
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Computer Science and Engineering: Theses, 
Dissertations, and Student Research 

Computer Science and Engineering, Department 
of 

12-2019 

Domain Adaptation in Unmanned Aerial Vehicles Landing using Domain Adaptation in Unmanned Aerial Vehicles Landing using 

Reinforcement Learning Reinforcement Learning 

Pedro Lucas Franca Albuquerque 
pedro.albuquerque@huskers.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Franca Albuquerque, Pedro Lucas, "Domain Adaptation in Unmanned Aerial Vehicles Landing using 
Reinforcement Learning" (2019). Computer Science and Engineering: Theses, Dissertations, and Student 
Research. 185. 
https://digitalcommons.unl.edu/computerscidiss/185 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and 
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/185?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages


DOMAIN ADAPTATION IN UNMANNED AERIAL VEHICLES LANDING

USING REINFORCEMENT LEARNING

by

Pedro Lucas Franca Albuquerque

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Carrick Detweiler

Lincoln, Nebraska

December, 2019



DOMAIN ADAPTATION IN UNMANNED AERIAL VEHICLES LANDING

USING REINFORCEMENT LEARNING

Pedro Lucas Franca Albuquerque, M.S.

University of Nebraska, 2019

Adviser: Carrick Detweiler

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task

that often requires exact models of the UAV dynamics, platform characteristics, and

environmental conditions. In this thesis, we present and investigate three different

machine learning approaches with varying levels of domain knowledge: dynamics

randomization, universal policy with system identification, and reinforcement learning

with no parameter variation. We first train the policies in simulation, then perform

experiments both in simulation, making variations of the system dynamics with wind

and friction coefficient, then perform experiments in a real robot system with wind

variation. We initially expected that providing more information on environmental

characteristics with system identification would improve the outcomes, however, we

found that transferring a policy learned in simulation with domain randomization

to the real robot system achieves the best result in the real robot and simulation.

Although in simulation the universal policy with system identification is faster in

some cases. In this thesis, we compare the results of multiple deep reinforcement

learning approaches trained in simulation and transferred in robot experiments with

the presence of external disturbances. We were able to create a policy to control an

UAV completely trained in simulation and transfer to a real system with the presence

of external disturbances. In doing so, we evaluate the performance of dynamics

randomization and universal policy with system identification.



iii

Table of Contents

List of Figures 1

List of Tables 4

1 Introduction 7

2 Related Work and Background 12

2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Feedforward Networks . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3.1 L1-Norm and L2-Norm . . . . . . . . . . . . . . . . . 21

2.1.3.2 L1 Norm . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3.3 Early Stopping . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 MDP problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Discounted Accumulated Reward . . . . . . . . . . . . . . . . 29

2.2.3 Exploration vs exploitation . . . . . . . . . . . . . . . . . . . 30

2.2.4 Value and Q-function . . . . . . . . . . . . . . . . . . . . . . . 31



iv

2.2.5 Model-free vs Model-based learning . . . . . . . . . . . . . . . 32

2.2.6 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . 33

2.2.6.1 Temporal Difference Methods and Q-Learning . . . . 34

2.2.6.2 Deep Reinforcement Learning . . . . . . . . . . . . . 36

2.2.7 Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.7.1 Deep Deterministic Policy Gradient . . . . . . . . . . 38

2.2.8 Exploration techniques . . . . . . . . . . . . . . . . . . . . . . 40

2.2.8.1 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . 40

2.2.8.2 Normal Action Noise . . . . . . . . . . . . . . . . . . 41

2.2.8.3 Adaptive Noise . . . . . . . . . . . . . . . . . . . . . 42

2.3 Landing on a Moving Platform . . . . . . . . . . . . . . . . . . . . . 43

2.4 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Domain Randomization . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 Universal policy with System Identification . . . . . . . . . . . 47

3 Approach 49

3.1 DDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Simulation and Experimental Setup 56

4.1 Training and Simulation Setup . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Hyper-parameter Search . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Simulated Environment . . . . . . . . . . . . . . . . . . . . . 59

4.1.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Simulation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



v

4.2.1 First Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Second Experiment . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Real World Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Experiment Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Alternative Simulation Setups . . . . . . . . . . . . . . . . . . . . . . 66

5 Results 68

5.1 Hyper-parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 System Identification . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Friction Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Real-world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 81

Bibliography 83



1

List of Figures

1.1 UAV landing on the moving platform. . . . . . . . . . . . . . . . . . . . 9

2.1 Comparison of a neuron (left) with an artificial neuron (right) used in

neural networks. Image from [1] . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of a neural network with fully connected layers. Image from

http://cs231n.github.io/neural-networks-1/ . . . . . . . . . . . . . . . . . 16

2.3 Convex function gradient estimation and path to optimization. . . . . . . 18

2.4 Example of the three cases in fitting a function from a dataset. Image

from [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Overview structure of reinforcement learning techniques. The agent inter-

acts with the environment by performing actions and receiving the next

state as a result. Image from [3]. . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Updates used in Monte-Carlo. The evaluation step is sampled with the

policy in the environment, and the improvement step maximizes the ac-

tions that lead to the best states. [3] . . . . . . . . . . . . . . . . . . . . 34

3.1 Sequence of eight frames showing the UAV landing on the moving platform

in the simulated environment. . . . . . . . . . . . . . . . . . . . . . . . . 55



2

4.1 UAV and moving platform visual representation in Pybullet physics sim-

ulator. The platform has one degree of freedom to move along the y-axis

through a prismatic joint. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Diagram depicting the approach of the real-worl experiments. The vicon

motion capture system collects the state information of both the UAV as

the moving platform, which is used as input fot the reinforcement learning

policy. The ouput of the policy is a target velocity wich is input to the

LQR controller, along with the state information from vicon. The LQR

controller, in turn, sends the values of roll, pitch and yaw to the Pixhawk

autopilot that controls the vehicle. The moving platform, in similar fash-

ion, receives commands from the central computer according to its state

that is estimated by the motion capture system. . . . . . . . . . . . . . . 64

4.3 UAV employed in the experiments. . . . . . . . . . . . . . . . . . . . . . 65

5.1 Experimental setup of the real-world experiments. The yellow stars mark

the six initial positions that are initialized twice during an experiment. At

the left of the image is the fan used to generate the disturbance; bottom-

right shows the UAV used in the landings and, at the center, the Roomba

robot with the moving platform. . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Loss of supervised learning for wind estimation . . . . . . . . . . . . . . 73

5.3 Percentage of successful landings given the friction coefficient between the

vehicle and the platform. A smaller friction coefficient means that the

vehicle will slide on the platform if it lands with a non-zero velocity vector

along to the surface of the platform. The blue line represents the baseline,

green is the domain randomization policy and orange represents the UP

with true parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



3

5.4 Landing time between the beginning of the policy and the first physical

contact between the platform and the vehicle. The blue line represents the

baseline, green is the domain randomization policy and orange represents

the UP with true parameters. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Percentage of successful landings given a average wind magnitude. The

wind is sampled at every timestep from a Gaussian distribution whose

mean is the value in the x-axis of the figure. The blue line represents the

baseline, green is the domain randomization policy and orange represents

the UP with true parameters. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Landing time between the beginning of the policy and the first physical

contact between the platform and the vehicle. The blue line represents the

baseline, green is the domain randomization policy and orange represents

the UP with true parameters. . . . . . . . . . . . . . . . . . . . . . . . . 80



4

List of Tables

4.1 Hyper-parameter search in DDPG . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Hyper-parameter search for system identification . . . . . . . . . . . . . 59

4.3 Simulation Parameters used in the experiments. The majority of the pa-

rameters were empirically defined. . . . . . . . . . . . . . . . . . . . . . 61

5.1 Performance of the policies with varied friction coefficient. In an interval

of five episodes, a new friction coefficient is sampled. . . . . . . . . . . . 73

5.2 Performance of the policies with varied wind magnitude. In an interval of

five episodes, a new wind magnitude is sampled. . . . . . . . . . . . . . . 76

5.3 Results of the real-world experiments. Each cell correspond to the per-

centage of successful landings in a combination of policy and setting with

12 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



5

Acknowledgments

I would like to thank my advisor Dr. Carrick Detweiler for his support and encour-

agement throughout my time at the NIMBUS lab. His spot on observations and

willingness to dive in new fields were essential to complete this thesis. I really ap-

preciate his encouragement and guidance during this time. This work would also not

been possible without the technical help and discussions of my fellow NIMBUSers,

especially Ajay Shankar, who has conceded a good portion of his time to assist me

during my time in the lab. I had a lot of fun learning machine learning and robotics,

including the hundreds of UAV crashes, both in automatic as in manual control! I

will carry fond memories working in the huskers’ home. I want to thank my friends

close and afar, who have been essential to make life great, and Gisela Sayeras, for

her love and companionship during this time. I would like to thank my family for

their love and support. They are my cornerstone and have been present despite the

thousands of miles between us.



6

Grant Information

This work was partially supported by the United States Department of Agriculture

- National Institute of Food and Agriculture (USDA-NIFA) 2017-67021-25924, and

the National Science Foundation, NSF IIS-1638099, and NSF-IIS 1925368.



7

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAV) have been increasingly popular due to their ver-

satility, portability, and low cost. They are increasingly more used in a wide range

of applications where exact modeling of dynamics can be challenging. Landing a

UAV on a moving platform has been a classical problem in robotics, and several

techniques have been used to tackle it, such as [4, 5, 6]. Most of these approaches

require accurate models of the system dynamics, such as platform characteristics and

environmental conditions, machine learning creates an opportunity to learn policies

that do not require an explicit formulation of the dynamics to produce a controller.

Rodriguez et al. presented the results of Reinforcement Learning to land a UAV on a

moving platform [7] successfully producing a controller for a real vehicle by training

solely in simulation. In this paper, we investigate how different machine learning

approaches work with varying levels of domain knowledge when trained in simulation

and executed both in simulation and on a real robot system with dynamics variation.

Domain knowledge in our case means the inclusion of the dynamic variable in the

policy to calculate the actions.

We can identify two fields to attempt to solve this problem: optimal control theory

and reinforcement learning. Optimal control theory uses previous knowledge of the

system and the environment to formulate the best actions that can be taken in any



8

situation that the agent is inserted. With this, advantages of optimal control theory

are the guarantees of stability, robustness, but it comes with the price of meticulous

investigation of the system and the environment in which the system interacts with

[8]. These interactions can be highly complex, due to reasons such as the number

of actions that the system can make, the different variables that it can observe, or

the number of interactions that the system presents. Reinforcement learning, on

the other hand, provides a solution that, instead of relying on formulations of the

problem, a data collections on the problem [3]. It leverages the access to the agent

and the environment to collect information on how to achieve the task in hand. A

significant downside of this is that the guarantee of optimality for this approach is

dependent on the agent exploring all the different scenarios of interaction between

the agent and the environment [9]. In some cases, such as an agent that uses images

to make decisions, this would require showing every different possible image that the

robot can see, which is virtually impossible with a reasonable image resolution. In

this work we focus on the resolution of tasks with reinforcement learning. We view

this work as a stepping stone to future work that tackle even more complex tasks

that are unsuitable for modelling in optimal control theory.

Reinforcement learning is a machine learning approach that has been incorporated

into robotics development and research. It aims to train an agent that takes optimal

actions in an environment that maximize a reward function. Reinforcement learning

training in real UAVs can be unsafe and expensive in time and resources, as it requires

extensive interaction with the environment to optimize a policy function in relation

to an engineered reward function [10]. Leveraging simulations mitigates these prob-

lems as the systems are able to explore disastrous scenarios in simulation that would

otherwise cause physical damage in real experiments. However, policies trained in

simulation are not always trivially transferred to the real-world, as simulation may



9

Figure 1.1: UAV landing on the moving platform.

not represent the dynamics found in real scenarios, causing a mismatch between the

simulation and real-world generally called reality gap. In the same way, using re-

inforcement learning in simulation to learn a policy to land on a moving platform

prevents training in real vehicles that could result in crashes and unsafe situations,

but might generate inefficient policies due to the reality gap.

In this work, we train a policy in simulation to land a UAV on a moving platform

(as shown in Figure 1.1) and compare their ability to transfer to the real-world and

their robustness with the presence of external disturbances. We investigate three

different approaches in simulation to land a UAV on a moving platform (shown in

Figure 1.1) investigating their robustness with disturbances both in simulation as well

as real-world experiments. The first is a System Identification and Universal Policy



10

(UP) approach that can identify disturbances and optimize the actions accordingly

[11]. System identification (SysID) is a data-based method to infer variations of dy-

namics in an environment. Depending on the disturbance that influences the system,

it is arguably complex to model analytical solutions estimating the disturbance and

account for its influence in the control loop. For this reason, Universal Policy and

system identification aim to offer a data-driven solution that trains a reinforcement

learning policy that is parametrized by inferred parameters of the system dynamics.

The main advantage of this technique is the ability of the policy to specialize in the

set of parameters. That is, the system will always take the best actions, anticipating

the influence that the parameters will cause in the state/action transitions.

Another technique to manage the reality gap included in several works is named

domain randomization. Domain randomization is a technique employed to generate

policies robust to variation both as observations as well as dynamics of the environ-

ment. In this work, we focus on the gap between the dynamics from simulations

and the real-world. Its main idea is that by exposing the policy during training to

the range of parameters, the policy is trained to perform under all the different cir-

cumstances. This approach uses a distinct strategy compared to UP+SysID, which

instead of creating a policy that is able to handle different parameters, creates poli-

cies that are parametrized by the dynamics parameter. A downside of this technique

is that, as the range of parameters increase, the policy becomes less specialized in

order to generalize for all the parameters. However, this comes with the benefit of

avoiding mistakes on parameter estimation, in which UP + SysID policies are prone

to [12]. In this work, we perform a pragmatic analysis of employing UP+SysID in

contrast to domain randomization and identify the advantages and disadvantages of

the techniques. This is performed by running simulated and real experiments with

variation of dynamic variables.



11

In this work, we propose a reinforcement learning framework to train policies to

land a UAV on a moving platform and investigate the ability of machine learning

techniques to produce policies robust to dynamic variations. We evaluate and con-

trast two approaches and a baseline, which is a policy trained with fixed parameters.

The policies aim to perform this task successfully even with the presence of external

disturbances.

We contribute in three main ways in this thesis.

• We extend the work of [7] developing a reinforcement learning system that

is able to control a target velocity in all three axes and adds complexity by

including changes in the system dynamics in the experiments.

• The analysis and contrast of domain randomization and universal policy with

system identification to render the system more robust to changes in dynamics.

This analysis provides insight of the techniques’ trade-off that can be used in

novel environments tackling domain adaptation. For this, we ran simulated and

real-world experiments and observed their performances.

• Develop a fast Pybullet simulated environment able to transfer the policy suc-

cessfully to the real-world by small adaptations in the reward function and

adopting an LQR controller in the real UAV. Using a lightweight simulation

allows the development of more complex systems with decreased requirements

of computational resources.

The rest of the document is organized as follows: first we provide an overview of

the background knowledge to understand the approach and the design choices that

we made throughout this project, then talk about our approach, the methodology to

setup the experiments, a discussion of the results, and a conclusion.



12

Chapter 2

Related Work and Background

This work uses several technologies and in this chapter we present some of the essential

background information for a better understanding of our proposal and experiments.

This background chapter is separated in four parts. The first gives an overview of the

theory and practice in training neural networks, which is a machine learning artifice

for function approximation used in several elements of this work, such as reinforcement

learning and system identification. Second, we present reinforcement learning, some

of its techniques and methods that the scientific community has adopted. Third,

we present a brief overview on previous literature on landing a vehicle on a moving

target. Fourth and last, we describe some of the literature in domain adaptation,

which is the niche in which this work is focused on. This last section builds up on the

previous two and describes how systems can transfer information between domains.

2.1 Deep Neural Networks

Deep neural networks are structures that have been essential to the development of

recent technologies. This is so as it led Geoffrey Hinton, Yoshua Bengio, and Yann

LeCunn to win the 2018 Turing Award for their contribution in foundational work



13

Figure 2.1: Comparison of a neuron (left) with an artificial neuron (right) used in
neural networks. Image from [1]

in Deep Neural Networks1. Neural networks are structures created with biological

inspiration: the neural connections. Similar to the brain connections, the neural

networks have dense connections among neurons. The input information is carried

along a network that activates according to non-linear functions and finishes in a layer

that outputs the network’s decision.

The artificial neuron is biologically inspired in the nervous systems. The neurons

are elemental cells of the nervous systems and are responsible for the complex cog-

nitive and motor activities. The brain has about 86 billion neurons, in which there

1https://amturing.acm.org/



14

are around 1 quadrillion connections among them [13]. These extremely abundant

connections are responsible to transmit information to neighbor neurons in a process

called sinapse. Artificial neural networks are virtual elements that are not meant to

be a complete model of its biological counterpart, but has many elements inspired

by it. Figure 2.1 shows a comparison between biological and artificial neurons. The

values x represent how strong the signal in the neuron is, while w represents the

synaptic strength between the neurons. The signals travel the neurons and arrive the

bottom neuron that outputs y. Similarly, a neuron performs a weighted sum with the

neighbor neurons, where w is the set of weights and x is the signal in each neuron. If

the stimulating signals are over a certain threshold, the neuron is triggered; this pro-

cess in neurophysiology is known as spatial summation [14]. In the artificial neuron,

the sum is processed in an activation function, which in the case of the image, is a

step function. When the sum is over the threshold, the neuron outputs 1, otherwise

0. We will later discuss some of other activation functions and their role in learning.

The neurons are powerful cells when grouped. The complexity of neurons arise

when observed in a collection. Research has shown that memory is recorded with

a circuitry of neurons, modulating the strength of the connections between neurons

through synapses [15]. Similarly, the neural networks can encode information by

modulating the connections between the neurons, so it is capable of approximating

functions that are presented to the network during training.

In this section, we discuss some of the intricacies of training and using neural

networks. In the next subsections we talk about feed forward networks, which is the

type of networks used in our experiments; discuss about training neural networks,

how to get a model that works well with unseen instances by using regularizers,

the importance of activation functions and lastly, how to find the best set of hyper-

parameters during the training of a neural network. Hyper-parameters are parameters



15

that are not learned during the training process and therefore have to be stipulated

beforehand.

2.1.1 Feedforward Networks

Feedforward networks is the type of neural networks that we use throughout this

thesis. They are structures in which there is flow of data from the input of the

network, through the layers of neurons to the output. That is, there is no feedback

in any part of the architecture. This network is divided in layers of neurons, the

first layer that receives the input is called input layer; the layer that outputs the

network decision is called output layer. All the layers between the input and the

output layers are called hidden layers. Additionally, we use fully connected layers:

these layers each neuron is connected to every other neuron from the next and the

previous layers. This forms a dense network that can be used for the detection of

patterns and representation of the trained function. Figure 2.2 shows a feedforward

neural network with two hidden layers, note that each neurons is fully connected with

the previous and next layers.

2.1.2 Training

Training neural networks is a data driven process that involves attempting to approx-

imate a function and adjust tiny steps towards the correct values. The training is

performed by providing the system a large number of data instances in the format

of input and expected output. The neural network is initialized with random initial

weights. In every instance of the dataset, the input is given to the network and the

output is compared with the expected output. The difference of the outputs, the er-

ror, is then used as a signal to perform updates in the neural network. After finding

the error, it is calculated how each element of the neural network has contributed to



16

Figure 2.2: Example of a neural network with fully connected layers. Image from
http://cs231n.github.io/neural-networks-1/

the erroneous calculation; these values are then used in different strategies to update

the network. This is a very brief overview of the training that has many variations

and has evolved in years of research. We expands these steps in the paragraphs below.

Calculating the loss of the prediction varies with the task. Neural networks are

intensively used for activities such as numerical regression or classification. In a

regression task, the loss is generally defined as the squared error between prediction

and the true value. In classification, the most common approach is to use the last

layer of the neural network as a softmax layer, which transforms the output of the

previous layer as a probability distribution of the classes in the problem [2]. The

loss is then calculated as the cross-entropy between the softmax output and a one-

hot probability distribution, which is defined as 100% probability in the true class,

and 0% in all the other classes. The cross-entropy is defined in Equation 2.1; it

calculates the distance between two probability distributions p and q, assigned to the

one-hot vector and the softmax output, respectively, over the interval x. When the



17

distribution of the softmax is very different to the one-hot, the value of cross-entropy

is high and appoints the system to perform a bigger change in the network weights.

H(p, q) = −
∑
x∈X

p(x) log q(x) (2.1)

Calculating the contribution of each element for the final error consists of finding

a gradient vector. The gradient vector is the set of partial derivatives of each of

the weights of the network in relation to the output. Some weights might have

a higher contribution to the output, so their partial derivative is higher compared

to other weights. The most common method of finding these gradients is called

backpropagation [16]. Backpropagation takes advantage of the structure of neural

networks to calculate the partial derivatives of each weight in relation to the output

using the chain rule. By using the solution of one neuron to calculate further neurons,

this technique has been viewed as an example of dynamic programming.

∇F (x, y, z) =

(
dF

dx
,
dF

dy
,
dF

dz

)
(2.2)

There are many techniques to efficiently use the gradients to optimize the func-

tion, we name optimizers the techniques that perform such task. In charge with the

information that we have dealt so far, an intuitive optimizer would, in every instance

of the dataset, calculate the loss and update each weight of the network according to

its gradient. This technique is called stochastic gradient descent. Stochastic gradient

descend is a first order optimizer, which means that it optimizes a function following

the gradient (first derivative) of the objective function. The update of each weight w

indexed in i is given in Equation 2.3. The value η is the learning rate: it scales how

much the weight will be updated with the gradient value. This allows the system to

follow the trajectory of parameters set that leads to a global minima. Observe the



18

Figure 2.3: Convex function gradient estimation and path to optimization.

first image of Figure 2.3, it depicts the loss of a network training J(W ), where W is

the parameter set of the neural network.

w′i = wi − η
∂L

∂wi
(2.3)

A problem with stochastic gradient descent is that the updates from each instance

of training can be noisy. The updates from the noisy data can lead the training into an

undesirable parameter set, constraining succesful trainings with a very small learning

rate [17]. A method that mitigates this problem is called batch gradient descent.

This method calculates the gradient for each instance of the dataset, averages them

out, then perform an update with the result. This mitigates the noisy values of the

dataset. A major drawback of this technique is that memory usage increases linearly

with the size of the dataset, since all the gradients must be stored in memory. This

is impractical for very large datasets.

A technique that seats between stochastic gradient descent and batch gradient



19

descent is called mini-batch gradient descent. In this technique, instead of calculating

the gradient for every image in the dataset, the optimizer calculates the dataset for

a subset of the dataset. This allows the training to use smooth gradients as in batch

gradient descent, but with memory efficiency of the stochastic gradient descent. The

algorithm that we adopt in our experiments builds upon mini-batch gradient descent

to optimize the loss function.

We adopted Adam optimizer for our experiments. Beyond using minibatches,

Adam optimizer [18] is a very popular optimizer that combines two important strate-

gies. The first is momentum. Momentum is a technique that helps avoid getting the

system stuck in global minima. This is done by including an element in the equation

of weight update that is equivalent of the momentum of previous updates. That is,

if in previous iterations the weights were being updated in a certain direction of the

function, it is likely that the global minima is in that direction. The weights update

according to Equation 2.4, where m is modified in each learning step according to

Equation 2.5. The value β is a hyper-parameter that weights the value of the mo-

mentum, while η is the learning rate. For better understanding, observe Figure 2.3:

the first image depicts a scenario of a function that has no global minimas, while the

second image is a more realistic scenario in which the changes in the weights (W )

might lead to local minimas in which the optimizer could get stuck. If the initial set of

weights has value close to zero, the optimizer will increase the value of w, decreasing

the loss and acquiring momentum since there is no local minima in the initial phase

of the graph; in this same phase, the value of m is being updated with the direction of

the gradients (leading to a more positive value). When the update reaches the point

that is marked in the image, the system may have enough momentum (depending on

β) to increase W so the system escapes the region of the local minima.



20

w′i = wi −mi (2.4)

mi = βmi−1 + η
∂L

∂wi
(2.5)

The second resource incorporated in adam is RMSProp [19]. RMSProp is a tech-

nique to dynamically change the learning rate. In regular gradient descent, the update

of the weights is proportional to the gradient; this means that when the slope of the

loss function (the gradient) is large, the updates will have a large update, while small

slopes will cause small updates. This can be problematic in very large gradients since

the optimizer might miss important data between the updates. RMSProp proposes

a solution by decreasing the update according to the recent history of the gradients

size. Equation 2.6 shows that in RMSProp, the update of the weight is divided by the

square root of G indexed by the weight i. The value of G is started as zero and up-

dated according to Equation 2.7: it is the sum of its previous value with the squared

gradient of the current iteration. This represents then how large the recent gradi-

ents have been. The variable β is a hyper-parameter between 0 and 1 that weights

historic sum of gradients and the current gradient. Without the scaling, the value

of G could reach an extremely large value and overtake the value of G, causing an

aggressive downscaling in the updates. The value ε simply avoids that the division of

the learning rate by zero.

∆wi = − η√
Gi(t) + ε

∂L

∂wi
(2.6)

G′i = βGi + (1− β)

(
∂L

∂wi

)2

(2.7)



21

2.1.3 Regularization

Regularization is a group of techniques that aim to generalize the network by decreas-

ing the complexity of the represented function to avoid overfitting. Observe Figure

2.4 where the black dots represent the data instances with attribute x0 and label y.

The first image exemplifies underfitting. Underfitting arises when the trained func-

tion has a much lower complexity than the function in which the data was sampled

from. In the figure, the data is approximated with a linear function, which probably

will not generalize well for unseen instances. A detrimental effect is also shown in the

last figure, overfitting. This happens when the function is overly trained and has a

very high accuracy in the training data, but is unlikely to perform well in unseen in-

stances. The right balance is pictured in the second image, in which the approximated

function is likely to fit the function that sampled the dataset, therefore would have a

high performance in further data. Underfitting is generally tracked by the accuracy

of the model in the dataset, while overfitting can be tackled with regularizers, which

are discussed next. We include these models here since they were either employed in

our models, or considered during hyper-parameter search, which is detailed later in

this thesis.

2.1.3.1 L1-Norm and L2-Norm

L1 and L2 regularization norms include the neural networks weights in the loss func-

tion [20]. This strategy encourages the optimizer to choose a set of weights that

are compact, but also effective. By having a large sum of weights, the network has

the chance of being an over-engineered function that works well in the dataset, but

does not generalize to unseen cases. This helps ensuring that only the weights in the

network relevant to decreasing the loss are included. Moreover, some feature are also



22

Figure 2.4: Example of the three cases in fitting a function from a dataset. Image
from [2]

highly correlated with each other. In this case, it is unnecessary to keep both; the

regression also encourages the optimizer to remove these redundant features. Thus,

the optimizer will find a set of weights that is dependent both on the task in hand

(e.g. classification, numerical regression) as well as minimizing the set of weights in

the network.

Ω(θ) =
1

2
‖w‖22 (2.8)

L2 norm includes the second norm of the weights into the cost function. The

additional term of the cost function is shown in Equation 2.8.

2.1.3.2 L1 Norm

The L1 norm, as the name suggests includes the first norm of the weights in the loss

provided to the optimizer. Although the similarity of L2 norm, using L1 produces

different effects in the optimization. The first notable difference is that L2 norm



23

penalizes larger values, since it squares the weights, while L1 only increases linearly.

This generates sparsivity in the parameter set, meaning that while in L2 many weights

will have small values, in L1 many values might be zeroed-out [17]. This is also

known as feature selection, since it selects the weights that are most informative for

the network.

2.1.3.3 Early Stopping

Early stop also decreases the complexity of the system, but in a different fashion

[21]. Early stops is generally executed when the dataset is divided in three sections:

training, test, and validation. Early stop consists in training the system with the

“training” portion of the dataset, and verifying the performance of the system in the

“validation” portion of the dataset. Whenever it is observed that the performance in

validation is decreasing, the training halts.

Early stop’s strategy caps the increase of complexity by stopping training. The

validation set is a group of data instances that are representative of the data found

in the real-world. It is important to note that there is no training on these images.

The performance is calculated in these instances to verify whether the model has

been overfited to the training data. The increase of performance in the validation

set indicates that the model is also improving in accuracy in other unseen instances.

However, the decrease in performance of the validation set might indicate that the

model has been overfitted to the training data, so the system halts the training and

restores the last best set of weights for the validation set. This is a powerful strategy,

specially when the dataset is large enough such that part of it can be assigned for the

validation set without losing significant information in training. Early stop produces

great results with low parametrization such that Geoffrey Hinton has described Early



24

stopping as “free lunch”2.

2.1.4 Activation Function

Activation functions receive the weighted sum from the connected nodes from input

and calculates the output. In deep learning, this function are always non-linear, since

the combination of the linear outputs will also be linear. In order to achieve a non-

linear approximation, it is required to adopt non-linear activation functions [22], as

it is described in the Universal approximation theorem. In fact, this theorem states

that a neural network with only one hidden layer can approximate any continuous

functions [23], but observing the non-linear nature of the activation function.

Early research in neural networks adopted sigmoid functions. This non-linear ac-

tivation function, also known as logistic function, was highly adopted in early research

of neural networks. They work specially well in shallow networks [22], which was the

feasible type of architecture with the available computational power at the time. The

sigmoid function is defined in Equation 2.9, and as previously shown through Figure

2.1, x is the weighted sum of the output of connected neurons. The main issue with

sigmoid is the saturation of gradients: observe that the function does not change lin-

early with the sum of the input weights. When the sum is close to one, the addition

of more neurons does not affect the result of the activation function with sigmoid, as

it reaches a plateau. Therefore, even if the value of a previous neuron is very high,

it is not taken as much into account due to the saturation and as a result receives

a smaller gradient. This is also known as gradient saturation, and it increases the

training time due to the small weight updates.

f(x) =
1

1 + e−x
(2.9)

2https://media.nips.cc/Conferences/2015/tutorialslides/DL-Tutorial-NIPS2015.pdf, slide 63



25

Hyperbolic tangent (tanh) is considered a smoother option compared to sigmoid.

A good feature of this activation function is that it is zero-centered. This allows

centered data from layer-to-layer. In sigmoid, the activation function always returns

positive numbers, so the gradient will always be positive or negative. When this hap-

pens, there will be a high update in one direction of the parameter space, overshooting

the update. Subsequently, the system might correct the parameters, overshooting to

the other direction. This creates a zig-zag like behavior that slows down the training.

Hyperbolic tangent avoids this effect as it is a function whose center is zero, and can

return either negative or positive values, producing a smoother update.

f(x) = tanh(x) =
(ex − e−x)
(ex + e−x)

(2.10)

The next activation function, Rectified linear unit(ReLU ) [24], is highly adopted

[17, 25]. It is interesting how this simple function came to be the most used activation

function. The linearity on positive instances avoids the saturation of gradients from

distant layers, as it was with sigmoid. Another great feature of this activation function

is the low computational cost: the absence of exponentials that are included in the

previous methods makes ReLU a much faster alternative.

f(x) =

 0 for x ≤ 0

x for x > 0
(2.11)

Leaky ReLU is another option similar to ReLU that makes use of a larger portion

of the network. Leaky ReLU attempts to remedy a frequent issue with ReLU : dying

neurons. As the negative regime of the ReLU function is zero, some neurons do not

activate since they present negative sums. In many cases, the neurons do not activate

throughout the training, and do not contribute in any means in the networks. With



26

leaky ReLU, instead of having a negative sum as zero, a linear activation with a

smaller scope than its positive counterpart takes place. This encourages the optimizer

to train the dead neurons. However, this does not guarantee more efficient models

than ReLU.

f(x) =

 0.01x for x < 0

x for x ≥ 0
(2.12)

2.1.5 Batch Normalization

Batch normalization [26] is a technique commonly used for the normalization of the

layer output. Batch normalization is a powerful resource that produces two effects in

the learning system. First, it decreases the training time by reducing the variance of

the output from layer to layer; second, it works as a regularization technique when

the minibatch in training is sufficiently low [27]. We applied batch normalization in

our experiments, and it indeed increased the performance of the final model.

The batch normalization layer is implemented following the Equations 2.13 to

2.16. We call Z the result of the multiplication of W , which is the set of the weights

in the layer, and X, the input values of the layer. In Equation 2.13 it is displayed the

weighted sum that is calculated as the input to the activation layer for each neuron in

the layer. Batch normalization calculates the mean across the mini-batch per feature

and subtract the mean, such that the mean (again, across the minibatch) is zero

(Equation 2.14). Subsequently, in Equation 2.15 a similar operation is performed

with the standard deviation, normalizing the output. Lastly, in Equation 2.16, the

output is transformed to have mean β and standard deviation γ, that are parameters

learned with W . The final output Y is then passed for the activation functions in

each neuron.



27

Z = XW (2.13)

Z̃ = Z − 1

m

m∑
i=1

Zi : (2.14)

Ẑ =
Z̃√

ε+ 1
m

∑m
i=1 Z̃

2

i

(2.15)

Y = γẐ + β (2.16)

2.2 Reinforcement Learning

Reinforcement learning algorithms aim to generate a policy function that optimally

performs decisions in a Markov decision process (MDP)[3]. This is generally started

by taking random actions in the environment and observing the outcomes (Figure

2.5). An efficient reinforcement learning algorithm would then take increasingly better

actions as time progresses, since it learned with the previous interactions. Formally,

the objective of the Reinforcement learning model is to find a function π that, given

the states of the agent, selects action that maximizes an accumulated reward Rt =∑∞
i=0 γ

(i−t)r(si, ai), where γ(i−t) is the discount factor. The discount factor decreases

the reward, as the timestep of prediction is increased. We go into more details of this

process throughout this chapter.

In this section, we expand on the building blocks of reinforcement learning: we

start by defining how the environments for reinforcement learning are defined, talk

about policy and value functions, that are important elements of reinforcement learn-

ing algorithms, and exploration-exploitation trade-off, then we explain some rein-

forcement learning techniques with intuitive approaches and explain their limitations

until arriving in the technique the we adopted for this work, Deep Deterministic



28

Figure 2.5: Overview structure of reinforcement learning techniques. The agent in-
teracts with the environment by performing actions and receiving the next state as a
result. Image from [3].

Policy Gradient.

2.2.1 MDP problems

MDP problem is described by a set of state-space, S, and action-space, A, in which the

agent takes actions that may result in transitions between states. The transitions are

probabilistic in nature. That is, an action a, taken in a timestep t and state st, may

successfully transition to a new state, st+1, according to the probability distribution

p(st+1|st, at). The objective of the agent is to maximize the reward signal, provided

as a feedback to achieve the task. Additionally, the transition from the state s to the

state st+1 accompanies a reward signal rt+1.

An important characteristic of the MDP problems is that they must fulfill the

Markov property. This property states that the current state of the agent does not

depend on previous states. A good example to understand this property is the task of

releasing an object into a target. Suppose the agent is flying in fixed height and varied

speed towards the target. The action space would be a binary variable describing

whether to retain or release the object. If the state space for this problem consists of

only the relative position of the agent in relation to the target, this setup does not



29

fulfill the Markov property. This is so as the current position would depend on the

previous state to estimate the velocity. However, if we include the relative velocity

in the state space, it is not necessary to check historical transition of the nodes to

fully describe the current state of the system; therefore, the system would fulfill the

Markov property.

Formally, a Markov decision process is composed of:

• Set of actions A

• Set of states S

• Transition probabilities p(s′|s, a), that describes the probability of transitioning

from state s to s′ taking the action a

• Reward function R(s, s′) that describes the reward that an agent receives when

transitioning from s to s′. The reward function will define the goals of the agent.

2.2.2 Discounted Accumulated Reward

Another variable generally employed with the MDP definition is the discount factor γ.

This variable scales down the accumulated sum of future state transitions. Therefore,

the variable γ ensures that the rewards collected in earlier are more valuable than

later rewards. If the rewards are equally valued, then the agent would not have

preference of transitioning to the states that achieve high rewards more quickly. The

use of a discounted rewards affects the reward exponentially in function of gamma.

Observe the equation 2.17 describing the discounted accumulated reward G from the

timestep t onward. This principle is applied in a wide variety of reinforcement learning

algorithms, including the one adopted in our experiments.



30

Gt = Rt+1 + γRt+2 + γ2Rt+2 + . . . =
∞∑
k=0

γkRt+k+1 (2.17)

2.2.3 Exploration vs exploitation

Reinforcement learning tackles the exploration-exploitation trade-off. Reinforcement

learning systems start by picking random actions in the environment, but as the time

progresses, start to follow the actions that are believed to reach better states. By

following this strategy, the systems are able to improve upon the knowledge that has

been acquired so far. However, a question arises from this process. When and in

which cases will the agent stop taking random actions and take the actions that are

believed to be good? This is a very famous problem, which is named the exploration-

exploitation tradeoff. Essentially, if the agent does not spend sufficient time exploring,

its estimation of what is the best action to be taken next will be faulty and suboptimal;

on the other hand, if the agent spends a long time exploring, then it will take an

infeasible amount of time to learn the whole task during training. This problem is

so hard, that according to [28], during the second world war, the Allies strategically

sent this problem to Nazi Germany so they could be distracted, since they believed

that it was impossible to solve this problem.

Reinforcement learning techniques tackle this problem according to the type of al-

gorithm in hand. We will explorer later in the chapter how our adopted RL technique

can deal with exploration, and how its predecessor also approach it. Meanwhile, it

is worth to mention that exploration vs exploitation is an important and very hard

problem, and our concern on dealing with it was crucial for the success of these

experiments.



31

2.2.4 Value and Q-function

The value function is an estimation of how good it is for the agent is to be in that

state, also known as utility. The higher the value function, the better chances are

that the agent will be collecting a good sum of rewards very soon or in the near

feature; this depends of the discount value γ that we discussed about. The ”wellness”

of being in a certain state is the best discounted sum of rewards that can be achieved

by starting from that state. This is formally defined in Equation 2.18. The value

function of the state s using the policy π is the expected sum of rewards starting

from the timestep t (Gt), given that the initial state St is s.

vπ(s)
.
= Eπ [Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S (2.18)

The value function helps indicating the potential that the agent has by being in

a certain state, but by itself does not assist the selection of the next action. That is

the role of the q-value (Equation 2.19), in which it is estimated what is the expected

discounted reward when the agent follows the policy π after taking the action a

in the state s. This then allows the calculation of the best action as selecting the

action in the current state in which the q-value is maximum. This is the base of

several reinforcement learning techniques, including the method that we use in our

experiments.

qπ(s, a)
.
= Eπ [Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(2.19)



32

2.2.5 Model-free vs Model-based learning

The agent can take two strategies regarding its knowledge of the environment: model-

free or model-based. Model-based learning consists of techniques that use or create

a model to predict the state transitions according to the actions that the agent can

take; model-free, on the other hand, does not use an explicit representation of the

environment, but only calculates the best actions to be taken.

Model-based algorithms are efficient to train multiple tasks, but limited to its

ability to learn the model of the environment. This class of algorithms make use

of an estimation of the MDP of the environment. This estimation can be in the

form Neural Networks, tabular data, or any other means that could inform the agent

what would be the consequences of its actions. The agent then follows the actions

that maximize its reward. Observe that if the agent already has the full information

about the environment, it is not necessary to perform reinforcement learning. The

agent would only need a planning technique to follow the best actions since it does

not need to interact with the environment to learn how to achieve optimality. An

advantage of model-based learning algorithms is that when the agent has a good

model trained, it can be used for other tasks since it would be able to leverage its

knowledge of state transitions to achieve the new task. Additionally, every interaction

with the environment is used to update its model, so it is generally more data efficient

[3]. However, model-based approaches are limited if the model of the environment is

inaccurate [3]. Depending on the complexity of the environment, learning a model by

sampling can be unsuitable for training a policy [29].

Model-free algorithms are data hungry, but can achieve near optimal results. On

contrary to model-based techniques, model-free algorithms has no explicit knowledge

about the MDP of the environment. This has pros and cons in the quality of the



33

algorithms. A detrimental feature is that training can be data intensive: since the

agent is attempting to include the dynamics into the policy, the agent has to sample

several times from the environment and increase the confidence of its estimation

rather than plan on the information learned from the model-estimation. However,

since both tasks are included in one estimation, it is less likely of being stuck at a

point of failure in the model.

In this work, we focus on model-free techniques, since we aim on having efficient

policies, even if that means that it is necessary to execute training for a longer time

in a simulated environment.

2.2.6 Monte Carlo Methods

Monte Carlo is an intuitive technique to solve the reinforcement learning problem

with a model-free setting. In order to estimate the value function, we simply run

the policy in the environment and verify what is the accumulated reward when the

starting state is s. When enough samples are collected, all these measurements are

averaged out to obtain the value function. The Monte Carlo method is guaranteed

to converge in the states that are visited by the policy, as the estimation follows

the principle of the central limit theorem. The central limit theorem states that the

sum of random variables follows a normal distribution, so the average of these values

sampled in the rollouts will indeed be the expectation.

The training of Monte Carlo techniques consists of loops of estimation and im-

provement steps (Figure 2.6). In estimation, the policy π is used in interaction with

the environment until the episode reaches a terminating state. The estimations of the

states from the starting state until the final one are updated according to accumulated

rewards (from the state onward) observed during the episode. The improvement step

updates the policy with the new estimates of the value function; the policy will select



34

Figure 2.6: Updates used in Monte-Carlo. The evaluation step is sampled with the
policy in the environment, and the improvement step maximizes the actions that lead
to the best states. [3]

in every timestep the action that leads to the states with the highest value function

estimations. This loop is repeated until there is no variation in the value function.

Monte Carlo’s update limits its number of feasible applications. A limiting factor

of Monte Carlo is the necessity of reaching the end of the episodes to update the value

function. This limits the scope of applications with very long episodes or environments

in which reaching the end can be intractable. This is solved in the next group of

algorithms: the temporal difference methods. However, Monte Carlo can still be

employed due to its unbiased estimations, as it only incorporates information that

has been collected directly from the environment.

2.2.6.1 Temporal Difference Methods and Q-Learning

Temporal difference (TD) methods is another class of algorithms to solve reinforce-

ment learning. Similarly to Monte Carlo, TD methods do not have the previous

knowledge of the dynamics of the environment, so it is also necessary to explore the

environment to estimate the expected reward. It differs from Monte Carlo in the sense

that the updates of the value function estimation do not require the agent to collect

experiences until episode termination. Instead, the updates are performed using the



35

observation of the rewards in the rollout of experiences and the estimation of the

value function from that transitioned state on. Updating the estimation of the value

function with another estimation is called bootstrapping, and is abundantly present

in reinforcement learning. Here we analyze a very popular TD method: Q-learning.

Q-Learning [30] is a TD method that updates the estimation in an off-policy

manner. Being off-policy means that the update of the estimation computes the

value function assuming a certain action in the next timestep, which might not be

the same action taken by the current policy, hence the name off-policy. The update

of the Q-values is shown in Equation 2.19. In each timestep, Q-learning observes the

q-value of a state-action pair, and executes an action a; a reward is then collected

from the environment when the agent transitions from the state s to the new state

s′. The q-value of the state-pair is updated with the difference between the predicted

Q-value and the collected reward summed with an estimation of the Q-value (this

difference is also known as TD-error) following a greedy policy. The current policy

might not be greedy, but the q-value is always updated estimating the best return

that the agent might have if it follows the most profitable actions.

q(s, a) = q(s, a) + α
[
r + max

a
γq (s′, a)− q(s, a)

]
(2.20)

Q-learning starts off exploring the environment with a random set of Q-values. As

was discussed at the beginning of the section, one of the fundamentals problems in

reinforcement learning is the exploration vs exploitation tradeoff. Q-learning generally

tackles this problem with ε-greedy technique. It uses a variable that defines the chance

of taking a random action instead of following a greedy choice, which is the action

whose Q-value in the current state is maximal (Equation 2.21). The coefficient ε

defines how fast the variable increases the probability of using the greedy choice. In



36

this way, as training proceeds, the system takes progressively less random actions as

the estimations of value function is more robust.

a∗ = argmax
a∈A

Q(s, a) (2.21)

2.2.6.2 Deep Reinforcement Learning

The reinforcement learning methods presented so far work well in small tasks, in

which the value function can be represented in a tabular form, a matrix. However,

when there is a high-dimensional state space, which is the case of our application,

the problem is rendered infeasible using a tabular representation. Moreover, visiting

all the combinations of state-action pairs might be impossible in certain cases. This

problem has been tackled by adopting neural networks to approximate the value

function and/or the policy. Such substitution provides a powerful generalization of

these functions in more complex systems since it approximates the value function

for states that were not yet visited and it does not require that all the state-action

combinations be stored in memory. A drawback of this approach is that using neural

networks removes the certainty of optimality, although empirical results demonstrate

good results.

2.2.7 Deep Q-Networks

An iconic successful use of non-linear function approximation is the algorithm Deep-

Q-Networks (DQNs). It is a well-known algorithm since the publication of the pioneer

Deep reinforcement learning Nature paper of Atari game playing [31]. The paper de-

scribes the implementation of a system with a deep neural network that approximates

the Q-values of the action/state pairs. Resources such as experience replay, target

network, and batch normalization enabled the system to stabilize learning and achieve



37

convergence. With such infrastructure, the authors were able to implement a system

capable of attaining human-level performance in Atari games without providing prior

knowledge for the system, except the position of the game score and the action but-

tons of the joystick.

The Q-function is approximated with a deep neural network with parameters θ.

In order to train the network, the system bootstraps the Q-values and calculates the

loss according to Equation 2.22. The loss of the network is the TD-error, similar to

the right side of the addition in Equation 2.20. The inner expectation is the expected

value of the accumulated sum of rewards of the new state following the greedy choice.

Li (θi) = Es,a∼p(·)
[(

Es′∼E
[
r + γmax

a′
Q (s′, a′; θi−1) |s, a

]
−Q (s, a; θi)

)2]
(2.22)

DQN is able to achieve such performance by including two important resources:

experience replay buffer and target networks. These two resources were essential to

stabilize the training.

The first trick, prioritized experience replay buffer, allows the reduction of vari-

ance during training by keeping recent historical information. This means that every

interaction with the environment in the form et = (st, at, rt, st+1) is recorded in a

replay buffer Dt = {e1, . . . , et}. When the value function is trained, instead of only

training the most recent interaction with the environment, all the values in the buffer

are computed and updated using minibatches. An important detail is that the batches

are sampled randomly from the buffer. This increases the variance of the information

that trains the value function since experiences from very close timesteps will more

likely be correlated.

The second trick, target networks, reduce the instability in learning. The insta-



38

bility comes from the fact that updating the value function affects the neighboring

states of the updated state. States which might be in the region that the agent is

exploring at the moment. Updating and using the value immediately might cause bi-

ased predictions that cause oscillations in the learning system. The solution for this

is to create a copy of the network and perform updates in this copy while estimating

the values in the original network. The original network then updates its weights

with the copied network every C steps (a hyper-parameter)

Deep Q-networks have been used in many applications in robotics. Some include

keeping a vehicle in a desired street lane [32], autonomous vehicle driving [33], co-

ordinate robot with gripping mechanism to follow visual cues [34], robotic object

grasping through images [35], playing first-person shooting games [36], robotic ex-

ploration with object avoidance [37]. An important limitation of DQN in robotics,

however, is that it evaluates Q-values of all the action-pairs to define the best ac-

tion. That is, in continuous tasks, the action space has to be discretized. This raises

questions in the development of the system, such as the accuracy necessary for the

actions being sliced, and the time to train this action space. In precise robotic tasks,

DQN might not be a feasible algorithm, as the discretization of certain environments

might result in an exploded action space.

2.2.7.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an off-policy, model-free reinforcement

learning algorithm [38]. It takes advantage of continuous state spaces to backprop-

agate the Q-function. The Q-function is a numerical estimation of the discounted

accumulated reward that the agent could potentially collect starting with a certain

action.

DDPG makes use of actor-critic architectures, which trains the policy using two



39

components: the actor and the critic. The actor is responsible to select the next best

action available given its current state. On the other hand, the critic approximates

the expected discounted accumulated reward through the Bellman Equation [38].

Critic

The actor is responsible to identify the utility of the state-space. Similarly to Q-

learning, keeps track of the Q-value for each state and action by bootstrapping. This

is done by calculating the bellman function (2.23) for a given state s and action a.

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗ (s′, a′)

]
(2.23)

The Bellman equation defines the best action as a greedy recursive function that

maximizes the sum of rewards in each step. The critic uses the Bellman equation to

bootstrap the Q-values until it converges. The actor approximates a function that

returns the best action a, given the current state s.

The critic performs gradient descend to approximate the estimation of the Q-

values with observations of the state transitions. The update is executed when per-

forming a transition in the environment: starting from the state s, taking the action

a, then observing the new state s′. The update is then calculated comparing the esti-

mation of the q-value with the estimation of the new state and the observed reward.

Observe the Equation 2.24, it shows the mean square error (loss) of the estimated

Q-value and the expected Q-value. Using an estimation to update the estimation of

Q-values is called bootstrapping.

L(φ,D) = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d) max

a′
Qφ (s′, a′)

))2]
(2.24)



40

In this setting, given an action, the Q-Value is differentiable, as the actions are

continuous. Deep deterministic policy gradient uses this property to calculate the

gradients and updates the actions that maximize the Q-values. In order to increase

the stability during learning, DDPG also includes target networks. These are copies

of the original networks whose weights are updated gradually to avoid destabilization

from sharp gradient updates.

Actor

The actor is responsible to find the best action when informed with the current state.

Observe the Equation 2.25, when training the actor, it performs a gradient ascend on

the parameters of the network θ such that it maximizes the Q-value of the states S

sampled from the distribution D, which is the training data.

max
θ

E
S∼D

[Qφ (s, µθ(s))] (2.25)

2.2.8 Exploration techniques

Since DDPG outputs a deterministic action given a state, the exploration generally is

done by varying the actions. There are three main exploration techniques in light of

this: Ornstein-Uhlenbeck process, adaptive parameter noise, and the normal action

noise.

2.2.8.1 Ornstein-Uhlenbeck process

Ornstein-Uhlenbeck (OU) process [39] leverages the idea of correlating the noise out-

puts to have a higher impact on the final result. The noise generated in each reading

of the noise is correlated with its previous outputs. The authors of the original DDPG

paper [38] adopt this noise with the argument that it is a reasonable strategy when



41

dealing with problems with inertia. The work published in [40] analyses the use of

correlated noise for continuous tasks. The intuition behind this can be imagined with

an environment whose action space is consisted of forces that drives a robot. By hav-

ing forces in the action-space, the output actions will directly affect the acceleration,

which will be mitigated when the system behavior is evaluated by observing the posi-

tion. This is so as the actions will affect the velocity, which in turn will affect the final

position. When the noise is uncorrelated, the final integration could be insufficient

for exploration since it might cancel itself out.

Ornstein-Uhlenbeck is formally defined as a stochastic process following the dif-

ferential equation in Equation 2.26. The value θ describes a an element of the next

noise sample that makes it closer to the mean (µ), while the variable σ is a coefficient

of how much ”randomness” the noise will have; finally, Wt is the Weiner process, also

known as Brownian motion, which is a random process that in implementation will

be a Gaussian distribution with zero mean and unit covariance.

dxt = θ (µ− xt) dt+ σdWt (2.26)

2.2.8.2 Normal Action Noise

Normal action noise is precisely what the name suggests: a noise sampled from a

normal distribution. This action noise is uncorrelated; that is, each reading is inde-

pendent of the previous samples. Despite the argument provided in 2.2.8.1, there is

work that suggests that Normal Action Noise works just as well as OU noise [41].

The noise is modeled with a Gaussian distribution, as shown in Equation 2.27.

The variable µ is the mean and σ the standard deviation of the normal distribution.

n = N
(
µ, σ2

)
(2.27)



42

2.2.8.3 Adaptive Noise

Adaptive noise [42] uses a very different strategy to the previous types of noise.

Instead of affecting directly the action taken by the network, adaptive noise performs

slight variations in the network parameters. The changes in the network parameters

will directly affect the final actions of the network. This approach takes into account

the magnitude of the changes to the action caused by the network. In fact, it is

unreasonable to change all the network weights with the same noise and expect the

actions to vary linearly. For this reason, adaptive noise uses layer normalization,

which normalizes the mean and variance of the neurons within the same layer before

making updates. This helps to make sure that there is a similar distribution of the

layers sequentially positioned. Additionally, the authors also verify how each layer

affects the final action and limit their magnitudes in such a way that there is a

controlled variance.

The network generally becomes increasingly more sensible throughout the train-

ing. This is so as there might be a more stable set of weights to achieve complex tasks.

As discussed, adaptive noise checks the magnitude of the changes in the networks;

depending on changes, the noise can be scaled up or down to have a smoother explo-

ration. This is shown in the Equation 2.28. The variable σk is the noise applied in

the timestep k; d(π, π̃) < δ is the distance between the policies with (π̃) and without

(π) the noise; α is a scaling factor; δ is a threshold.

σk+1 =

 ασk, if d(π, π̃) < δ

1
α
σk, otherwise

(2.28)



43

2.3 Landing on a Moving Platform

The task of landing on a moving platform has many facets that render it a very

interesting problem. First, the interaction of the vehicle and the platform requires a

sophisticated model to take into account elements such as the ground-effect when the

vehicle is close to the platform [4, 5]. Moreover, external factors such as environmental

conditions, cargo, or even the friction between the vehicle and the platform increase

the complexity of this task [43].

In this work, we focus on evaluating domain randomization applied in robotics.

We have applied the system to perform a classic robotics problem: learning to land on

a moving platform. A significant amount of this work is based on [44] to deploy the

learning system. As far as we could research, their work was the first scientific report

describing reinforcement learning to learn a UAV on a moving platform from a policy

learned purely in simulation and deployed in the real-world. Our work differs in some

points, such as the action-space of the policies: the reinforcement learning policy

is trained to generate three-dimensional action space, while they fixed a descending

rate, which reduced the action space to two dimensions. The formulation of the

reinforcement learning training adopts different strategies, both in the reward function

as the action-space exploration function. A sequence of their work [7] includes visual

perception in the control loop. Additional work includes [45], that used least squares

to perform the landing only in a simulated environment, and [46] using DQN to

output directional actions (up, down, left, right, descend) for landing with visual

information. Other papers do not employ reinforcement learning but use neural

networks to perform the visual servoing for landing [47].

There has been work on developing models for landing without machine learning.

Some of these solutions include the use of optical flow fused with the vehicle’s IMU to



44

perform autonomous landing and hovering over the platform with close to zero relative

velocity [48]. In their work, a VTOL vehicle lands on a platform in rough seas, whose

movement is modelled as a sinusoidal wave. The control system is designed in a similar

fashion as [5]. Similarly, the work in [6] describe a system that performs landings using

visual servoing with a quadcopter. The work in [49] tackles helicopter landing on a

ship using tether that is attached between both vehicles, providing information about

the motion of the ship and an accurate state estimation of the relative position of the

helicopter.

2.4 Domain Adaptation

Domain Adaptation is the set of techniques that aim to succeed in transferring knowl-

edge acquired in a domain to another. The domain can be different due to different

reasons: perception, dynamics, classes. When a system is trained in a certain envi-

ronment, or dataset, it specializes in tackling problems in that distribution of data,

and when the system is tested in a different distribution, the algorithm might fail. For

instance, a neural-network might be trained to classify images with a “white dog”,

“not white dog” classes. If this model is tested on a situation of “dog”, “not dog” it

might be fail in most of the cases in which the dog is not white, even though there

is a high similarity between the two tasks. Domain adaptation techniques aim to

train models such that this gap between the performance of the two environments is

decreased.

Domain adaptation has been tackled in many ways. Perhaps the most intuitive

manner is to simply perform training in the target domain; however, this is not al-

ways possible due to system restrictions on safety, financial costs of operating the

real-system, or fragility. An interesting technique in domain adaptation is named



45

progressive nets [50]. This technique implements several neural networks for different

tasks, but in each training, instead of starting the weights from scratch, it sets a con-

nections in layer level with the previously trained networks to leverage the knowledge

previously acquired in other tasks. The work in [51] leveraged interactions with the

real world to make the simulation behavior more similar to the real counterparts, de-

creasing the reality gap. Meanwhile, [52] uses deep inverse dynamics to train a model

that bridges the gap between the policy’s intention and the execution. They train a

deep inverse dynamics that models the transition probabilities in the real-world sce-

nario. When the policy is given a state, it outputs the actions to be taken. Instead

of taking the action, the system replicates the scenario in simulation and observe

what is the transitioned state. The deep inverse dynamics then estimates what is the

action that has to be taken in the real-world that provides the maximum likelihood

to transition to the same state observed in simulation. This helps mitigating the gap

between the consequences of the actions that the policy chooses in simulation into

the real-world.

Although very promising, these techniques still require training in the real world

instances to be optimized. Next, we describe the two techniques that we analyze

throughout the experiments: domain randomization and universal policy with system

identification.

2.4.1 Domain Randomization

Domain randomization is an increasingly adopted technique to adapt reinforcement

learning policies acquired in simulations to perform successfully in the real world. The

main principle of the technique it to augment the training conditions of reinforcement

learning systems with a diversity of simulation parameters; thus, the system is able to

decrease the reality gap that real-systems might face when compared to the simulation



46

[53]. Domain adaptation borrows the principles of data augmentation in computer

vision applications, that is a commonly used alternative to increasing the classification

robustness [54]. In computer vision, the dataset is increased by performing copies of

the images with slight variations such as rotation, noise or scale. The increased

data then encourages the neural network to identify patterns for classification that

are invariant to the mentioned operations. In the same way, data augmentation

on reinforcement learning stimulates the system to find the optimal behavior with

variations of the parameters.

Domain randomization is generally implemented in two manners: perception and

dynamics. In perception, the issue arises when a vision based system learns visual

representations in simulation that are divergent to the real-world. This can be seen

in a regularization perspective: when a system maps visual clues to action, the fea-

tures that are learned during training might be presented only in simulation; some

of the features include colors, shapes, textures. When the system is deployed in real-

world, these features might dissimilar to the point of impeding the policy to behave

as expected. Examples of this include [55] which randomizes lighting, textures and

positions of objects in a low-fidelity simulator to learn a policy that is able to iden-

tify the objects shape. The authors in [56] trained a neural-network in a simulation

with a high variety of visual information such as textures, colors, and lightning to

perform collision avoidance with an unmanned aerial vehicle. The final setup was

able to succeed under challenging conditions such as flying through a staircase, nar-

row corridors and by moving objects. Using the same principles, [57] were able to

perform complex object manipulation, such as rolling a cube to a goal position, using

a robotic hand with a policy learned from a simulated environment. The manipu-

lation of such objects is extremely difficult and require extensive control experience

to design controllers using tactile sensors; being able to incorporate high dimensional



47

sensory information from cameras enables the system to take advantage of an efficient

feedback loop.

In dynamics, the simulation in which the reinforcement learning system is trained

might not be representative, or might not model of the idiosyncrasies of the real-

world scenario. That is, there might be physical phenomena that is not represented in

simulation, but that occur in the real robot. Moreover, the physical interaction might

be modelled, but with erroneous magnitudes. The work described in [58] utilizes a

neural-network structured with long short-term layers, a deep learning architecture

capable of recording information that is important for future analysis, to identify

a variety of parameters such as delay, noise, mass, friction for the task of using a

robotic arm to push a puck towards the desired position and successfully identify the

parameters of the real-world scenario. Moreover, [59] trained a policy for quadruped

robot gait using a variety of parameters such as motor friction, strength, and latency.

The result was similar in speed performance of state-of-art handicraft approaches, but

with the improvement in power consumption. The authors also conduct an ablation

study to prove that domain randomization is the deciding factor to fill the reality

gap between the simulation and the real world. Similarly, the work in [60] also

randomizes friction coefficient, but to train a robotic gripper to pivot objects into a

desired configuration by pushing it. Our work focuses more on the dynamics side,

but also considers extensions with perception in the future.

2.4.2 Universal policy with System Identification

Training a system identification module assisting a universal policy was described

in [11], in which a the universal policy (UP) is trained with a variation of parame-

ters in effect on simulation, and the varied parameter is included in the state-space;

later they describe the training of the universal policy, which in test time infers the



48

parameters and includes the estimation in the state-space, similar to training. We

adopt this strategy for our experiments and compare the results with pure domain

randomization. In a similar fashion, but with different architectures, the authors

in [61] instead of training the system identification with dense layers, use recurrent

neural networks to implicitly extract temporal context from the state/action rollout

capable of inferring the dynamic parameters. This assists the critic to identify more

meaningful assessment of the actors performance. However, due to the stability of

learning with dense layers, we kept the original work in [11].

System identification (sysID) allows the system to incorporate information about

the dynamics of the environment into its decision-making process. Adding wind

estimation, for instance, could result in an offset of the velocity to compensate for the

force that the wind exerts on the vehicle. As previously discussed, the variation of

the dynamic variables allows the generalization of the system in the range of values

used in training. However, simply generalizing to an arbitrary range may degrade

the performance as the range increases. With system identification, this scenario is

ameliorated with an intermediate step that is included: the parameter’s inference.

This setting enables the system to select the actions that are better suited for an

agent interacting with the inferred dynamics, rendering the actions more specialized

to the parameter set.

The intuition of this inference is that depending on the parameters used in simu-

lation, there will be different outcomes on actions taken even if the initial states are

identical. Therefore, the system identification module receives a history of sequential

states and actions to find patterns of the dynamics parameters into the rollout of

experiences. Once the system is trained, it would be fed with real-time state-action

pairs to identify the parameters in play on the system.



49

Chapter 3

Approach

In this work, we investigate the performance of DDPG with domain randomization, a

Universal Policy with System Identification, and a baseline trained with no parameter

variation. In this section, we give the details of our approach in implementing and

using these methods. We first trained a policy using DDPG [38] and domain random-

ization by only exposing the parameters to the policy, but omitting the parameter

value in the state-space. In addition, we trained a Universal Policy (UP) according

to the work described in [11], which not only exposes the policy to the variations in

the environment but also includes the parameter estimation in the state-space. This

approach also involves the implementation of system identification for the parameter

inference. We detail the design choices for each technique below.

3.1 DDPG

We adopted DDPG [38] due to its ability to handle continuous observations, out-

put continuous actions, and because DDPG uses model-free learning. In model-free

learning, the agent makes no assumptions about the environment with which it is

interacting. The dynamics of the environment are learned as part of the policy. This

is advantageous as the user does not need to determine the exact dynamic model



50

of the robot, nor dedicate an inference network for this task. Moreover, DDPG is

able to handle continuous spaces, as discussed in Section 2.2.7.1. This is a significant

advantage since it allows the policy to take precise actions compared to a discretized

action-space.

3.2 Domain Adaptation

We adopt system identification to estimate the model parameters used in the Univer-

sal Policy. The system identification module is trained in a supervised manner, so we

adopted the use of fully connected neural networks as it is described in [11] due to

its stability in learning and robustness. The objective of this module is to estimate

the parameters, given an array containing a recent history of actions and states.

θ∗ = argmin
θ

∑
(Hi,µi)⊆B

‖φθ (Hi)− µi‖
2 (3.1)

The objective of the system identification module is defined as the selection of

the set of weights θ that minimizes the error in the parameter prediction (Equation

3.1). The optimal weights for the neural network φ minimizes the squared difference

between the true parameter, µ, and the predicted parameters. The prediction is

performed by the neural network with the rollout of recent experiences, Hi. The

parameters and the rollout of experiences are stored in a memory buffer, B, that

is shuffled to improve stability during training. Shuffling the data, specially when

the buffer is large, allows the training to be unbiased to the neighboring regions and

provide a more robust inference.

The system identification module followed specific strategies depending on the

parameters in hand. The use of dense layers, although being efficient in inferring the

parameters, does not keep a historical context of previous inferences. This means that



51

the information given to the network has to be better selected as useful information

for inference. For this reason, we adapt the system identification module to collect

experiences rollouts only in relevant state transitions. To train the wind magnitude

inference system, every state transition is included in the memory buffer. The wind

may influence the motion of the vehicle throughout the episode, therefore the inference

of this parameter is active at every timestep. The experiments with a variation of

friction coefficient, on the other hand, only offer relevant information when the vehicle

and the platform bodies are colliding. Therefore, we train the system identification

module for friction coefficient inference by feeding only the experiences rollout after

the first contact between the two bodies; in contrast, the wind magnitude inference

is performed with experience rollout throughout the episode.

3.3 System Identification

With the simulation setup that is described in Section 4.1, we trained the system

identification module. We trained the system identification module with two hidden

layers of 128 neurons with ReLU activation function [24] between them and tanh

in the last layer due to its ability to handle negative outputs, which might be used

in some dynamic parameters. The ReLU activation functions were defined in the

hyperparameter search, and the tanh was adopted to normalize the output from

parameters that have negative values, such as wind magnitude.

Some design choices attempt to decrease the complexity of the model. The archi-

tecture that we adopted for this work is simpler compared to the one used in [11],

which uses three hidden layers to approximate the system identification. This design

choice attempts to generalize the model to the real-world instance. Similar to the

regularizers, using a simpler architecture forces the system to use less complex func-



52

tions to approximate the system identification function. Additionally, we dedicated

10% for the training data for validation. This would increase the chances that the

training data is generalizable to other simulated instances.

The sysID modules to predict wind and friction coefficient were trained in a dif-

ferent fashion. The estimation of parameters is performed by finding patterns in the

data that indicate how the parameter affects the interaction with the environment.

The inference is then is performed, as explained in the previous chapter, by collecting

rollouts of experiences with the environment. However, not all the interactions with

the environment may be influenced by the dynamics parameter, and including these

experiences would not contribute to the estimation of the parameter. Therefore, we

trained wind and friction in two different ways: experiences with wind would always

affect the state transitions since from the initial state of the UAV to the landing, wind

can affect the trajectory of the vehicle. For this reason, the rollout of every transition

is taken into account. On the other hand, the friction coefficient only alters the expe-

riences in which the vehicle is colliding with the moving platform. Since the vehicle

already has in its state-space the boolean indicating contact with the moving plat-

form, the experiences are only concatenated for friction prediction when the boolean

is true.

Experiences gathered by the UP were used to train the sysID module. We collected

the data to train the sysID from episodes of the trained UP interacting with the

environment. This ensures that the system identification module is specialized in the

states and actions that the policy generally takes. The first approach for this was to

create a simplified environment in which we could replicate the experiences that are

relevant to the parameter. In the friction coefficient module, it was randomly started

near the platform and also with random velocity. In this way, the system would be

able to predict the friction coefficient with the vehicle coming from different scenarios.



53

However, we realized that training the system using the universal policy would result

in an estimator that is trained in the scenario that it has to tackle, which could result

in a more robust sysID.

3.4 Reinforcement Learning

The reinforcement learning approach in our work has a state space with two key

elements. The first is the relative position and velocity, both in R3. This gives the

policy real-time feedback of the progress towards the landing. We use relative posi-

tions so that the controller is agnostic about the absolute position of the UAV and

the platform. Second, we add a binary variable that indicates if there is physical

contact between the platform and the vehicle. Adding this state allows the reinforce-

ment learning system to correlate a positive reward with landing on the platform.

The action space is defined as the three-dimensional target velocity. Finally, the

reward-function has three components:

reward =− α|at − at−1| (3.2)

− γ(ref 2
x + ref 2

y + ref 2
z ) (3.3)

+ β(η · (ref 2
x + ref 2

y ) + 1) + φ (3.4)

The first element of the reward function (Equation 3.2) is designed to avoid the

policy to create periodic movements. It is the magnitude of the difference between the

current action and the previous one, in which at is the action taken in timestep t. This

encourages the policy to take a smoother sequence of actions, which is more likely

that the real controller will be able to execute. The second element (Equation 3.3)



54

is a quadratic penalty of the relative position between the vehicle and the platform,

where refx, refy, refz are the variables containing the relative positions in the three

axes. This creates an incentive for fast conversion for landing. The third element

(Equation 3.4), lastly, creates an incentive for the policy to land the vehicle in the

center of the platform. It is a quadratic function that returns the maximum reward

when the vehicle lands exactly on the center of the platform. As the simulation does

not terminate upon landing, the policy will continuously receive a positive reward

inversely proportional to the squared distance between the vehicle and the center of

the platform. The variables α, β, γ, η and φ are scalars that were defined heuristically;

the adopted values are shown in Table 4.3.

The learning parameters were defined by performing hyper-parameter search on

the simulation described in Section 4.1. The policies were trained using DDPG,

in which the actor and the critic were defined as multilayer perceptrons with two

fully connected layers of 200 and 100 neurons each. The action space exploration

was defined with normal action noise. Additionally, the policies were trained with a

batch-size of size 128 trained for 3 · 106 timesteps.



55

1) 2)

3) 4)

5) 6)

7) 8)

Figure 3.1: Sequence of eight frames showing the UAV landing on the moving platform
in the simulated environment.



56

Chapter 4

Simulation and Experimental Setup

This chapter explains how we structured the experiments to verify the efficiency of the

policies both in simulation as well as their ability to adapt to real world experiments.

We start by discussing the results of the hyper-parameter search and our final design

choices, then we proceed by providing details of how the training was performed;

we talk about the experiments that were conducted in simulation; subsequently, we

discuss how the real experiments were set up and structured. Lastly, there is a short

discussion of previous simulation setups that were discarded and evolved into the

current setting.

4.1 Training and Simulation Setup

In this section, we provide finer details of how the simulation was structured in order

to both train and perform the experiments of the reinforcement learning policies.

4.1.1 Hyper-parameter Search

The hyper-parameter search is the process of selecting the best parameters of the

learning system. It consists of the experimentation of different values to heuristically

define the best set of parameters for the system. Producing robust deep neural net-



57

Table 4.1: Hyper-parameter search in DDPG

Parameter Values
Batch-size [32, 64, 128]
Actor LR [1e-5, 1e-4, 1e-3]
Critic LR [1e-2, 1e-3, 1e-4]
Activation function [ReLU, tanh, Leaky ReLU ]
Batch normalization [True, False]
Exploration [normal, decaying, OU, adaptive]
σ1 [ 0.1, 0.2, 0.3, 0.5 ]
σ2 [ 0.3, 0.5, 0.8 ]
ε [0.99, 0.999, 0.9999]

work systems is highly dependent on the hyper-parameter set. Moreover, these param-

eters are highly dependent on the architecture of the network; the hyper-parameters

used in a small network does not transfer well for a more complex network, even

if both are trained on the same dataset [62]. Therefore, we produced a systematic

hyper-parameter search to make sure that we have good parameters to compare the

techniques and to perform experiments successfully. The hyper-parameter search was

performed by analyzing two main design choices for the networks: the architecture

for the system identification module and the actor-critic architecture.

The first hyper-parameter search was dedicated to finding an efficient parameter

set for the UP and the domain randomization policy. We decided that each combi-

nation of parameters would be executed multiple times. Due to the stochastic nature

of reinforcement learning, some runs may have a better result than others. Perform-

ing multiple experiments was essential to ensure that the performance of the policies

were caused by the parameters and not by chance. We present Table 4.1 with some

of the combinations that were used in the search for an effective policy. The row

σ1 is only varied when the exploration technique being executed is the normal noise;

similarly, σ2 executed with decaying noise, and ε with OU noise. A crucial factor for

achieving the results was the exploration method. As previously explained, DDPG



58

takes deterministic actions when inserted with a state. In this way, the noise is gener-

ally applied in the final actions taken from the architecture. Therefore, as discussed

in the second chapter, we perform the hyper-parameter search in three exploration

methods: Ornstein Uhlenbeck process, normal action noise, and adaptive noise. We

did not change the original settings for adaptive parameter noise since we adopted a

small sigma value (0.1) according to the original paper description for a dense envi-

ronment (frequent rewards) [42]. These combinations were not all trained with the

same number of repetitions. The number of repetitions would vary according to the

tests of reward functions; when evaluating a new element in the reward function, a

small number of experiment would be run with to find an efficient set of coefficients

(around 10 repetitions per configuration). As the reward function becomes more sta-

ble, we increased the number of experiments with less combinations (around 50 per

configuration).

In system identification, we perform the search of hyper-parameters, as well as the

method of data capture. When developing the system identification module, there

were many choices to make to maximize the quality of the estimations in each pa-

rameter. First, as it was discussed in Section 3, the two dynamics parameters were

dealt differently in the learning systems. In experiments with wind, the experiences

were being constantly used for the wind estimation, while in friction coefficient, only

when the vehicle is in contact with the moving platform. Part of the search was to

evaluate what was the reasonable length of the buffer with the experience rollout that

would feed the neural network. We trained the system identification module with the

hyper-parameters shown in Table 4.1.1 for an experience buffer of 10, 20, and 30 expe-

riences. The buffer contains sequential experiences in the form et = (st, at) recording

the states and actions in each timestep t. The batch-normalization row indicates the

addition of a batch-normalization layer that could potentially stabilize the training



59

Table 4.2: Hyper-parameter search for system identification

Parameter Values

Batch-size [64, 128]
Hidden layers [2, 3, 4]
Batch-normalization [True, False]
Neurons per layer [64, 128]
Activation function [relu, tanh]

and cause faster convergence. The other parameters were trained in order to find the

best set with minimal complexity so that the sysID is more generalizable and faster

to run in real-time since this architecture is also used in real world experiences.

4.1.2 Simulated Environment

We implemented the simulated environment employing Pybullet, a Python interface

for Bullet physics simulator [63]. The collision model of the platform and the UAV are

simplified as prismatic objects instead of creating mesh molding the UAV’s shape in

order to speed up the simulation while still keeping realistic results in the interaction

of the objects. The collision model of the platform and the UAV are defined as

prismatic objects in order to speed up the simulation while keeping realistic results in

the interaction of the objects. The visual representation of the UAV and the platform

is shown in Figure 4.1. With this setting, we can process an average of 1225 steps

per second using a Macbook equipped with an Intel Core i7-3635QM CPU, 2.40GHz.

The UAV uses a velocity controller with bounded accelerations, according to Table

4.3.

4.1.3 Experimental Setup

In order to verify how the policies manage the dynamic variations, two dynamic vari-

ables are varied throughout the episodes: 1) the coefficient of friction between the



60

Figure 4.1: UAV and moving platform visual representation in Pybullet physics sim-
ulator. The platform has one degree of freedom to move along the y-axis through a
prismatic joint.

UAV and the platform and 2) the average wind magnitude. Changes in these pa-

rameters require different actions from the policies to succeed. The episodes with

wind variation can act reactively and adjust according to the disturbance; however,

the friction coefficient requires previous planning from the policy, as there is no error

recovery once the vehicle is colliding with the platform. The simulation of the fric-

tion coefficient is set by changing the dynamics of the simulation, as it is provided as

a parameter for the simulation. The wind was modeled as an external force whose

magnitude is sampled at every timestep from a Gaussian distribution to include ad-

ditional noise. The mean is provided in the experiments, and is the value that the

SysID module predicts. Modeling wind as a Gaussian distribution allows the inser-

tion of noise in the data, which turns the system more likely to train a policy that is

generalizable to real world scenarios. The system is integrated using OpenAI Gym,

a framework that interfaces the simulation and the reinforcement learning agents,



61

Table 4.3: Simulation Parameters used in the experiments. The majority of the
parameters were empirically defined.

Parameter Value

Max RL steps 300
initial UAV height 3m
Simulation frequency 100hz
Policy frequency 10hz
Platform dimensions [0.8, 0.8, 0.2] m
UAV dimensions [0.4, 0.4, 0.3] m
Maximum velocity 1m/s
Max MP velocity 0.2m/s
Maximum acceleration 2.5 m/s2

Friction Coefficient range [0.025, 0.2]
Wind Magnitude range [0, 1]
Motors off height 0.45 m
α 2
β 0.22
γ 7.0
φ 0.25
η −3.07

enabling the use of reinforcement learning libraries such as OpenAI Baselines.

In the simulation, we adopted a similar setting as the training of the policies. Each

episode starts with the UAV positioned in random x and y coordinates, and a fixed

height, according to Table 4.3. This helps to decrease possible bias from the policies

in performing under specific portions of the state-space. The velocity of the platform

is kept constant and switches directions whenever it reaches a position threshold.

The policies have a maximum time of 30 seconds to attempt the landing before a

timeout. An example of successful landing in simulation is depicted in 8 frames in

Figure 3.1. Table 4.3 also provides additional parameters used in the simulation that

were defined empirically or selected to replicate the expected conditions of the real

world experiments.



62

4.2 Simulation Structure

We compare the performance of domain randomization, UP+SysID, and the baseline.

The baseline consists of a model that is trained with no variation of parameters, in

which all the episodes have no wind, and the friction coefficient is 0.2. To investigate

whether the methods are capable of generalizing to other variations of dynamics,

we analyze two experiments with two parameters, one randomizing the coefficient of

friction between the UAV and the platform and another randomizing the magnitude

of wind. These parameters display changes in dynamics that are representative of

other applications, such as action delay, air density, or coefficient of restitution. As it

was previously stated, the friction coefficient requires more anticipated planning from

the policy, while the variation of wind allows a more reactive strategy. Many other

parameters affect the dynamics in a similar fashion; air density, for instance, can

be instantaneously dealt as a damping force [64], while the coefficient of restitution

requires previous planning since the energy after a collision might be irrecoverable.

4.2.1 First Experiment

In the first experiment, we evaluate how the system is able to perform under periodic

variations of parameters. The parameters are randomly sampled on intervals of five

episodes. This range allows a fair comparison among the policies, as the UP+SysID

policy has no prior knowledge of the parameters in the first episode after the parameter

is modified. This experiment verifies how the policies would perform in case the

parameters are unknown at first interaction. The metrics for this experiment consist

of the number of successful landings, the number of times that the policy attempts

landing and fails, the number of timeouts, and the average number of seconds before

the first physical contact between the vehicle and the platform. The timeout is the



63

number of times that the maximum number of simulation steps was reached and

there was no contact between the UAV and the platform. This measure indicates

how frequently the policy is hesitant to land or fails to approximate the platform.

The average time to land indicates whether the policy is leveraging the information

of the dynamic variables to perform the landing faster.

4.2.2 Second Experiment

The second experiment verifies the biases of the parameter values on the policies’

performance. Instead of randomly sampling the variables, it iterates fifty intervals in

the parameter range and evaluates the performance within 25 episodes. The range

used for friction coefficient was from 0.025 to 0.2, and for wind from 0 to 1; both

values are within the range that the policies were trained on. The time to land and

the success rate is evaluated in the second experiment. The UP+SysID policy is not

employed in this experiment as it is upper bounded by the UP with real parameters,

and its results on the experiment can be confounding with the results of the SysID

estimation.

Certain behaviors are expected in the experiments with wind and friction coeffi-

cient. In wind variation, a successful setting is to accelerate or decelerate depending

on the position of the platform and the direction of the wind. In order to land safely,

the policy has to leverage or fight against the wind disturbance, as the wind can be

in favor or against the movement towards the platform. In experiments with friction

coefficient, when the coefficient is small, the policy has to approach the platform ei-

ther near to the edge, so it has enough space to slide on the surface to reduce kinetic

energy or land with small relative velocity on the x and y axes. The latter is a safer

manner to achieve the task, while the former is faster since it does not require the

vehicle to decelerate to complete the task.



64

Figure 4.2: Diagram depicting the approach of the real-worl experiments. The vicon
motion capture system collects the state information of both the UAV as the moving
platform, which is used as input fot the reinforcement learning policy. The ouput of
the policy is a target velocity wich is input to the LQR controller, along with the state
information from vicon. The LQR controller, in turn, sends the values of roll, pitch
and yaw to the Pixhawk autopilot that controls the vehicle. The moving platform, in
similar fashion, receives commands from the central computer according to its state
that is estimated by the motion capture system.

4.3 Real World Experiment Setup

After the simulation analysis, we performed experiments to evaluate the performance

of the policies when transferred to the real world domain.

We chose real systems that behave similarly to the simulated environment. The

UAV utilized for the experiments was a DJI Flame Wheel F450 with a Pixhawk

autopilot (Figure 4.3). The moving platform is built with an adapted Roomba vacuum

equipped with a landing platform on its top (Figure 1.1). The state of the system was

provided by a Vicon motion capture system, which is transformed into the necessary

relative positions and velocities. The target velocities provided by the policies are

provided to an LQR controller [65] that translates it into attitude commands for the

autopilot. Figure 4.2 shows a diagram depicting the setup employed in the real-world

experiments. The external disturbance, the wind, is produced by a fan positioned at



65

Figure 4.3: UAV employed in the experiments.

one extremity of the space, producing winds as strong as 4 m/s. The fan, displayed

in the left part of Figure 5.1, was static and positioned along the x-axis.

4.4 Experiment Structure

The experiment was divided into four categories: each is a different task combination

of the elements in the environment. The first setting consisted of the platform posi-

tioned centered and still. This evaluates whether the policy is able to transfer from

the simulation to the real world and adapted to an environment in which the vehi-

cle is not in constant motion. The second setting consists of having the platform in

movement, but no external disturbance. This is the equivalent environment in which

the baseline is trained in the simulation. In the third setting, the platform is still, but

there is a presence of wind; lastly, the fourth setting, the platform is in motion, and



66

there is wind. In this way, it is possible to isolate the elements that could possibly

cause the system to fail.

These design choices avoid ambiguity in the results. The experiment in each

combination is executed twice, in which the vehicle is initialized in six positions,

according to Figure 5.1. These positions are chosen such that they test whether there

is a poorly trained state that causes unexpected behavior and how the wind affects

the experiment. An example is that one of the points is directly in front of the fan,

and another one on the opposite side, forcing the vehicle to go for and against the

wind. For the sake of avoiding confounding variables in the experiment results, a fully

charged battery is used at the beginning of each of the runs.

4.5 Alternative Simulation Setups

We adopt Pybullet as the platform for the simulated environment. Pybullet is a

Python wrapper for Bullet Physics SDK, written in C++. Bullet is the physics

engine for renowned software such as Maia, Blender, and Cinema 4D. Pybullet is also

very efficient and has been used in the simulation of many complex robotic systems to

perform reinforcement learning tasks, such as Robotic grippers [66], quadruped robots

[59], humanoids [67] and even robotic hands playing ping-pong [68]. A realistic physics

simulator increases the chances of transferring the policy to the real-word [69, 70].

The closer the simulation dynamics is to the real world, the more prepared the policy

will be in the dynamic interactions with the real world. However, the models are

generally not identical and still require additional strategies to bridge the gap [69].

Before developing the Pybullet environment, we attempted other approaches. The

first version of the simulation consisted of a Simulink simulation with an LQR con-

troller. LQR controllers are highly adopted as they are guaranteed to operate opti-



67

mally. We initially attempted to use a Simulink implementation from NIMBUS lab

that includes the model of a quadcopter with LQR controller. To be able to perform

communication with the simulation we interconnected the Simulink simulation with

the Python reinforcement learning modules using ROS and OpenAi Gym. Addi-

tionally, this system was trained in the university’s cluster inside a Docker container

since some of the modules in the stack were not natively supported in the cluster

environment. The environment was successfully implemented, but it resulted in a

slow system. This setting was not sufficient to train a reinforcement learning system

in feasible time.

The second version of the simulation was implemented using a PID controller. PID

controllers are frequently used in Unmanned Aerial Vehicles due to the simplicity of

implementation. However, tunning the parameters to produce a good controller is not

an easy task and is generally performed heuristically. This is so as PID controllers

instead of modeling the system dynamics, generates the actions according to the

error of the system state and the target state. There are many different several

formal techniques to attempt shortening the tunning-process [71], but they are not

guaranteed to succeed. We have tried tunning the PID controllers with a formal

method described in [71], but with no success. Not only we tried the formal methods,

but also followed instructions from an experienced Professor in the matter to no avail.

After the unsuccessful attempt with PID controllers, we decided to adopt a more

straightforward implementation in simulation and shape the reinforcement learning

reward system to prepare the policy to transfer well to the controller used in the real

robot.



68

Chapter 5

Results

In order to define the performance of different strategies in training the policy, we

adopted two methods of evaluation: the simulations and real-world experiments. We

first report the results of simulated environments with friction and wind variation,

then discuss the results of the real-world experiments.

Figure 5.1: Experimental setup of the real-world experiments. The yellow stars mark
the six initial positions that are initialized twice during an experiment. At the left of
the image is the fan used to generate the disturbance; bottom-right shows the UAV
used in the landings and, at the center, the Roomba robot with the moving platform.



69

5.1 Hyper-parameter Search

We performed the hyper-parameter search according to the description in the last

chapter and defined the architectures accordingly. Here we provide insight into our

findings and some of our intuition behind it. We start by talking about the reinforce-

ment learning architecture, then discuss the system identification module.

5.1.1 Reinforcement Learning

Performing the search for reinforcement learning was a complex task. Having the

wrong set of parameters could dampen or even impede the convergence of the sys-

tem, as it happened in many configurations. As we were analyzing the results, some

configuration showed better results, but with fewer policies reaching convergence.

This could be a result of the stochasticity of the initial weights of the network and

the exploration function, so we kept the best reward as the criteria for the parameter

search. The hyper-parameter search involved a very high use of computational re-

sources, so we could not increase the number of experiments to eliminate this question

of convergence. Next, we talk about some of the interesting results from the search.

The best type of noise in our experiments was, surprisingly, the normal noise.

This may be associated with the manner that the rewards are distributed in the

system and the type of actuation. As previously discussed, OU noise is generally

employed due to the fact that the error is correlated, and has a more significant

influence in environments whose final behavior is two derivatives away (e.g., forces

and position). In our case, the action space is the relative position and velocity, which

are translated into different positions in only one derivative; therefore, the changes in

the action space will be reflected more rapidly in the system’s behavior. Moreover,

we had the intuition that the adaptive parameter noise would generate better results,



70

but it was not the case. One possible reason is that the network is highly sensitive to

perturbations in the parameter set, which causes the system to underperform. This

is similar to what was reported for the inverted pendulum task in the original paper

[42]. Another cause could be that we should have analyzed different parameters of

sigma, that we avoided due to the already high number of parameter combinations.

Decaying gaussian also performed well, but not as well as pure Gaussian noise, so we

preferred to keep Gaussian noise due to its performance and algorithmic simplicity.

A significant part of this project was allocated for reward shaping. The first trial

was using the values specified in Rodriguez et al. [7]. This did not produce satisfying

results, maybe because we are attempting three-dimensional action space, and the

paper uses a two-dimensional one. Different combinations of elements of their reward

function also did not produce good results. This could be due to the addition of the

third velocity in control, but could also be affected by the difference in simulations.

From this point on, we started incorporating different elements according to the

behavior that was observed in simulation.

The coefficients of the positive reward and the negative reward (λ and β in Equa-

tions 3.2 and 3.4, respectively) of the squared relative position also greatly affects the

behavior of the system. We observe specific behaviors according to the magnitude

of these coefficients. If the negative reward is too high, then the system might avoid

performing additional strategies beyond approaching the platform, such as finding

immediate episode termination by plummeting into the ground. The first attempt to

solve this problem was to include a negative reward every time the vehicle reaches

the floor. However, this caused another problem: it discourages the vehicle to land,

since landings might fail, causing the vehicle to fall. This resulted in policies that

approach the platform, and instead of landing, it hovers over it. The solution was to

find a suitable value for λ that stabilizes the system.



71

A very high positive reward when the vehicle is in contact with the platform

disregards the path of the vehicle until it reaches the platform. The agent attempts

to interact in the environment, maximizing the reward function. This is started with

random actions and adjusting them in a way that the expected reward increases.

When the positive reward is too high, the negative reward from the path would be

minor compared to the treasure that it is to arrive on the platform. This resulted in

clumsy policies that would oscillate considerably and take non-optimal paths to the

platform since it would not attempt to correct the path as it does not affect much the

overall accumulated reward. A partial solution for this was simply to find a suitable

value of β and λ that encourages landing in the center spot, but also encourages the

system to optimize the path to the platform.

Even after the coefficients were defined, the vehicle would oscillate (shaking) when

going towards the platform. To solve this, we decided to include another element in

the rewards function: a negative reward proportional to the derivative of the actions.

The benefit of this addition was twofold, the oscillation of the vehicle would be gone,

but also the policy would be more likely to be transferable to a real vehicle. Previously,

the vehicle could do more sharp changes in the velocity, which would only be limited by

the acceleration cap in the simulation. Including this element in the reward function

turned the selected actions much smoother, which are more likely to be executed by

the LQR controller in the real vehicle.

The combination of finding the right set of hyper-parameters and the right reward

function renders this problem quite challenging. This is associated with the fact that

reinforcement learning systems have to interact with the environment as it learns,

different to supervised learning techniques that collect the data only once, but also

because the hyper-parameters in one reward function would not necessarily work well

in another. On top of that, multiple runs with the same parameters had to executed



72

due to the previously mentioned stochasticity of reinforcement learning systems. A

single run, which trains the policy over multiple episodes totaling 3× 106 timesteps,

would last for about eight hours, so using parallel executions on HCC clusters was

essential for this work. Despite these challenges, we were able to find the right ele-

ments and coefficients in the reward function, after several days of experimentation,

to perform the reinforcement learning training with success. It is worth noting we ran

experiments according to the observed behavior and intuitive tradeoffs as discussed,

so a future extension of this work could perform a methodical search for optimization

of these parameters to maximize the performance of the policies.

5.1.2 System Identification

After analyzing the results of the hyper-parameter search, we decided on the architec-

ture for the system identification module. In this search, we were prioritizing simpler

networks in order to have better chances to use this module in the real-world. In our

experimentation, ReLU had superior performance than tanh as an activation func-

tion. This is generally the case in many applications since ReLU does not saturate

the gradients, which can accelerate learning [72].

The results of the architectures were similar, so we adopted the simpler one. This

held true both for wind and friction coefficient; moreover, we used the same architec-

ture for both. The final architecture consists of two hidden layers with 64 neurons

each and interleaved with batch normalization layers. The system is trained with

an Adam optimizer minimizing the squared error of the estimations. An example

of the training of the system identification training is shown in Figure 5.2; the opti-

mizer quickly decreases the loss and stabilizes, when the training is halted to avoid

overfitting.



73

Figure 5.2: Loss of supervised learning for wind estimation

5.2 Simulation

5.2.1 Friction Coefficient

Table 5.1: Performance of the policies with varied friction coefficient. In an interval
of five episodes, a new friction coefficient is sampled.

Baseline
Domain

randomization
UP +

True Params
UP + SysID

Success 127 375 352 360
Falls 373 125 137 130
Timeouts 0 0 11 10
Avg. landing time 2.60 5.32 3.40 3.58

The first experiment examines how the policies adapt to successive episodes of

friction coefficients. Table 5.1 shows how the policies compare on a high level. Falls

is the number of times that the policy failed in landing and fell on the ground;

Timeout is when the maximum number of steps was reached and the vehicle did



74

Figure 5.3: Percentage of successful landings given the friction coefficient between
the vehicle and the platform. A smaller friction coefficient means that the vehicle
will slide on the platform if it lands with a non-zero velocity vector along to the
surface of the platform. The blue line represents the baseline, green is the domain
randomization policy and orange represents the UP with true parameters.

not attempt landing; Landing time is the average time in seconds that the vehicle

takes for the first physical contact with the platform. The domain randomization

policy has the best success rate, but also the lowest average landing time. UP in

both scenarios outperform the baseline. In this test, the Universal Policy with SysID

slightly outperformed UP with true parameters, but the difference is not statistically

significant.

Many observations that can be drawn from this result. First, domain random-

ization outperforms both UP policies but with a much higher average time. This

may be an indication that the domain randomization learned a more careful policy

that is conservative across all the friction coefficient values. On the other hand, the

UP policies have a shorter landing time as they might approach the moving platform

according to the observed friction coefficient. That is, landing faster when the friction



75

coefficient is high and takes a longer time when it is low since that landing would have

to be approached in low x and y velocities to avoid sliding off the platform. Second,

UP policies are the only techniques that have timeouts. This may be caused in very

low friction coefficients, where the confidence of the policy to perform the landing is

very low, and the system would have a better overall reward by just hovering on the

top of the platform.

The second experiment investigates whether there is a range of parameters in

which the policies could be biased. The results are shown in Figures 5.3 and 5.4.

The policies perform poorly when the friction coefficient is closer to zero, as it is

expected (Figure 5.3). Both the domain randomization as the UP policies have a

steep increase in performance, reaching a plateau in 0.1. This would suggest that the

strategies used in both policies are similar; however, Figure 5.4 shows how the time

to land is decreasing with the increase of friction coefficient when UP is adopted.

This would suggest that the policy is using the friction coefficient to measure how

aggressively it is able to land on the platform while keeping a high success rate.

This could be further verified by performing experiments observing the path that the

vehicle executes to approach the platform; if the UP takes paths closer to a straight

line as the friction coefficient increases, our analysis is further ratified. Although it

is able to decrease significantly the average time to land, its success rate is almost

always higher bounded by the domain randomization policy. Another interesting

phenomena is the sudden increase of landing time close to friction coefficient 0.1.

We believe that this could be caused by a bias during training, that favoured other

coefficients. An approach to prevent this bias in future work could be consistent of

training that is only halted when the performance of the agent is consistent across

the parameter range. A first attempt can be consisted of simply verifying from time

to time the performance across the spectrum of parameter and present more episodes



76

Figure 5.4: Landing time between the beginning of the policy and the first physical
contact between the platform and the vehicle. The blue line represents the baseline,
green is the domain randomization policy and orange represents the UP with true
parameters.

of the parameters with poor performance.

5.2.2 Wind

Table 5.2: Performance of the policies with varied wind magnitude. In an interval of
five episodes, a new wind magnitude is sampled.

Baseline
Domain

randomization
UP +

True Params
UP + SysID

Success 319 465 426 399
Falls 181 34 56 101
Timeouts 0 1 18 0
Avg. landing time 2.24 3.6 4.6 10.9

The results of the first experiment are shown in Table 5.2. It shows that the pure

domain randomization policy, as well as the Universal policy, are able to outperform

the baseline. However, the policy with pure domain randomization is more accurate

than the Universal Policy as it succeeds in 93% of the trials compared to 85% from



77

UP. This might be related again to the complexity of adding one more element in the

state-space since all the policies were trained with the same number of timesteps, and

spaces with higher dimensions may need significantly more sampling. Additionally, it

might be necessary to perform a hyper-parameter search only for each of the policy

type, instead of using a single hyper-parameter set. Observing the UP polices, the

replacement of the True params to the SysID module does not affect the performance

significantly on the simulation, only circa five percentage points. This means that,

first, the policy is indeed using the information from the dynamic parameter to ponder

the selection of the next action, and second, the sysID module is doing a good job of

predicting the wind module.

The gap of the performance of the UP + real and UP + SysID indicates that

the system identification module is not overfitted to this environment, as the model

would be very close to the real values and result in extremely similar performances.

A counter-argument would be that the final policy is very sensible to the variations

of parameters, which could be the case, and we intend to analyze these possibilities

in future work by performing ablation studies of the influence of the sysID perfomanc

in the UP performance.

The second experiment allows a closer analysis of the parameter’s influence in the

policies’ performances. Similar to the friction experiments, twenty-five experiments

are run in an interval of normalized wind magnitudes. The results are shown in

Figures 5.5 and 5.6. Figure 5.5 shows how the policies keep their performances rela-

tively constant througout the experiment. However, Figure 5.6 shows an interesting

phenomena with the domain randomization and the UP: the domain randomization

policy starts off with better performance, but as the time progresses, the universal

policy is able to perform the task faster; finally, at point 0.5 of wind magnitude, the

UP is consistently faster than the domain randomization policy. We believe that at



78

Table 5.3: Results of the real-world experiments. Each cell correspond to the per-
centage of successful landings in a combination of policy and setting with 12 trials.

Baseline
Domain

randomization
Universal Policy +
SysID estimation

Still 91.67% 100% 100%
Moving 100% 100% 83.33%
Still + Wind 75% 100% 100%
Moving + Wind 75% 100% 83.33%

this point having information of the wind magnitude becomes more relevant and gives

an advantage for the policies that account for it to arrive to the platform. Therefore,

the universal policy makes use of this information to complete the landing faster. We

believe that the value in which the policies cross in the chart could shift to the right

in case the UAV is more aggressive in acceleration. This is so as the knowledge of the

wind becomes less important when the controller can change its velocity more rapidly.

In the same manner, if the maximum acceleration is smaller, the point of crossing

would shift to the left. This phenomena could be further verified with an experiment

that verifies a third dimension of this chart: maximum acceleration. This can be

performed by performing this same experiment in a range of maximum accelerations.

5.3 Real-world

The results of the real-world experiments are shown in Table 5.3. All the policies are

able to perform landing on the still platform, successfully transferring the knowledge

from the simulation to the real world. As the complexity progresses, only the policy

with domain randomization is capable of finishing the task with 100% of success.

The UP+SysID policy is able to perform well with the presence of wind, but has

its performance diminished with the movement of the platform. The baseline, in

accordance with the simulations, is able to perform well in cases without the external



79

disturbance, but has its performance decreased with the addition of wind. This

indicates that the policies trained with wind simulation indeed generate policies that

are robust in the real-world. The UP+SysID policy had decreased performance in

the last scenario with wind; this could be caused by a mismatch on how the wind is

modeled in the simulation and how it actually affects the controller in the real world.

Such difference can result in low accuracy of the SysID, which in turn depletes the UP

performance. Therefore, from this experiment suggests that domain randomization

is a safer technique to improve robustness of the policy to disturbances as it does not

depend on a model accuracy to infer the dynamics.

Visually, the UP policy seems to be more stable. Observing the path that the

policies take until landing, the UP is visually the most stable one, since the domain

randomization policy despite being the best one in landing, does not always have

a smooth trajectory. Maybe the instability of UP policies are associated with the

system identification imprecision in the real-world. The system identification could

be failing in modelling phenomena such as the ground-effect when the vehicle is closer

to the platform. This can be verified with a future experiment by performing wind

readings in selected points of the environments and compare with the sysID results.



80

Figure 5.5: Percentage of successful landings given a average wind magnitude. The
wind is sampled at every timestep from a Gaussian distribution whose mean is the
value in the x-axis of the figure. The blue line represents the baseline, green is the
domain randomization policy and orange represents the UP with true parameters.

Figure 5.6: Landing time between the beginning of the policy and the first physical
contact between the platform and the vehicle. The blue line represents the baseline,
green is the domain randomization policy and orange represents the UP with true
parameters.



81

Chapter 6

Conclusion

This work presents three contributions: first, a reinforcement learning system capable

of control an Unmanned Aerial Vehicle to automatically land on a moving platform.

We ran simulated and real-world experiments to confirm the efficiency of the learning

set up. The system is able to perform the task with and without the presence of wind.

In order to be able to make the policy robust, we investigate strategies of previous

works.

Second, we train the policy in a fast simulated environment. We describe our

training using Pybullet, a python wrapper of bullet physics simulator. We describe

how we speed up our simulations by simplifying the simulated environment and shap-

ing the reward function to increase the chances of transferring to the real-world.

Third, this thesis also investigates two strategies of training and transferring poli-

cies learned in simulation to disturbed environments: domain randomization and

Universal Policy with System Identification (UP+SysID). We have conducted experi-

ments both in a simulated environment as well as in a real-world scenario to compare

these two techniques against a baseline. The experiments lead to the indication that

domain randomization, which exposes the policies to the different varieties of environ-

ments in simulation, produces a more effective policy than including the parameters

in the state-space, which increases the dimensionality of the observations. We discuss



82

how our UP+SysID implementation could be losing performance in estimating pa-

rameters in the real-world. On the other hand, using UP+SysID resulted in policies

that make use of the information of the parameters to perform the tasks generally

faster.

Future work includes the implementation and analysis of techniques of system

identification to improve the quality of the estimation in the real and a systematic

study of how the accuracy of SysID affects the performance of Universal Policies.

There are many ways that this work can be extended. First, the system identification

module can be extended to receive training with real-world data. It is unclear what

was the performance of the SysID module in our real-world experiments, so if it is

performing poorly, there is the chance that this policy could be highly efficacious with

a proper estimation.

Another line of study would be to train more than one dynamics parameter at a

time. When multiple parameters are adopted, there might be a relationship between

them. Some papers, such as [73], incorporate the parameters in a latent space, which

could define their internal dependencies and their relevance for the task. Another

option would be to train the SysID with a methodology similar to physics informed

neural networks [74, 75], which incorporates previously defined physics constraints in

the prediction of the target value.



83

Bibliography

[1] Imad A Basheer and Maha Hajmeer. Artificial neural networks: fundamentals,

computing, design, and application. Journal of microbiological methods, 43(1):3–

31, 2000.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[4] Kevin Ling, Derek Chow, Arun Das, and Steven L Waslander. Autonomous

maritime landings for low-cost vtol aerial vehicles. In 2014 Canadian Conference

on Computer and Robot Vision, pages 32–39. IEEE, 2014.

[5] Lorenzo Marconi, Alberto Isidori, and Andrea Serrani. Autonomous vertical

landing on an oscillating platform: an internal-model based approach. Automat-

ica, 38(1):21–32, 2002.

[6] Daewon Lee, Tyler Ryan, and H Jin Kim. Autonomous landing of a vtol uav on a

moving platform using image-based visual servoing. In 2012 IEEE international

conference on robotics and automation, pages 971–976. IEEE, 2012.

[7] Alejandro Rodriguez-Ramos, Carlos Sampedro, Hriday Bavle, Paloma

De La Puente, and Pascual Campoy. A deep reinforcement learning strategy



84

for uav autonomous landing on a moving platform. Journal of Intelligent &

Robotic Systems, 93(1-2):351–366, 2019.

[8] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,

2004.

[9] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

[10] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a

typology of computational approaches. Frontiers in neurorobotics, 1:6, 2009.

[11] Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown:

Learning a universal policy with online system identification. arXiv preprint

arXiv:1702.02453, 2017.

[12] Jingru Luo and Kris Hauser. Robust trajectory optimization under frictional

contact with iterative learning. Autonomous Robots, 41(6):1447–1461, 2017.

[13] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo

Farfel, Renata EL Ferretti, Renata EP Leite, Wilson Jacob Filho, Roberto Lent,

and Suzana Herculano-Houzel. Equal numbers of neuronal and nonneuronal

cells make the human brain an isometrically scaled-up primate brain. Journal of

Comparative Neurology, 513(5):532–541, 2009.

[14] HB Barlow. Temporal and spatial summation in human vision at different back-

ground intensities. The Journal of physiology, 141(2):337–350, 1958.

[15] Marina A Lynch. Long-term potentiation and memory. Physiological reviews,

84(1):87–136, 2004.



85

[16] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning

representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[19] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for

machine learning lecture 6a overview of mini-batch gradient descent. Cited on,

14:8, 2012.

[20] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational in-

variance. In Proceedings of the twenty-first international conference on Machine

learning, page 78. ACM, 2004.

[21] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the

trade, pages 55–69. Springer, 1998.

[22] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation functions: Comparison of trends in practice and research for deep

learning. arXiv preprint arXiv:1811.03378, 2018.

[23] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of

Sciences, Etvs Lornd University, Hungary, 24:48, 2001.

[24] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on

International Conference on Machine Learning, ICML’10, pages 807–814, USA,

2010. Omnipress.



86

[25] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010.

[26] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[27] Twan van Laarhoven. L2 regularization versus batch and weight normalization.

arXiv preprint arXiv:1706.05350, 2017.

[28] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society: Series B (Methodological), 41(2):148–164, 1979.

[29] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan

Schaal, and Sergey Levine. Combining model-based and model-free updates for

trajectory-centric reinforcement learning. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 703–711. JMLR. org, 2017.

[30] JCH Christopher. Watkins and peter dayan. Q-Learning. Machine Learning,

8(3):279–292, 1992.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

Nature, 518(7540):529, 2015.

[32] Zhenshan Bing, Claus Meschede, Guang Chen, Alois Knoll, and Kai Huang.

Indirect and direct training of spiking neural networks for end-to-end control of

a lane-keeping vehicle. Neural Networks, 121:21–36, 2020.



87

[33] Sahand Sharifzadeh, Ioannis Chiotellis, Rudolph Triebel, and Daniel Cremers.

Learning to drive using inverse reinforcement learning and deep q-networks, 2016.

[34] Fangyi Zhang, Jrgen Leitner, Michael Milford, and Peter Corke. Modular deep

q networks for sim-to-real transfer of visuo-motor policies, 2016.

[35] Stephen James and Edward Johns. 3d simulation for robot arm control with

deep q-learning, 2016.

[36] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep

reinforcement learning, 2016.

[37] Lei Tai and Ming Liu. Towards cognitive exploration through deep reinforcement

learning for mobile robots. arXiv preprint arXiv:1610.01733, 2016.

[38] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning, 2015.

[39] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian

motion. Physical review, 36(5):823, 1930.

[40] Pawel Wawrzynski. Control policy with autocorrelated noise in reinforcement

learning for robotics. International Journal of Machine Learning and Computing,

5(2):91, 2015.

[41] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan

Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed

distributional deterministic policy gradients. arXiv preprint arXiv:1804.08617,

2018.



88

[42] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y

Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Pa-

rameter space noise for exploration. arXiv preprint arXiv:1706.01905, 2017.

[43] Sungsik Huh and David Hyunchul Shim. A vision-based automatic landing

method for fixed-wing uavs. Journal of Intelligent and Robotic Systems, 57(1-

4):217, 2010.

[44] Alejandro Rodriguez-Ramos, Carlos Sampedro, Hriday Bavle, Ignacio Gil

Moreno, and Pascual Campoy. A deep reinforcement learning technique for

vision-based autonomous multirotor landing on a moving platform. In 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 1010–1017. IEEE, 2018.

[45] Marwan Shaker, Mark NR Smith, Shigang Yue, and Tom Duckett. Vision-based

landing of a simulated unmanned aerial vehicle with fast reinforcement learning.

In 2010 International Conference on Emerging Security Technologies, pages 183–

188. IEEE, 2010.

[46] Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, Andrew

Manning, Robert Sutton, and Angelo Cangelosi. Autonomous quadrotor landing

using deep reinforcement learning. arXiv preprint arXiv:1709.03339, 2017.

[47] Yingcai Bi and Haibin Duan. Implementation of autonomous visual tracking

and landing for a low-cost quadrotor. Optik-International Journal for Light and

Electron Optics, 124(18):3296–3300, 2013.

[48] Bruno Herissé, Tarek Hamel, Robert Mahony, and François-Xavier Russotto.

Landing a vtol unmanned aerial vehicle on a moving platform using optical flow.

IEEE Transactions on robotics, 28(1):77–89, 2011.



89

[49] So-Ryeok Oh, Kaustubh Pathak, Sunil Kumar Agrawal, Hemanshu Roy Pota,

and Matt Garrett. Autonomous helicopter landing on a moving platform using

a tether. In Proceedings of the 2005 IEEE International Conference on Robotics

and Automation, pages 3960–3965. IEEE, 2005.

[50] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James

Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progres-

sive neural networks. arXiv preprint arXiv:1606.04671, 2016.

[51] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,

Nathan Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting simula-

tion randomization with real world experience. In 2019 International Conference

on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[52] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell,

Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation

to real world through learning deep inverse dynamics model. arXiv preprint

arXiv:1610.03518, 2016.

[53] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen

Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al.

The limits and potentials of deep learning for robotics. The International Journal

of Robotics Research, 37(4-5):405–420, 2018.

[54] Luis Perez and Jason Wang. The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

[55] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and

Pieter Abbeel. Domain randomization for transferring deep neural networks from



90

simulation to the real world. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 23–30. IEEE, 2017.

[56] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without

a single real image. arXiv preprint arXiv:1611.04201, 2016.

[57] OpenAI, :, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefow-

icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn

Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,

Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation,

2018.

[58] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.

Sim-to-real transfer of robotic control with dynamics randomization. CoRR,

abs/1710.06537, 2017.

[59] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,

Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion

for quadruped robots. arXiv preprint arXiv:1804.10332, 2018.

[60] Rika Antonova, Silvia Cruciani, Christian Smith, and Danica Kragic. Reinforce-

ment learning for pivoting task. arXiv preprint arXiv:1703.00472, 2017.

[61] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.

Sim-to-real transfer of robotic control with dynamics randomization. In 2018

IEEE International Conference on Robotics and Automation (ICRA), pages 1–

8. IEEE, 2018.

[62] Thomas M. Breuel. The effects of hyperparameters on sgd training of neural

networks, 2015.



91

[63] Erwin Coumans and Yunfei Bai. Bullet real-time physics simulation, 2014-2019.

[64] Murtaza Hazara and Ville Kyrki. Transferring generalizable motor primitives

from simulation to real world. IEEE Robotics and Automation Letters, 4(2):2172–

2179, 2019.

[65] Jeff Ferrin, Robert Leishman, Randy Beard, and Tim McLain. Differential flat-

ness based control of a rotorcraft for aggressive maneuvers. In 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2688–2693.

Ieee, 2011.

[66] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas

Funkhouser. Tossingbot: Learning to throw arbitrary objects with residual

physics, 2019.

[67] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deep-

mimic. ACM Transactions on Graphics, 37(4):114, Jul 2018.

[68] Reza Mahjourian, Risto Miikkulainen, Nevena Lazic, Sergey Levine, and

Navdeep Jaitly. Hierarchical policy design for sample-efficient learning of robot

table tennis through self-play. arXiv preprint arXiv:1811.12927, 2018.

[69] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in

reinforcement learning. In Proceedings of the 23rd International Conference on

Machine Learning, ICML ’06, pages 1–8, New York, NY, USA, 2006. ACM.

[70] J Zico Kolter and Andrew Y Ng. Policy search via the signed derivative. In

Robotics: science and systems, page 34, 2009.

[71] Andrew W Smith Jr. Digital computer process control with operational learning

procedure, September 26 1972. US Patent 3,694,636.



92

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[73] Wenhao Yu, Visak CV Kumar, Greg Turk, and C Karen Liu. Sim-to-real transfer

for biped locomotion. arXiv preprint arXiv:1903.01390, 2019.

[74] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed

neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. Journal of Compu-

tational Physics, 378:686–707, 2019.

[75] Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-

informed neural networks. SIAM Journal on Scientific Computing, 41(4):A2603–

A2626, 2019.



93

Appendix

1 #!/bin/python

2

3 import subprocess

4 import itertools

5 import tensorflow as tf

6

7 hyp_search = {

8 "sigma": [ 0.3, 0.5, 0.8],

9 "batch -size": [32, 64, 128],

10 "actor -lr": [1e-5, 1e-4, 1e-3],

11 "critic -lr": [1e-2, 1e-3, 1e-4],

12 "act -fun": ["tf.nn.relu", "tf.nn.tanh", "tf.nn.leaky_relu"],

13 "normalize -returns": [True , False]

14 }

15

16 keys = list(hyp_search.keys())

17 values = list(hyp_search.values ())

18 gen_param = lambda x,y: "--%s %s" % (x, str(y))

19 slurm_path = "/work/nimbus/pfrancaalb/moving_platform/hyp_search_slurm.sh"

20

21 for params in itertools.product (* values):

22 param_list = " ".join(list(map(gen_param , keys , params)))

23 com = "sbatch %s %s" % (slurm_path , param_list)

24 out , error = subprocess.Popen(com.split(), stdout=subprocess.PIPE).communicate ()

25 print( "{} {}".format(param_list , out) )

Listing 1: Code to launch hyper-parameter search

1 import numpy as np

2 from stable_baselines import DDPG

3 from stable_baselines.ddpg import policies

4 from stable_baselines.common.vec_env import DummyVecEnv

5 import gym

6 import pickle

7 from sys import argv

8

9 sysid_path = "/work/nimbus/pfrancaalb/moving_platform/src"

10



94

11

12 class CustomPolicy_DDPG(policies.FeedForwardPolicy):

13 def __init__(self , *args , ** kwargs):

14 super(CustomPolicy_DDPG , self).__init__ (*args , **kwargs ,

15 layers = [200, 100],

16 act_fun = tf.nn.tanh ,

17 feature_extraction = "mlp")

18

19

20 def eval_params(friction , wind):

21 e = gym.make("MovingPlatform3d -v{}".format(argv [1]))

22

23 if len(argv) > 3:

24 e.enable_sysid(argv [3]) # Sysid model for training

25

26 env = DummyVecEnv ([ lambda: e])

27

28 rewards = []

29 ep_reward = 0

30 ep = 0

31 obs = env.reset()

32

33 e.wind_mu = wind

34 e.lateralFriction = friction

35

36 while ep < 100:

37 action , _states = model.predict(obs)

38 obs , reward , done , _ = env.step(action)

39 ep_reward += reward

40 if done:

41 ep += 1

42 rewards.append(ep_reward)

43 ep_reward = 0

44 obs = env.reset()

45

46 e.wind_mu = wind

47 e.lateralFriction = friction

48

49 performance.append ([np.mean(rewards), np.std(rewards), e.falls , np.mean(e.



95

times_collision)])

50

51

52 # Load the policy

53 model = DDPG.load(argv[2], policy=CustomPolicy_DDPG)

54

55 # Variations of the paramaters

56 performance = []

57 frictions = np.linspace(0, 0.2, num =50)

58 wind = np.linspace(0, 1, num =50)

59

60 for f in frictions:

61 eval_params(f, 0)

62

63 pickle.dump(performance , open("performance_ {} _friction.pickle".format(argv [1]), "wb")

)

64 performance = []

65

66 for w in wind:

67 eval_params (0.2, w)

68

69 pickle.dump(performance , open("performance_ {}_wind.pickle".format(argv [1]), "wb"))

Listing 2: Simulation experiments with variation of both wind as friction coefficient

1 #!/bin/bash

2 for s in 0 1; do

3 for j in {1..50}; do

4 for t in {1..7}; do

5 batchthis python3 .5 -u test_rewards_3d.py --environment MovingPlatform3d -v2

--rw-function ${t} --batch -size 128 --timesteps 3.5e6 --selected -param ${s}

6 done

7 done | egrep -o "[0-9]+" | tr "\n" " " > ../ data/runs/‘date ’+%Y_%m_%d__%H_%M_%S’‘

8 done

Listing 3: Script to launch jobs evaluating reward different reward functions

1 #!/bin/bash

2 envs=(2, 4)

3 args=("$@")



96

4 param=1

5 # Navigate through the text files

6 for (( i=0; i<=$(( ${#args [*]} -1 )); i++ )); do

7 # For each job in the file

8 for j in $(cat ${args[$i]}); do

9 # If it is the first file , use the first env element of the array , so on...

10 batchthis python3 .5 -u evaluate_net.py /work/nimbus/pfrancaalb/output/${j}/

network.pkl ${envs[$i]} ${param}

11 done | egrep -o "[0-9]+" | tr "\n" " " > ${args[$i]} _evaluation

12 done

Listing 4: Script to start the evaluation of a sequence of jobs

1 def sample_params(self):

2 if self.domain_rand and self.episodes % self.domain_rand == 0:

3 self.restitution = 0.5

4 self.lateralFriction = np.random.uniform (0.0, 0.2)

5 self.wind_mu = np.random.uniform (-0.10, 0.10)

6 #self.wind_direct = np.random.dirichlet(np.ones (3),size =1) [0] # Random

direction

7 self.wind_direct = [1, 0, 0]

8

9 self.estimation = 0.01 # Be careful in the first episode

10

11 # Fix parameter according to the experiments

12 if self.selected_param == 0:

13 self.laterlFrition = 0.35

14 else:

15 self.wind_mu = 0

16

17 elif not self.domain_rand:

18 self.restitution = 0.5

19 self.lateralFriction = 0.35

20 self.wind_mu = 0

21 self.wind_direct = [1,0,0]

Listing 5: Code snippet from the environment sampling the dynamic parameters

1 def control_drone(self , action):



97

2 target_vel = np.array( action ) * self.max_speed # Get the velocity based

on the normalized velocity

3 current_vel = self.lin_vel

4 vel = [0,0,0]

5 max_vel_dot = self.max_acc * self.skip_iterations * self.Tsample_physics

6 for i in range (3):

7 vel[i] = min( max( target_vel[i], current_vel[i] - max_vel_dot),

current_vel[i] + max_vel_dot)

8 vel[i] += np.random.normal(self.wind_mu , 0.1) * self.wind_direct[i]

9

10 ref_pos = np.array(self.pos_meas) + np.array(vel) * norm_value * self.

Tsample_physics # Next position based on the reference velocity

11 p.changeConstraint(self.quad_constraint_id , ref_pos , 0, maxForce =50000) #

Force the object to go to the calculated position

Listing 6: Code snippet from the environment that controls the UAV

1 def dense_sysID(hidden_size , hidden_layers = 2, dropout = 0, act_fun = "tanh", bn =

0):

2 ’’’

3 Architecture of the sysid network

4 ’’’

5 model = Sequential ()

6 model.add(Dense(hidden_size , input_dim =(240) ))

7 model.add(BatchNormalization ())

8

9 # Adds the hidden layers

10 for _ in range(hidden_layers -1):

11 model.add( Dense(hidden_size) )

12 if bn: model.add(BatchNormalization ())

13 model.add( Activation(act_fun) )

14 if dropout: model.add(Dropout (0.5))

15

16 # Output layer

17 model.add(Dense(1, activation=’tanh’))

18

19 model.compile(loss=custom_loss ,

20 optimizer=’adam’)

21

22 return model



98

23

24

25 def save_model(model):

26 ’’’

27 Saves the weights of the network

28 ’’’

29 open("./model.json", "w").write(model.to_json ()) # Save model architecture

30 model.save_weights("./ model.h5") # Savel model or

31

32

33 def load_memories ():

34 x_train = []

35 y_train = []

36 for i in argv [1:]:

37 mem = pickle.load(open(i, "rb"))

38 for x, y in mem:

39 x_train.append(x[0])

40 y_train.append(y[0])

41

42 return np.array(x_train), np.array(y_train)

43

44 x_train , y_train = load_memories ()

45

46 tb = TensorBoard(log_dir=’./logs’, histogram_freq =1, batch_size =64, write_grads=True ,

write_images=True , update_freq=’batch’)

47

48 model = dense_sysID (128, hidden_layers = 2, act_fun="relu")

49 model.fit(x=x_train , y=y_train , batch_size =64, epochs=3, verbose=1, callbacks =[tb],

validation_split =0.1)

50 save_model(model)

Listing 7: SysID training using supervised learning with previously stored experience

buffer.

1

2 import gym

3 import argparse

4 from stable_baselines.ddpg.policies import FeedForwardPolicy

5 from stable_baselines.common.vec_env import DummyVecEnv



99

6 from stable_baselines import DDPG

7 from stable_baselines.ddpg.noise import ActionNoise

8 import tensorflow as tf

9 from pprint import pprint

10 import os

11 from stable_baselines.ddpg.noise import OrnsteinUhlenbeckActionNoise ,

NormalActionNoise , AdaptiveParamNoiseSpec

12 import keras

13 import numpy as np

14 import pdb

15 from inspect import getsource

16

17

18 class DecayingGaussian(ActionNoise):

19 """

20 A gaussian action noise

21

22 :param mean: (float) the mean value of the noise

23 :param sigma: (float) the scale of the noise (std here)

24 """

25 def __init__(self , mean , sigma , magnitude , epsilon =0.9999):

26 self._mu = mean

27 self._sigma = sigma

28 self._epsilon = epsilon

29 self._magnitude = magnitude

30

31 def __call__(self):

32 self._epsilon *= self._epsilon

33 return self._epsilon * self._magnitude * np.random.normal(self._mu , self.

_sigma)

34

35 def __repr__(self):

36 return ’NormalActionNoise(mu={}, sigma ={}, magnitude ={}, epsilon ={})’.format(

self._mu , self._sigma , self._magnitude , self._epsilon)

37

38

39 def getCustomPolicy(act_fun , layers =[200, 100]):

40 class CustomPolicy(FeedForwardPolicy):

41 def __init__(self , *args , ** kwargs):



100

42 super(CustomPolicy , self).__init__ (*args , **kwargs ,

43 layers= layers ,

44 act_fun= act_fun ,

45 feature_extraction="mlp")

46

47 return CustomPolicy

48

49

50

51 # REWARD FUNCTIONS

52

53 def reward1( ref_pos , ref_vel , vel , c, action , touched_floor , t):

54 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) +

55 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

56 4.0 * c )

57

58 def reward2( ref_pos , ref_vel , vel , c, action , touched_floor , t):

59 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) +

60 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

61 5.0 * c )

62

63 def reward3( ref_pos , ref_vel , vel , c, action , touched_floor , t):

64 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) +

65 0.80 * ( - 2 * (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

66 6.0 * c )

67

68 def reward4( ref_pos , ref_vel , vel , c, action , touched_floor , t):

69 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) +

70 0.80 * ( - 2 * (ref_pos [0]**2 + ref_pos [1]**2 +ref_pos [2]**2)) / 15 +

71 7.0 * c )

72

73 def reward5( ref_pos , ref_vel , vel , c, action , touched_floor , t):

74 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) +

75 0.80* (15 - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

76 10.0 * c )

77

78

79 # =================================

80 # Squaring the derivative from the actions



101

81 # =================================

82

83

84 def reward6( ref_pos , ref_vel , vel , c, action , touched_floor , t):

85 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 300 ) +

86 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

87 5.0 * c -

88 25 * touched_floor)

89 #

90 def reward7( ref_pos , ref_vel , vel , c, action , touched_floor , t):

91 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 400 ) +

92 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

93 5.0 * c -

94 25 * touched_floor)

95

96 def reward8( ref_pos , ref_vel , vel , c, action , touched_floor , t):

97 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 500 ) +

98 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

99 5.0 * c -

100 25 * touched_floor)

101

102 def reward9( ref_pos , ref_vel , vel , c, action , touched_floor , t):

103 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 600 ) +

104 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

105 5.0 * c -

106 25 * touched_floor)

107

108 # =================================

109 # Including time in the state space

110 # =================================

111

112 # Time decreasing the positive reward of collision

113

114 def reward10( ref_pos , ref_vel , vel , c, action , touched_floor , t):

115 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 500 ) +

116 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

117 10.0 * c - ( - t * 32 * c) -

118 25 * touched_floor)

119



102

120 def reward11( ref_pos , ref_vel , vel , c, action , touched_floor , t):

121 return ( ( - np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2 / 500 ) +

122 0.80 * ( - (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)) / 15 +

123 10.0 * c - ( - t * 16 * c) -

124 25 * touched_floor)

125

126 # Time decreasing the reward from distance

127

128 def reward12( ref_pos , ref_vel , vel , c, action , touched_floor , t):

129 distance = (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)

130 d_action = np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2

131

132 return ( ( - d_action / 1000 ) +

133 0.80 * ( -distance ) / 15 +

134 5.0 * c -

135 distance * t * 1/200 -

136 25 * touched_floor)

137

138 def reward13( ref_pos , ref_vel , vel , c, action , touched_floor , t):

139 distance = (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)

140 d_action = np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2

141

142 return ( ( - d_action / 1000 ) +

143 0.80 * ( -distance ) / 15 +

144 5.0 * c -

145 distance * t * 1/160 -

146 25 * touched_floor)

147

148 def reward14( ref_pos , ref_vel , vel , c, action , touched_floor , t):

149 distance = (ref_pos [0]**2 + ref_pos [1]**2 + ref_pos [2]**2)

150 d_action = np.linalg.norm(action * 10 - e.prev_action * 10 ) ** 2

151

152 return ( ( - d_action / 1000 ) +

153 0.80 * ( -distance ) / 15 +

154 5.0 * c -

155 distance * t * 1/50 -

156 25 * touched_floor)

157

158



103

159 def reward15( ref_pos , ref_vel , vel , c, action , touched_floor , t):

160 return ( ( - np.linalg.norm(action - e.prev_action) * 2 + 0.15 ) -

161 10**( max(np.linalg.norm(ref_vel) - 0.5, 0)) - 1 +

162 0.80 * ( - 2 * (ref_pos [0]**2 + ref_pos [1]**2 +ref_pos [2]**2)) / 15 +

163 7.0 * c )

164

165 # agent parameters

166 parser = argparse.ArgumentParser(description=’provide arguments for DDPG agent’)

167 parser.add_argument(’--actor -lr’, default =1e-4, type=float)

168 parser.add_argument(’--critic -lr’, default =1e-3, type=float)

169 parser.add_argument(’--sigma ’, default =0.3, type=float)

170 parser.add_argument(’--batch -size’, default =128, type=int)

171 parser.add_argument(’--act -fun’, default="tf.nn.tanh", type=str)

172 parser.add_argument(’--normalize -returns ’, default=False , type=bool)

173 parser.add_argument(’--environment ’, default="MovingPlatform3d -v4", type=str)

174 parser.add_argument(’--sysid ’, default="", type=str)

175 parser.add_argument(’--rw-function ’, default=4, type=int)

176 parser.add_argument(’--selected -param ’, default=0, type=int)

177 parser.add_argument(’--timesteps ’, default =3e6, type=float)

178 parser.add_argument(’--gamma ’, default =0.999 , type=float)

179 parser.add_argument(’--epsilon ’, default =0.9999 , type=float)

180 parser.add_argument(’--exploration ’, default=’gau’, type=str)

181

182

183 args = vars(parser.parse_args ())

184 pprint(args)

185

186 # Save in the job id folder if running on crane

187 if os.environ.get("USER") == ’pfrancaalb ’:

188 id = os.environ.get("SLURM_JOB_ID")

189 save_path = "/work/nimbus/pfrancaalb/output /{}/".format(id)

190 else:

191 save_path = "./"

192

193 tim = int(args.pop("timesteps"))

194

195 rw = args.pop("rw_function")

196

197 # Change environment if timestep is necessary



104

198 if rw < 10:

199 print ("Including timestep on state space")

200 env = "MovingPlatform -noy -v1"

201 else:

202 print ("Including velocity on state space")

203 env = "MovingPlatform -noy -v2"

204

205 env = args.pop("environment")

206

207 # Environment based on the reward function

208 e = gym.make(env)

209 e.calc_reward = eval("reward {}".format(rw))

210 print(getsource(e.calc_reward))

211

212 # In case there is system identificatoin , import it

213 sysid = args.pop("sysid")

214 e.selected_param = args.pop("selected_param")

215 if sysid:

216 e.enable_sysid(sysid)

217

218 env = DummyVecEnv ([ lambda: e])

219

220 sigma = args.pop("sigma")

221

222 # Noise for exploration

223 n_actions = env.action_space.shape[-1]

224 noise_dict = { ’ou’: OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=

sigma * np.ones(n_actions)),

225 ’gau’: NormalActionNoise(mean=np.zeros(n_actions), sigma=sigma * np.

ones(n_actions)),

226 ’adap’: AdaptiveParamNoiseSpec (),

227 ’decg’: DecayingGaussian(mean=np.zeros(n_actions), sigma = sigma * np

.ones(n_actions), magnitude = 2, epsilon = args.pop("epsilon") )

228 }

229 #action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=args.pop

("sigma") * np.ones(n_actions))

230 noise = args.pop("exploration")

231

232 # Execute the learning



105

233 CustomPolicy = getCustomPolicy(eval(args.pop("act_fun")))

234

235 if noise == ’adap’:

236 model = DDPG(’MlpPolicy ’, env , verbose=1, param_noise=noise_dict[noise],

tensorboard_log=save_path , **args)

237 else:

238 model = DDPG(CustomPolicy , env , verbose=1, action_noise=noise_dict[noise],

tensorboard_log=save_path , **args)

239

240 model.learn(total_timesteps=tim)

241 model.save(save_path + "network")

Listing 8: Training deep deterministic policy gradient with the option of selecting a

variety of reward functions.


	Domain Adaptation in Unmanned Aerial Vehicles Landing using Reinforcement Learning
	

	tmp.1575666259.pdf.TViZx

