notably modifies
natural root zone SM and hydrology (Mahmood and
Hubbard 2002a). Thus, rain-fed and irrigated land uses
with the same plants provide significantly different hy-
drological conditions. The RH model applications were
repeated for three sites in Nebraska, representing a de-
creasing precipitation gradient from east to west, typical
of the Great Plains (Fig. 2). The model estimates of soil
water are for the top five layers for a period from 1982
to 1999. The five layers represented in the model are
from 0–2.5, 2.5–30.5, 30.5–61, 61–91.5, and 91.5–122
cm, respectively. Vegetation- and crop-specific growing
degree days (GDDs) were used for realistic represen-
tation of plant growth. GDD is calculated to determine
crop phenology, which is associated with the potential
for water consumption at different growth stages.

2. Background

A significant number of research projects have been
undertaken and completed over the last two decades,
focusing on the relationship between SM and climate.
Hong and Pan (2000) reported a strong positive feed-
back between initial SM and simulated seasonal pre-
cipitation. The simulations were conducted by using the
NCEP Regional Spectral Model (RSM). Model simu-
lations show that soil water storage eventually effects
moisture distribution within the boundary layer atmo-
sphere and its structure (Hong and Pan 2000). Wang
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and Kumar (1998) suggested that interannual variations
of SM may play a role in seasonal predictability of
surface climate anomalies. They have found a strong
correlation between SM and surface temperature anom-
alies. Dirmeyer (1999, 2000) also noted that incorrect
SM inputs reduced the accuracy of simulated precipi-
tation anomalies. Huang et al. (1996) reported from their
study that SM is a better predictor of temperature over
large areas during the summer season, compared to pre-
cipitation. A number of sensitivity studies for several
LSSs were conducted under the Global Soil Wetness
Project (GSWP) and the Project for Intercomparison of
Land-Surface Parameterization Schemes (PILPS) (e.g.,
Qu et al. 1998; Morrill et al. 1999; Pitman et al. 1999;
Dirmeyer 1999). PILPS undertook a phase-by-phase ap-
proach to compare and improve estimates of water and
energy flux by the LSSs (Chen et al. 1997; Wood et al.
1998; Liang et al. 1998; Lohmann et al. 1998). Lohmann
et al. (1998) noted that simulated changes in mean sea-
sonal cycles of soil moisture storage agreed qualitatively
with observations. In other words, it will be difficult for
researchers and forecasters to confidently quantify soil
moisture using these models.

To overcome some of the uncertainties in the design
of LSSs, and to increase the accuracy of the estimated
flux and storage of energy and water and to produce
global SM data, a new project, the Land Data Assim-
ilation System (LDAS) was undertaken (Mitchell et al.
2000). The success of this project remains to be seen.
The Atmospheric Model Intercomparison Project
(AMIP) reported that none of the AMIP models captured
interannual variations in SM (Robock et al. 1998). The
SM estimates provided by the revised AMIP models
also show no improvement in capturing seasonal vari-
ations in SM (Srinivasan et al. 2000). The GSWP used
10 LSSs to produce global SM data. It is noted that
none of the models produced satisfactory estimates of
SM for any regions (Entin et al. 1999). Robock et al.
(2000) made a similar observation. Entin et al. (1999)
observed that model biases vary from region to region.
Therefore, a simple approach would not be sufficient
(Entin et al. 1999). Entin et al. (1999) suggest that future
research projects should include experiments with a lon-
ger time scale.

Hollinger and Isard (1994) analyzed a measured SM
dataset from Illinois. The data were collected from 17
sites in Illinois and the SM was measured biweekly from
March through September, and monthly during the win-
ter up to a depth of 2 m. They found latitudinal and
longitudinal gradients of SM variations related to season
and reported variations of water-holding capacity due
to soil texture. Vinnikov and Yeserkepova (1991) ana-
lyzed measured SM data from the former Soviet Union
for the period of 1972–85. The data used in this study
were collected from a depth of 1 m. For warm months
the data were measured 3 times a month, and for cold
months measurements were made once a month. Vin-
nikov and Yeserkepova (1991) found a positive linear

trend in SM over a number of regions in response to
increasing regional precipitation. They also noted that
measured SM data did not agree well with GCM-sim-
ulated estimates. Entin et al. (2000) estimated temporal
and spatial scales of SM variations, using measured data
from China, Mongolia, the Soviet Union (Vinnikov and
Yeserkepova 1991), Illinois (Hollinger and Isard 1994),
and Iowa. Wittrock and Ripley (1999) used a Canadian
dataset to determine the regional and spatial pattern of
SM during autumn. The SM data used in the above
studies were collected at various time scales, including
every 10 days, once a month, and once a year (e.g.,
Wittrock and Ripley 1999). In the recent past, Nijssen
et al. (2001) and Maurer et al. (2002) developed an SM
dataset for the globe and the conterminous United
States, which can be used by various climate models.
The Maurer et al. (2002) SM dataset is used by Maurer
and Lettenmaier (2003) to forecast runoff in the Mis-
sissippi basin and found promising results.

It is apparent from the above that the absence of long-
term SM data with high temporal measurement density
has precluded meteorological and climatic interpreta-
tions. The unavailability of data also has prevented a
better grasp of how SM behaves at different depths with-
in the top 2 m of the soil profile. A lack of simultaneous
assessment of SM variations under a number of prev-
alent land use/land cover types has been a hurdle to
understanding linkages to climate. In addition, insuffi-
cient discussion on SM variability at different temporal
scales under multiple land uses has prevented a more
realistic representation of landscape. This study pro-
vides daily SM estimates for five layers in the soil profile
for three land uses and SM variability at different time
scales under different land uses. One of the advantages
of using the RH model lies in the fact that it is fine-
tuned to local (the NGP) land use and hydroclimatic
conditions. In addition, due to large-scale modification
of natural grasslands to agricultural land use in the Great
Plains, it is essential that we investigate SM of croplands
along with grasslands. Furthermore, Qiu et al. (2001)
emphasized that the relationship between land use and
soil moisture needs to be investigated under a variety
of conditions. The present study addresses this concern.

GCIP (2000), Leese (2000), and Leese et al. (2001)
noted that development of long-term soil moisture da-
tasets for climatological studies and that understanding
the role of land memory processes in predictability is
a high priority for future research. The United States
Global Change Research Program (USGCRP) recog-
nizes that variations in the water cycle at climatological
scales are a key research issue for the future (USGCRP
2001). Our long-term goal is to address these objectives
of the USGCRP. Note that this study will be conducted
within a Global Energy and Water Cycle Experiment
(GEWEX) Americas Prediction Project (GAPP) area
(Mississippi watershed).
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TABLE 1. Soil water measurements by location and land use. (Source: Robinson and Hubbard 1990.)

Site Year Land use

Days with
measured water

(#) Dates of measurement

North Platte, NE 1986 Corn
Wheat

13
12

Jun: 4, 11, 18, 25; Jul: 2, 9, 16, 23, 30: Aug: 13, 20, 27; Sep: 3
Apr: 23, 30; May: 7, 14, 21, 28; Jun: 4, 11, 18, 25; Jul: 2, 9

North Platte, NE 1987 Corn
Wheat
Sorghum
Soybean

12
4

12
12

Jun: 2, 11, 17; Jul: 7, 14, 21, 27; Aug: 4, 11, 18; Sep: 1, 8
May: 26; Jun: 2, 11, 17
Jun: 2, 10, 17; Jul: 7, 14, 21, 27; Aug: 4, 11, 18; Sep: 1, 8
Jun: 2, 10, 17; Jul: 7, 14, 21, 28: Aug: 4, 11, 18; Sep: 1, 8

Clay Center, NE 1987 Corn
Wheat
Sorghum
Soybean

8
9
8
8

Jun: 30; Jul: 7, 21, 30; Aug: 6, 21, 27; Sep: 30
Apr: 23, 29; May; 7, 15, 29; Jun: 9, 18, 30; Jul: 7
Jun: 30; Jul: 7, 21, 30; Aug: 6, 21, 27; Sep: 30
Jun: 30; Jul: 7, 22, 30; Aug: 6, 21, 27; Sep: 30

Concord, NE 1987 Corn
Sorghum
Soybean

11
9

11

Jun: 11, 25; Jul: 1, 9, 16, 23, 30; Aug: 5, 14; Sep: 11, 28
Jul: 1, 8, 16, 23, 30; Aug: 5, 14; Sep: 11, 28
Jun: 11, 25, Jul: 1, 9, 16, 23, 30; Aug: 5, 14; Sep: 11, 28

Mead, NE 1986 Wheat
Soybean

5
5

May 14, 30; Jun: 13; Jul: 2, 16
Jun: 6, 13; Jul: 2, 17, 29

Brookings, SD 1987 Corn 4 Jun: 29; Jul: 13; Aug: 6, 26
Chamberlin, SD 1987 Corn 5 Jul: 1, 14, 30; Aug: 20; Sep: 14
Wheatland, WY 1986 Wheat 8 May: 30; Jun: 15, 30; Jul: 14, 28; Aug: 11, 26; Sep: 8
Sidney, NE 1987 Wheat 8 May: 27; Jun: 3, 11, 18, 26; Jul: 2, 9, 16
Chugwater, WY 1987 Grass 10 May: 19; Jun: 2, 10, 16, 23, 30; Jul: 7, 14, 21, 28

3. RH SM model and its performance evaluation

The RH SM model can be presented as follows:

]S/]t 5 P 1 I 2 ET 2 R 2 D ,0 r (1)

where S (cm) is soil water in the root zone, t is time,
P (mm) is precipitation, I (mm) is irrigation, ET (mm)
is actual evapotranspiration, R0 (mm) is runoff, and Dr

(mm) is drainage below the root zone. A 24-h time step
is used with daily precipitation and irrigation (if applied
for an irrigated crop) as inputs to the model. Runoff is
estimated from the total precipitation, relative fraction
of soil water present, and soil water retention factor
(McCuen 1982). Campbell’s [1985, p. 92, Eq. (8.37)]
equation is used in this model to calculate drainage.

The model calculates actual evaporation and transpi-
ration separately and the summation of the two is ET.
A modified Penman (1948) combination method of po-
tential ET estimation is used to derive actual E and T
where a wind function developed by Kincaid and Heer-
mann (1974) is included. Actual evaporation is a func-
tion of potential ET and the number of days (ND) since
the last precipitation occurred. The relationship between
actual evaporation and potential ET can be expressed
as follows:

1/2E 5 ET (1/ND) ,p (2)

where ETp is potential evapotranspiration based on the
modified Penman method. Actual transpiration is a func-
tion of crop- and phenology-dependent crop coefficient
(Kc), ETp, and a soil water reduction factor ( f ). In the
model, when the soil moisture content approaches wilt-
ing point, a soil water reduction factor restricts crop
water use. This reduction factor is a function of available
soil water and water-holding capacity of the soil, and
changes in response to the ratio of available water to

potential available water. Thus, actual transpiration is
as follows:

T 5 ( f )(K )(ET 2 E).c p (3)

The rooting depth increases linearly with GDD in the
model. At any one time the model treats the root zone
as four equal layers and assumes 40%, 30%, 20%, and
10% water extraction from each layer, respectively.
These root layers are overlain on the five soil layers and
the water is extracted from the soil layers that are cur-
rently occupied by roots. The soil moisture model sim-
ulates water in each layer, current water stress, runoff,
drainage, phenology, actual and potential evapotrans-
piration, sensible heat flux, and net radiation.

It is noted above that the RH model was validated,
and its performance evaluated, during the two growing
seasons of 1986 and 1987 (Table 1) for five land uses
at nine sites (representing varied soil conditions), for
six layers up to 1.8-m depth in Nebraska (cf. RH; Ca-
margo 1993; Camargo et al. 1994). Tables 1, 2, and 3
and Fig. 3 present detail of the model validation from
RH. The sites are located in Nebraska (5), South Dakota
(2), and Wyoming (2) (Table 1). Neutron probes were
used to measure soil water at six depths: 15, 45, 75,
105, 135, and 165 cm. It was assumed that the data from
each depth represent a soil layer of 30 cm. Hence, these
points are the midpoints for each of the 30-cm soil lay-
ers. In addition, each of the nine locations represents
varying root zone soil characteristics, for example, clay
soil to sandy soil. If we combine location and land use,
SM data were collected from 20 different land surface
conditions (Table 1). Table 2 presents model evaluation
statistics. Note that the index of agreement, also known
as the ‘‘d’’ index (Legates and McCabe 1999; Willmott
1981), can be expressed as follows:
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TABLE 2. Performance* of the soil water balance model. (Source: Robinson and Hubbard 1990.)

Site Year Land use d index r2

Mae
(cm) P (cm) sp (cm2) O (cm) so (cm2) Es (cm) Eu (cm) Rmse (cm)

North Platte, NE 1986 Corn
Wheat

0.99
0.78

0.98
0.94

1.2
4.4

35.4
32.1

10.2
3.8

34.6
27.7

10.3
5.9

0.8
4.8

1.3
0.9

1.5
4.9

North Platte, NE 1987 Corn
Wheat
Sorghum
Soybean

0.98
0.79
1.00
0.96

0.98
0.91
0.99
0.99

1.7
1.6
1.1
3.1

31.0
30.6
39.1
36.7

8.8
1.8
9.7
7.8

32.7
29.0
38.9
33.6

9.5
2.0

10.8
9.0

1.8
1.6
1.1
3.4

1.3
0.5
0.8
0.7

2.2
1.7
1.4
3.4

Clay Center, NE 1987 Corn
Wheat
Sorghum
Soybean

0.91
0.78
0.98
0.96

0.91
0.40
0.98
0.96

4.1
3.8
1.7
2.0

54.4
61.2
61.0
62.5

8.4
4.6
8.3
6.7

58.5
59.5
59.6
64.5

8.2
5.6
9.5
7.0

4.1
3.1
1.8
2.1

2.3
3.4
1.0
1.3

4.7
4.6
2.0
2.4

Concord, NE 1987 Corn
Sorghum
Soybean

0.92
0.75
0.70

0.74
0.67
0.78

2.0
4.6
7.9

29.5
28.8
40.6

5.4
6.5
6.7

29.8
24.2
32.7

4.6
5.4
7.5

0.3
4.6
8.0

2.7
3.5
3.0

2.7
5.8
8.6

Mead, NE 1986 Wheat
Soybean

0.79
0.79

0.98
0.71

2.9
2.7

45.4
58.0

3.1
3.6

42.5
55.3

6.2
4.3

4.0
3.0

0.4
1.7

4.0
3.4

Brookings, SD 1987 Corn 0.95 0.93 1.1 24.4 3.3 25.1 4.3 1.2 0.7 1.4
Chamberlin, SD 1987 Corn 0.96 0.95 1.0 29.1 3.5 30.1 4.0 1.2 0.7 1.4
Wheatland, WY 1986 Wheat 0.84 0.68 1.0 22.6 1.5 23.4 1.7 1.0 0.8 1.3
Sidney, NE 1987 Wheat 0.86 0.99 3.3 28.4 5.4 31.7 4.1 3.5 0.6 3.6
Chugwater, WY 1987 Grass 0.86 0.77 1.2 26.5 1.5 26.1 2.6 1.3 0.7 1.5

* Mae 5 mean absolute error, P 5 predicted soil moisture, O 5 observed soil moisture, sp 5 variance of predicted soil moisture, so 5
variance of observed soil moisture, Rmse 5 Root-mean-square error, Es 5 systematic component of rmse, Eu 5 unsystematic component
of rmse.

TABLE 3. Model performance by soil layer under corn land use: statistics for North Platte, NE. (Source: Robinson and Hubbard 1990.)

Soil layer
(mm) d index r2 Mae (cm) P (cm) sp (cm2) O (cm) so (cm2) Es (cm) Eu (cm) Rmse (cm)

0–300
300–600
600–900
900–1200

1200–1500
1500–1800

0.97
0.95
0.99
0.98
0.92
0.88

0.94
0.97
0.98
0.96
0.92
0.95

0.5
0.7
0.4
0.4
0.9
0.8

5.6
5.6
5.6
6.1
6.2
6.2

1.8
2.1
2.1
1.8
1.5
1.1

6.0
6.2
5.6
5.7
5.5
5.6

1.8
1.7
1.7
2.0
1.9
1.7

0.4
0.7
0.3
0.4
0.8
0.9

0.4
0.4
0.3
0.4
0.4
0.3

0.6
0.8
0.4
0.6
0.9
0.9
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where O and P are observed and predicted values, re-
spectively. The d index takes into account differences
in the observed and model-simulated means and vari-
ances and, thus, penalizes the model for consistent over-
or underestimation, even though the correlations may
be high (Legates and McCabe 1999). This index varies
from 0.0 to 1.0, with higher values indicating better
agreement between modeled and measured values. It is
found that for most of the land uses the d index is greater
than 0.90 (Table 2). The spread of the d index is between
0.70 to 1.0 (Table 2). The r2 estimates also reported
greater than 0.90 values for most (13 out of 20 cases)
of the land uses (Table 2). The highest and the lowest
r2 estimates are 0.99 and 0.4 (0.67 is the second lowest),
respectively. The observed and predicted SM values
range between 23.4–64.5 and 22.6–62.5 cm, respec-
tively (Table 2). Variances (standard deviation squared)

for observed and predicted SM values range between
1.7–10.8 and 1.5–10.2 cm, respectively. High d index
values, high r2 estimates, and a high degree of agree-
ment in distribution of observed and predicted SM val-
ues and their variances clearly indicate that the model
performance is satisfactory for various land uses with
varying soil physical properties. Figure 3 shows the
distribution of measured and observed SM and precip-
itation for five land uses at five locations. Small dots
indicate measured SM and the thin line shows modeled
SM. Again, it is apparent that the model is estimating
SM satisfactorily. Precipitation events and the response
of measured and modeled SM are also in close agree-
ment. This suggests that phase and amplitude of mod-
eled and measured SM are also in agreement.

Performance of the RH model was also evaluated for
its estimation of SM at various depths in the root zone.
Table 3 presents an example of model evaluation results
at various depths in the root zone of corn at North Platte,
Nebraska. It is found that the index of agreement (d)
and r2 estimates for observed and modeled SM for six
layers ranged between 0.88–0.98 and 0.92–0.98, re-
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FIG. 3. Observed (dots) and modeled (line) root zone total SM for five land uses. (Source: Robinson and Hubbard 1990.)
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FIG. 4. Observed (small boxes) and modeled (line) root zone total
SM for sorghum land use under treatment H. This treatment is char-
acterized by the application of irrigation water during all three growth
stages. GS1: vegetative stage (planting to panicle initiation); GS2:
infloresence stage [panicle initiation to anthesis (bloom)]; GS3: grain-
filling stage (bloom to physiological maturity). (Source: Camargo et
al. 1994.)

spectively (Table 3). Observed and predicted SM for
these six layers of the root zone ranged between 5.5–
6.2 and 5.6–6.2 cm, respectively (Table 3). Variances
of the observed and predicted SM for these layers
ranged between 1.7–2.0 and 1.1–2.1 cm, respectively.
In summary, based on these evaluation results, it can
be said that the RH model is satisfactorily estimating
SM for various soil layers of the root zone.

A further assessment of the RH model performance
was conducted by Camargo (1993) and Camargo et al.
(1994). The model was validated for sorghum land use
at Mead, Nebraska, in 1990 and 1991 where eight ir-
rigation treatments were applied in a split plot design.
The treatments were formulated based on plant phe-
nological development where irrigation was applied and
withheld in all possible combinations for three growth
stages. Irrigation water was applied whenever plant
available SM depleted to 50% of field capacity in the
0–90-cm layer. These experiments were conducted for
the 1990 and 1991 growing season, and SM data were
collected. Figure 4 shows results from model-estimated
and observed SM. It is apparent from Fig. 4 that the
RH model is estimating SM satisfactorily. The d index
and r2 values for model estimates compared to the ob-
served SM range from between 0.78–0.96 and 0.64–
0.93, respectively. Note that most of the d index and r2

values for model evaluation are above 0.90 and 0.80,
respectively. For the total of 16 treatment designs (8 1
8 treatment designs over 2 yr), 9 times the d index
exceeded 0.90, and 14 times it exceeded 0.80. On the
other hand, for the same number of treatments over 2
yr, r2 reached over 0.80 for 12 occasions. The perfor-
mance of the model, in regard to estimates of SM in
the five soil layers (as assigned by Robinson and Hub-
bard 1990), was positive for 1990 and 1991. The d index
and r2 estimate, reaching 0.95 and 0.96, indicate sat-
isfactory model performance. Recent applications show
that the model is simulating soil water satisfactorily
(Mahmood and Hubbard 2002a; Mahmood et al. 2001).

Based on the detailed quantitative comparison of
model-estimated and measured SM, we suspect that the
RH model performance is superior to Crawford et al.’s
(2000) model, and also to many LSSs used in GSWP,
AMIP, and PILPS. The other models, including LSSs,
have not been evaluated in a comprehensive manner
with multiple land uses, locations, and soils under sig-
nificantly different hydroclimatic forcings. Validation is
also completed for six depths from the surface to root
zone. Four SM data-collection campaigns were under-
taken to evaluate the RH model.

Crawford et al. (2000) conducted their validation by
using only 1 month of data and for one land use. They
(Crawford et al. 2000) have noted that r2 between ob-
served and simulated SM for 25-, 60-, and 75-cm depths
ranged between 0.27 and 0.40. For comparable depth
ranges, RH recorded r2 between 0.94 and 0.98. Camargo
et al. (1994) also found similar results and noted that
r2 values ranged between 0.73 and 0.96. Thus, perfor-

mance of the RH model is significantly superior. Craw-
ford et al. (2000) noted that their model does not per-
form well in simulating SM at deeper layers. The eval-
uation of the RH model shows that its performance is
superior and satisfactory for deeper layers (Table 3).

Our survey of literature shows that detailed quanti-
tative assessment of the LSSs is notably deficient. Use
of some of the well-established model evaluation meth-
ods was not employed and, thus, exact reliability of the
LSS-estimated SM is unknown. Despite the availability
of observed SM data for validation, most of the studies
only show graphics on observed versus modeled SM
and provide only qualitative assessment of the model
performance. For example, Chen and Mitchell (1999)
only plot observed and NCEP land surface model
(LSM)-simulated SM and do not provide any quanti-
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TABLE 4. Distribution of clay, sand, and silt at three
locations in NE.

Location Clay (%) Sand (%) Silt (%)

McCook
Clay Center
Mead

15
30
65

20
10

5

65
60
30

TABLE 5. Selected hydrologic properties (in volumetric water
content) mm3 mm23 of soils at three sites in NE.

Location Depth (cm)
Saturation

point
Field

capacity
Wilting
point

McCook 0–2.5
2.5–30.5

30.5–61
61–91.5

91.5–122

0.46
0.52
0.48
0.42
0.46

0.36
0.36
0.36
0.36
0.36

0.22
0.22
0.22
0.22
0.22

Clay Center 0–2.5
2.5–30.5

30.5–61
61–91.5

91.5–122

0.46
0.52
0.48
0.42
0.46

0.32
0.32
0.33
0.33
0.34

0.12
0.16
0.17
0.14
0.14

Mead 0–2.5
2.5–30.5

30.5–61
61–91.5

91.5–122

0.46
0.55
0.65
0.65
0.59

0.36
0.36
0.40
0.40
0.42

0.18
0.18
0.20
0.20
0.20

tative assessment on reliability of the model-estimated
values. A discussion on seasonal changes in SM is not
adequate. From visual examination we can state that
large under- and overestimation of SM is prevalent for
Chen and Mitchell’s (1999) simulation. Similar quali-
tative assessment of LSS validation was provided for
some of the major SM modeling efforts under the um-
brella of GSWP, AMIP, and PILPS (e.g., Matsuyama et
al. 1999; Zhang et al. 1999). In the absence of quan-
titative evaluation, graphic presentation of observed and
modeled data indicates a significant amount of disagree-
ment. Matsuyama et al. (1999), in the application of
Japan Meteorological Agency’s Simple Biosphere Mod-
el (SiB) found a consistent underestimation of estimated
SM, compared to observed SM. After evaluating GSWP
SM simulations, Entin et al. (1999) correctly noted that
none of the models do a satisfactory job in estimating
SM. Dirmeyer et al. (1999) agreed with this observation.

Schlosser et al. (2000) also qualitatively assessed per-
formance of 21 LSSs for Valdai, Russia. This evaluation
was conducted for only one land use, namely, grass, as
opposed to our quantitative evaluation for five land uses
at nine locations. Chen et al. (1997) ‘‘evaluated’’ per-
formance of the 23 LSS schemes without comparing
simulated values with measured values during the Ca-
bauw, Netherlands, experiment. Schlosser et al. (1997)
evaluated the performance of the Simple SiB (SSiB)
LSS for Valdai, Russia. The variance of model-esti-
mated and observed SM data shows a large disagree-
ment and departure from each other. Our model eval-
uation shows close agreement between estimated and
observed SM (Tables 2 and 3). Previously, Robock et
al. (1995) have shown bias associated with SSiB and
the bucket model–estimated SM values. The bias was
associated with incorrect specification of field capacity
(Robock et al. 1997). Another LSS, namely, a two-layer
VIC(-2L) (Liang et al. 1996) was evaluated, but the
location and model evaluation statistics presented are
minimal. This limited evaluation failed to convey the
exact reliability of the model.

It can be concluded, for LSSs used in GSWP, PILPS,
and AMIP, that 1) the quantitative assessment of the
accuracy of modeled SM is absent or severely limited,
2) the qualitative assessment is prevalent, 3) the ‘‘val-
idation’’ is largely conducted for one land use—grass,
4) the validation data used are for only one location,
despite the availability of data from additional sites, and
5) the departures of model variance (only one study
applied this statistic for evaluation) and estimates from
observed data were large. As noted above, for the RH

model, we have completed a detailed quantitative as-
sessment (Tables 2 and 3; Figs. 3 and 4). All of the
model evaluation statistics applied suggest that the mod-
el performance is satisfactory under various land uses,
root zone soil conditions, and hydroclimatic regimes
(Tables 2 and 3). Based on the model evaluation statis-
tics, we are able to indicate how well the model is per-
forming and how reliable the model estimates are. Vi-
sual assessment is not sufficient, as shown by many LSS
evaluation exercises. Therefore, based on the results
from quantitative assessment and the accuracy of cal-
culated SM values, we conclude that the RH model will
provide satisfactory estimates of SM for the study area.

For this study, the RH model is applied for three
predominant land uses and associated soils character-
istics in Nebraska, namely, irrigated and rain-fed corn,
and rain-fed grass. Three sites in Nebraska were selected
to simulate the SM climate under varying land use and
moisture regimes. The Mead, Clay Center, and McCook
sites (Fig. 1) follow an east–west gradient from moist
(Mead) to very dry (McCook) conditions. There were
three applications per site (three types of land use and
one soil type). The setting allows us to estimate and
understand potential responses of SM in more than one
moisture regime. Daily weather data for the RH model
simulations were provided by the automated weather
stations at these locations. Site-specific soil input data
for the model application are available from a soils da-
tabase maintained by the High Plains Regional Climate
Center (HPRCC). These data include bulk density, soil
texture, wilting point, field capacity, and saturation point
for each soil layer (Tables 4 and 5).

In this paper total plant available root zone water
(SM) is presented as water depth, and individual layer
SM is presented as volumetric water content (mm3

mm23). In the following discussions, we chose to em-
phasize temporal distribution of SM over 1 yr by using
daily estimates. An analysis of seasonal variations of
SM is not discussed here.
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FIG. 5. Mean daily (1982–99) evapotranspiration and plant avail-
able soil moisture for McCook, NE: (a) irrigated corn, (b) rain-fed
corn, and (c) grass. Day 1 5 5 May.

FIG. 6. Annual total evapotranspiration from three land uses at
McCook, NE. (Source: Mahmood and Hubbard 2002a.)

4. Applications of SM model and results

a. Plant available root zone SM and ET

The RH model was run from 1982 to 1998 for the
three land uses: irrigated corn, rain-fed corn, and rain-
fed grass. The beginning of growing season was set as
5 May, and the model completes each run on 4 May of
the subsequent year. Soil water balance from each year
was carried over to the following year. Three separate
accumulated GDDs were included during the model
simulations to reflect phenological development of
grass, and rain-fed and irrigated corn. Accumulated de-
gree days, with the progression of the growing season,
mark the end of a phenological stage and the beginning
of the next stage. Accumulated growing degree days are
the summation of temperatures for the whole growing
season through the date of interest, wherein a baseline/
critical/threshold temperature is subtracted from the dai-
ly mean temperature prior to summation. The baseline
temperature indicates a lower limit on the thermal en-
vironment above which sustained development of plants
is supported. The selection of growing degree days is
important because phenological development notably
influences the crop’s growing season water consumption
and its utilization. In due course, this affects soil water

status, evapotranspiration rates, and energy balance. To
avoid stress, irrigation was applied when root zone soil
water reached the midpoint between field capacity and
wilting point.

The model allows interannual variations in thermal
conditions to affect the length of plant growth and de-
velopment and, thus, the length of time to reach ma-
turity. In other words, like in the ‘‘real world,’’ inter-
annual variations, in the required length of time for
plants to reach maturity, are simulated by the model.
We have found that the model simulates plant maturity
periods correctly.

Predictably, the application of the RH soil water mod-
el to the westernmost site (McCook, Nebraska) indi-
cates, on average, that the amount of plant available soil
water throughout the growing season is relatively higher
for irrigated corn compared to rain-fed corn and grass
(Figs. 5a–c). Likewise, the supply of water by irrigation
to match plant requirements led to relatively higher
available soil moisture. However, simulations suggest
rapid depletion of SM due to vigorous consumption of
water by rain-fed corn (Fig. 5b). On average, during a
growing season, the lowest amount of plant available
soil water is 9, 4, and 6 cm for irrigated and rain-fed
corn, and grass, respectively (Figs. 5a–c). The model
application shows relatively high daily rates of ET under
irrigated corn results in significantly higher annual totals
compared to rain-fed corn and grass (Fig. 6). According
to the RH model, annual total ET values for irrigated
and rain-fed corn, and grass, on the average, are 694,
462, and 449 mm, respectively. In other words, average
annual total ET under irrigated corn is 34% and 36%
greater compared to rain-fed corn and grass, respec-
tively.

At Clay Center, the temporal pattern in mean daily
ET and plant available SM is similar to that at McCook
(Figs. 7a–c). Results suggest that the mean daily plant
available SM is the highest for irrigated corn and lowest
for rain-fed corn (Figs. 7a and 7b). It is found that, in
Clay Center, the lowest mean daily plant available SM
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FIG. 7. Mean daily (1982–99) evapotranspiration and plant avail-
able soil moisture for Clay Center, NE: (a) irrigated corn, (b) rain-
fed corn, and (c) grass. Day 1 5 5 May. See Fig. 5a for legends.

FIG. 8. Annual total evapotranspiration from three land uses at
Clay Center, NE. (Source: Mahmood and Hubbard 2002a.)

FIG. 9. Mean daily (1982–99) evapotranspiration and plant avail-
able soil moisture for Mead, NE: (a) irrigated corn, (b) rain-fed corn,
and (c) grass. Day 1 5 5 May. See Fig. 5a for legends.

for irrigated and rain-fed corn and grass are approxi-
mately 11, 9, and 11 cm, respectively. Our calculation
shows that average annual total ET values for irrigated
and rain-fed corn and grass are 683, 521, and 503 mm,
respectively (Fig. 8). Hence, at Clay Center, annual ET
from irrigated corn is 27% and 24% higher compared
to grass and rain-fed corn, respectively. At this location,
atmospheric demand for higher rates of evapotranspi-
ration from rain-fed corn and grass was fulfilled, due
to relatively higher precipitation.

A similar pattern occurs at Mead (Figs. 9a–c). How-
ever, daily mean plant available moisture is higher for
all three land uses at Mead compared to McCook and
Clay Center. The lowest mean daily plant available SM
for irrigated and rain-fed corn, and grass is 12, 14, and
17 cm, respectively. The lowest mean daily plant avail-
able SM is reported by land use under irrigated, not
rain-fed, corn. The primary reason is that the growing
season for irrigated corn is longer, and natural plant
available SM quantity is higher due to the moist, sub-
humid environment. Also, water-holding capacity of the
soil is higher at this location. The latter allowed plants
to use soil water for a longer period before requiring
irrigation water. On the other hand, the shorter growing
season for rain-fed corn prohibited these plants from
using as much water as irrigated corn. The annual total

ET from the irrigated corn is generally higher compared
to rain-fed corn and grass and for any given year (Fig.
10). This study reports that the average annual total ET
values for irrigated and rain-fed corn, and grass are 625,
544, and 531 mm, respectively. Thus, on the average,
annual ET for irrigated corn is 16% and 13% higher
compared to grass and rain-fed corn, respectively.
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FIG. 10. Annual total evapotranspiration from three land uses at
Mead, NE. (Source: Mahmood and Hubbard 2002a.)

FIG. 11. Mean daily volumetric soil water content for irrigated corn
at McCook, NE: (a) top, (b) second, (c) third, (d) fourth, and (e) fifth
layers. Day 1 5 5 May.

b. SM at various depths of the root zone

The mean daily SM estimates for McCook show rel-
atively more fluctuations of soil water content in the top
soil layer (a 2.5-cm layer at the surface) under irrigated
corn (Fig. 11a). As expected, this layer responds quickly
under a precipitation event or during a dry spell. As a
result, both the lowest and highest volumetric water
content for top soil is lower compared to the second
layer (2.5–30.5 cm). The fluctuation in soil water con-
tent is higher during the plant growing period, prior to
maturity. The second layer of the soil shows far less
fluctuation. Soil water depletes steadily at the beginning
of the plant growing season (Fig. 11b). It is found that
soil water depletes most rapidly in the third layer (30.5–
61 cm), followed by the fourth (61–91.5 cm) and fifth
(91.5–122 cm) layers (Figs. 11c–e).

Figures 12a–e show temporal soil water distribution
for various soil layers under rain-fed corn. Soil water
content at the top soil layer at McCook shows fluctu-
ations that resemble conditions under irrigated corn (cf.
Figs. 12a and 11a). It is also apparent that under rain-
fed farming, volumetric soil water contents remain be-
low 0.25 for a much longer time period (113 days),
compared to irrigated corn (,15 days). Under grass,
soil water at McCook depletes from the second layer
more rapidly, compared to rain-fed corn (Fig. 12f). Plant
growth and crop-specific phenology caused such dif-
ferences. Also, soil water content at the second layer
remains below 0.25 for a longer period of time (124
days) under grass land use, compared to rain-fed corn.
Grass does not extract as much soil moisture as rain-
fed corn. As a result, under grass, soil water at the fourth
and fifth layers never reaches the lows encountered un-
der rain-fed corn (Fig. 12h).

Mean daily SM patterns at Clay Center resemble
those at McCook. However, the notable difference is
that soil water content for all three land use/land covers
at Clay Center never reduces to the level of McCook
(Figs. 13a–e; rain-fed corn is shown, e.g.). Obviously,

a relatively moist hydroclimatic condition is the cause
of such difference.

The amplitude of the soil water content under irri-
gated corn in the top layer is twice as much at Mead
compared to that at McCook and Clay Center (Figs. 11a
and 14a; Clay Center is not shown). Soil water contents
in the second, third, and fourth layers show similar char-
acteristics at Mead (Figs. 11b–d and 14b–d). Under rain-
fed corn, Mead, again, shows a relatively larger ampli-
tude of SM content in the top second, third, and fourth
layers compared to that at Clay Center and McCook
(not shown). The amplitude of SM in the fifth layer is
smaller at Mead than at Clay Center (not shown). Due
to moist hydroclimatic conditions, rain-fed corn mines
SM mostly from the top four layers. Interestingly, the



FEBRUARY 2004 171M A H M O O D A N D H U B B A R D

FIG. 12. Mean daily volumetric soil water content for rain-fed corn at McCook, NE: (a) top, (b) second, (c) third, (d) fourth, and (e) fifth
layers; and for grass: (f ) second, (g) third, and (h) fourth layer. Day 1 5 5 May.

difference in SM content among the top three layers
under rain-fed corn at Mead is much less, compared to
Clay Center and McCook. At the beginning of the grow-
ing season, similar to McCook and Clay Center, grass
starts extracting SM from the top layer more vigorously,
compared to rain-fed and irrigated corn. Also, it extracts
most of the required water from the top three layers. As
a result, SM content is lower at these layers, compared
to rain-fed and irrigated corn.

c. Statistical aspects of SM at various depths in the
root zone

Under irrigated and rain-fed corn and grass land use,
mean daily volumetric water content in almost all layers
is higher at Mead compared to the other two locations
(Tables 6–8). As noted above, hydroclimatologically,
Mead is a relatively moist site compared to McCook
and Clay Center. At all sites and under these three land
uses the second layer of the soil profile is relatively
moist. The top layer of the soil loses moisture more
quickly, largely due to evaporation. Relatively less

moisture reaches the lower layers of the soil profiles
after drainage to the second and third layers. Under
irrigated corn land use, the coefficient of variation (CV)
estimates suggest that SM at the second layer of the soil
profile is the least variable, while the fourth and fifth
layers are the most variable. Relatively higher inter-
annual variations in SM content at these deeper layers
resulted in higher variability estimates. Similar patterns
are seen for rain-fed corn land use at Mead (Figs. 15a,b).
For grass, SM variability at the fourth and fifth layers
is not as high as for rain-fed and irrigated corn, and is
lowest compared to other layers (Tables 6–8). Grass
does not extract as much moisture compared to rain-fed
and irrigated corn, resulting in lower variability. Rela-
tively higher mean values of SM content in the fourth
and fifth layers under grass also reflect this condition.
As noted above, compared to rain-fed corn, slightly low-
er SM in the top three layers under grass indicates rel-
atively higher use of water from these layers by grass.

A relative moisture availability index (RMAI) can be
used to further investigate SM variations in the (total)
root zone under these three land uses. RMAI is the ratio
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FIG. 13. Mean daily volumetric soil water content for rain-fed corn
at Clay Center, NE: (a) top, (b) second, (c) third, (d) fourth, and (e)
fifth layers. Day 1 5 5 May.

FIG. 14. Mean daily volumetric soil water content for irrigated corn
at Mead, NE: (a) top, (b) second, (c) third, and (d) fourth layers. Day
1 5 5 May.

of plant available soil water to the difference between
field capacity and the wilting point. Plant available soil
water is the difference between total soil water in the
root zone and wilting point. Thus, this index provides
a standardized view of soil water under three crops in
three moisture regimes. Physically, the lower the index
value, the drier the soil and the lower the plant available
SM. RMAI values larger than 1 indicate that the soil
water is higher than the field capacity, which happens
as soils approach saturation. Mean daily annual RMAI
is the lowest and highest at McCook and Mead, re-

spectively, under irrigated corn, and rain-fed corn and
grass. Mean daily annual RMAI fluctuates more at Mead
compared to the other sites of this study (Figs. 16a–c).
This primarily indicates higher variability in moisture
availability. RMAI values also reflect excessively wet
and dry conditions. For example, high RMAI values at
Mead and Clay Center in 1993–94 coincides with ex-
tremely wet conditions and flooding in the Mississippi
River basin. On the other hand, the low RMAI value
for 1983–84 at McCook is associated with severe
drought conditions during this year and for the previous
year, 1982–83.

d. Total root zone soil moisture variability at various
temporal scales

Quantitative assessment of variations in root zone soil
moisture at various temporal scales including daily,
monthly, and annual, can play an important role in de-
signing mesoscale and climate models. A clear under-
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TABLE 6. Descriptive statistics for soil moisture (volumetric water content) under irrigated corn at three sites in NE for the period
1982–98. Depths are shown for each layer.

Station Parameters

Layer 1
0–2.5
(cm)

Layer 2
2.5–30.5

(cm)

Layer 3
30.5–61

(cm)

Layer 4
61–91.5

(cm)

Layer 5
91.5–122

(cm)

McCook Mean
Std dev
CV

0.26
0.06

23

0.33
0.03
9

0.26
0.06

23

0.18
0.06

33

0.17
0.05

29
Clay Center Mean

Std dev
CV

0.31
0.05

16

0.37
0.03
8

0.32
0.06

18

0.24
0.07

29

0.25
0.06

24
Mead Mean

Std dev
CV

0.46
0.08

17

0.53
0.08

15

0.38
0.14

36

0.27
0.12

44

0.16
0.04

25

TABLE 7. Descriptive statistics for soil moisture (volumetric water content) under rain-fed corn at three sites in NE
for the period 1982–98.

Station Parameters

Layer 1
0–2.5
(cm)

Layer 2
2.5–30.5

(cm)

Layer 3
30.5–61

(cm)

Layer 4
61–91.5

(cm)

Layer 5
91.5–122

(cm)

McCook Mean
Std dev
CV

0.24
0.07

29

0.29
0.07

24

0.21
0.08

38

0.16
0.05

31

0.15
0.04

26
Clay Center Mean

Std dev
CV

0.32
0.07

21

0.37
0.07

18

0.32
0.07

21

0.26
0.07

26

0.28
0.06

21
Mead Mean

Std dev
CV

0.46
0.08

17

0.53
0.09

16

0.41
0.13

31

0.30
0.12

40

0.24
0.08

33

standing of how soil moisture varies at different tem-
poral scales and under different land uses provides im-
portant clues to how land surface moistness influences
boundary layer atmospheric modulation. This would im-
prove our forecasting and diagnostic skills for weather
and climate. The following discussion presents a quan-
titative assessment of how SM varies at different tem-
poral scales under heterogeneous land use, soils, and
hydroclimatic conditions.

We calculated CV (%) of total root zone SM for each
day for all three land uses at each location. At McCook,
irrigated corn shows the least day-to-day variability and
remains nearly stable over the course of a year (Fig.
17a). The daily SM variability hovers around 20% most
of the time. The primary reason for such low day-to-
day variability for irrigated land use is related to the
very dry conditions and resultant frequent application
of irrigation to remove SM deficits and plant water
stress. Under rain-fed corn land use, SM variability in-
creases rapidly to .100% at McCook as the growing
season progresses (toward maximum plant growth), and
it diminishes as the plant completes its growth cycle
(Fig. 17b). The rate of increase in variability is also
very high under rain-fed corn land use (Fig. 17b). The
high variability is a function of dry hydroclimatic con-
ditions and the plant’s sole reliability on rainfall for
moisture. In other words, the rapidly increasing demand
for moisture with the growth of plant, low rainfall ac-

companied by high day-to-day variability, and the ab-
sence of irrigation resulted in such high day-to-day SM
variability. Under grass land use, the maximum vari-
ability reaches nearly 50% as the season progresses.
Note that the rate of increase of variability is much less
compared to rain-fed corn (Figs. 17b and 17c). For rain-
fed corn daily variability increased from nearly 20% to
60% (three fold increase) between day 49 and day 73,
while for grass this jump is from 20% to 30%. The
much greater demand of moisture by corn results in this
greater variability.

At Mead, the total root zone SM variability for irri-
gated and rain-fed corn is nearly identical (Figs. 18a
and 18b). Mead is a moist location compared to McCook
and, thus, the demand for irrigation is less. In addition,
the Mead soil has a higher water-holding capacity (pre-
dominantly clay soil, Table 4) compared to the McCook
soil, and naturally occurring rainfall is the predominant
supplier of moisture for both irrigated and rain-fed corn.
The small differences in CV between these two land
uses results primarily from different water consumption
characteristics and plant phenologies. The root zone var-
iability shown by grass is also primarily a result of water
consumption characteristics and phenology (Fig. 18c).
Clay Center generally follows the pattern of responses
demonstrated by McCook and Mead. A comparison of
results from all three locations demonstrates that local
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TABLE 8. Descriptive statistics for soil moisture (volumetric water content) under grass at three sites in NE for the period 1982–98.

Station Parameters

Layer 1
0–2.5
(cm)

Layer 2
2.5–30.5

(cm)

Layer 3
30.5–61

(cm)

Layer 4
61–91.5

(cm)

Layer 5
91.5–122

(cm)

McCook Mean
Std dev
CV

0.24
0.07

29

0.27
0.08

29

0.20
0.07

35

0.18
0.05

27

0.23
0.03

13
Clay Center Mean

Std dev
CV

0.31
0.08

25

0.35
0.08

22

0.32
0.08

25

0.28
0.07

25

0.32
0.03
9

Mead Mean
Std dev
CV

0.45
0.10

22

0.47
0.14

29

0.36
0.14

38

0.34
0.10

29

0.36
0.05

13

FIG. 15. Variation in mean daily annual volumetric water content
for rain-fed corn at Mead, NE: (a) top and (b) fourth layers.

hydroclimatic conditions, soils, and land use interact to
control the degree of SM variability.

At the monthly scale SM variability at Mead,
McCook, and Clay Center largely follows the patterns
of the daily time scale. Month-to-month variability in-
creases as the growing season progresses and decreases
as plants approach physiological maturity (Figs. 19a,b).
As expected, changes in SM variability from one month
to the next are not as drastic as those at the daily scale,
and overall the monthly variability is relatively

‘‘smooth’’ compared to the daily scale. Local hydro-
climatic conditions, namely, wet or dry, reduced or in-
creased, respectively, forcing of land use on SM vari-
ability at both daily and monthly time scales.

At the annual scale SM variability appears to be large-
ly a function of climate-scale events. For example, at
Mead the lowest variability for all land uses are in 1993–
94 when precipitation excesses were widespread over
the Mississippi basin resulting in the ‘‘flood of the cen-
tury’’ (Fig. 20a). On the other hand, at McCook the
highest annual variability for rain-fed corn and grass
occurred in 1983–84 when there was an abnormally dry
condition that continued into the following year (Fig.
20b). The lowest variability at the annual time scale can
be lower than the daily and monthly time scale, while
the highest variability can be comparable to the highest
variabilities of daily and monthly time scales. The anal-
ysis of annual-scale variability suggests that large-scale
climate forcing is able to modify the forcings of land
use and soils. It appears that excessively wet and dry
conditions may reduce and enhance, respectively, SM
variability. Therefore, the differences owing to land use
are accentuated or diminished according to climate-scale
events.

5. Discussion and concluding remarks

The present study investigated the daily SM clima-
tology at three locations under three predominant land
uses, namely, irrigated corn, rain-fed corn, and natural
grass. Because these land uses of Nebraska are predom-
inant, point-scale application provides insight into SM
variations for the three land uses. The vertical scale of
the applications is 1.2 m. Large-scale modeling studies
have yet to provide a clear understanding of these issues
partly due to their spatiotemporal scale and due to the
unavailability of input data at this scale. The estimation
of SM through the vertical soil profile with input data
describing the local soil–plant–hydrologic continuum at
three locations offer us an opportunity to grasp the hy-
drologic process at the point scale. Because these point-
scale estimations are representative of larger-scale land
use and soil conditions, we speculate that the results
could be insightful for parameterization of large-scale
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FIG. 16. Total RMAI for rain-fed corn at: (a) McCook, (b) Clay
Center, and (c) Mead, NE.

FIG. 17. SM variability in the root zone at daily time scale for
McCook, NE: (a) irrigated corn, (b) rain-fed corn, and (c) grass. Day
1 5 5 May.

SM calculation. Simultaneous estimates of SM for three
land uses for each of the three locations and the analyses
of simulated data provide a quantitative assessment of
the response and impacts of predominant land cover and
prevailing long-term hydroclimatic conditions. Due to
large-scale modification of natural grasslands to agri-
cultural land use in the Great Plains, it is essential that
we investigate SM of crop lands along with grasslands.

As indicated above, this investigation provides a

quantitative assessment of daily SM dynamics and a
mechanism to quantify what is known at a general level:
SM begins depletion with the start of the growing season
and reaches its lowest at the height of the crop growth,
at the same time ET reaches a maximum, annual total
evapotranspiration is higher for irrigated corn, and rain-
fed corn also evapotranspires at a higher rate compared
to grass. Compared to grasslands, irrigated and rain-fed
corn farming elevated and lowered plant available soil
moisture through adding and mining water from the soil
profile, respectively. Long-term averages suggest that
lower soil layers (fourth and fifth) contain less water
compared to upper soil layers (first and second) for all
three land uses and at all three locations with variable
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FIG. 18. SM variability in the root zone at daily time scale for
Mead, NE: (a) irrigated corn, (b) rain-fed corn, and (c) grass. Day 1
5 5 May.

FIG. 19. SM variability in the root zone at monthly time scale for
McCook, NE: (a) irrigated corn and (b) grass.

moisture regimes. The type of vegetation affects deple-
tion of SM at various depths via the differences in length
of growing season and rooting depth. Unlike grass, SM
variability in the top two layers under irrigated and rain-
fed corn was lower compared to the third–fifth layers.
Interannual modulation of SM resulted in such vari-
ability (Figs. 15a,b).

Analysis of SM data at different temporal scales in-
dicates that at the daily time scale, plant phenology plays
an important role in modulation of SM variability. It is
found that SM variability increases with progression of
the growing season and decreases as the plants mature.

At the monthly time scale, SM variability also follows
the pattern that resembles the variability of the daily
time scale. However, as expected, changes in SM var-
iability from one month to another are ‘‘smooth’’ as
opposed to ‘‘step changes.’’ It is found that land use
and soils influence SM variability at daily and monthly
time scales. The forcing of hydroclimatic condition (wet
vs dry) is overwhelming. At all time scales, wet con-
ditions reduced SM variability. At the annual time scale,
forcing of large-scale climate modulation and associated
wet or dry conditions influence SM variability. It is
found that excessively wet conditions reduced SM var-
iability and the differences between SM relative to land
use, while extremely dry condition increased SM var-
iability and forcing of land use. In other words, the
influence of land use is dependent on the ‘‘normality’’
or ‘‘degree of anomaly’’ of climatic conditions.

The general pattern in SM depletion and recharge
estimated by this model is comparable to Georgakakos
et al. (1995) and Georgakakos and Bae (1994). This
study presents a more detailed SM estimate by dividing
the soil profile into five layers instead of one and two
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FIG. 20. SM variability in the root zone at annual time scale for
(a) Mead, NE: grass and (b) McCook, NE: rain-fed corn.

layers, as presented by Durre et al. (2000) and Geor-
gakakos et al. (1995), respectively. Therefore, the move-
ment of soil water can be followed on scales not resolved
by these previous models, giving us the opportunity to
understand annual distribution of SM within the soil
profile. Scott et al. (2000) reported that the extent of
SM recharge in the root zone during winter in the semi-
arid southwestern United States may vary depending on
precipitation amount. Our study also finds similar re-
charging during wintertime; obviously, the extent of re-
charge varies from year to year. Scott et al. (2000) iden-
tified large interannual variability in deeper root zone
recharge. In our study, we have large interannual var-
iability in SM at lower layers of all land uses except
for the fifth soil layer under shallow-rooted grass. In
other words, roots mine the water from the lower layers
and, over a long period of time, SM variability is higher
in the deeper layers despite different climate and soil
regimes. In addition, larger amplitudes of root zone total
SM under irrigated and rain-fed corn indicate their vul-
nerability to current hydroclimatic conditions.

The results of this study have raised a number of
critical questions related to forcings of land use and soils
on SM variability as they interact with climate. What
is the threshold anomaly that reduces or enhances SM
variability? What is the variation in this threshold as

land use and soils changes? The authors suggest that
additional research needs to be conducted to quantify
these threshold conditions for predominant land uses.
In our opinion, findings can be important to diagnose
modeling results and improve predictive skills.

This study demonstrated the changes in the magnitude
of variability of SM under different land uses at mul-
titemporal scales. An important question is how can we
transfer this knowledge to mesoscale and climate mod-
els. In other words, we need to develop methods to
incorporate these near-surface variabilities in the mod-
els. In addition, how sensitive is the system to these SM
variabilities? How much modulation of weather and cli-
mate can be expected at various spatial scales by these
variabilities? This brings up the question of feedback
between SM and the atmosphere at multiple spatiotem-
poral scales. Are these issues adequately addressed dur-
ing model formulation? Are these issues being explicitly
addressed during current modeling activities? Wang and
Kumar (1998), Dirmeyer (1999, 2000), and Huang et
al. (1996) noted that SM can be an important predictor
of surface temperature and precipitation. Thus, we sug-
gest that specific modeling studies should be undertaken
to determine SM variability at multitemporal scales un-
der heterogeneous land use, and their impacts on weath-
er and climate and their predictability. Such studies
would hopefully determine the sensitivity of the at-
mosphere to SM variability and, also, the behavior of
the mesoscale and climate models.

This study has demonstrated the potential future use
of the RH soil water balance model to estimate SM of
the past at various depths and under a number of land
covers. We plan to produce a gridded SM database from
point simulations and to use these data to study land
memory processes in the NGP, water cycling, and var-
iations of SM at various spatiotemporal scales. It is also
suggested that this SM data can be used further for
various mesoscale and climate modeling studies. In our
case, there are advantages of gridding from point data,
as opposed to cell-based modeling. We have already
collected these data for 1501 application sites and are
prepared to collect data for an additional 50 locations.
These sites also represent predominant soil types of the
local county. The soils database for cooperative weather-
recording locations is also under way. At the same time,
detailed cell-by-cell data on soil physical properties, as
required by a grid-based model, are not available. Based
on the spatial density of the model application sites and
the detailed representation of root zone soil character-
istics for predominant soils, we have concluded that the
land surface condition of the study area has been de-
scribed in detail (horizontally and vertically), correctly,
for the RH model applications. Therefore, gridding from
point data will provide sufficiently accurate estimates
of SM and ET.

In related studies, methods were developed for esti-
mating the solar radiation and relative humidity of the
past for the NGP (Mahmood and Hubbard 2002b; Hub-



178 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

bard et al. 2002). Availability of soil and weather data
with reliable solar and relative humidity estimates will
permit us in the near future to estimate SM of the past
for a large number of locations in the NGP. These lo-
cations will include automated and cooperative weather-
observing sites and, thus, will provide a higher spatial
density for SM model applications. The SM data pro-
duced from this work will be invaluable for future in-
vestigations in the areas of hydrology and land–atmo-
sphere interactions.

We believe the results presented in this paper indicate
the importance of developing reliable parameterization
of soil water balance in various climate models. The
grasslands of the North American Great Plains and other
parts of the world were modified rapidly and vastly over
the last century due to human economic activities, in-
cluding farming. Therefore, it is imperative that we un-
derstand the temporal changes in the soil water condi-
tion in the soil profile under dominant land uses over
large regions, along with natural conditions. This type
of study will improve our overall understanding of soil
water distribution within the soil profile over a time
period.
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