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 Nutrient inputs from cattle dung are crucial drivers of nutrient cycling processes 

in grazed ecosystems.  These inputs are important both spatially and temporally and are 

affected by variables such as grazing strategy, water location, and the nutritional profile 

of forage being grazed.  Past research has attempted to map dung deposition patterns in 

order to more accurately estimate nutrient input, but the large spatial extent of a typical 

pasture and the tedious nature of identifying and mapping individual dung pats has 

prohibited the development of a time- and cost-effective methodology. 

The first objective of this research was to develop and validate a new method for 

the detection and mapping of dung using an unmanned aerial vehicle (UAV) and 

multispectral imagery.  The second objective was to quantify change over time in water-

extractable organic carbon (WEOC), water-extractable phosphorus (WEP), and water-

extractable nitrogen (WEN) in naturally-deposited dung that ranged from one to twenty-

four days old.  In addition, pre-analysis dung storage methods (refrigeration vs. freezing) 

were evaluated for their impact on laboratory analyses results. 



 Multispectral images of pastures were classified using object-based image 

analysis.  Post-classification accuracy assessment showed an overall accuracy of 82.6% 

and a Kappa coefficient of 0.71.  Most classification errors were attributable to the 

misclassification of dung as vegetation, especially in spectrally heterogeneous areas such 

as trampled vegetation.  Limitations to the implementation of this method for identifying 

and mapping cattle dung at large scales include the high degree of geospatial accuracy 

required for successful classification, and the need for additional method validation in 

diverse grassland environments. 

 Dung WEN concentrations ranged from 1.20 g kg-1 at three days of age, to a low 

of 0.252 g kg-1 at 24 days.  The highest WEOC values were in day-old dung, 19.25 g kg-1, 

and lowest in 14-day-old dung, 2.86 g kg-1. WEOC and WEN both followed exponential 

decay patterns of loss as dung aged. WEP was lowest at 1.28 g kg-1 (day one) and highest 

at 12 days (3.24 g kg-1), and dry matter and WEOC concentration were stronger 

determinants of WEP than age alone.  Freezing consistently increased WEN and WEOC 

concentrations over fresh values, but WEP was inconsistent across ages in its response.  

This research provides new insight into dung nutrient dynamics and presents a novel 

method for studying them across large spatial and temporal scales. 
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CHAPTER 1:   

LITERATURE REVIEW 

 

Introduction 

Unlike the majority of other agricultural production systems, nutrient 

management on rangelands supporting livestock production is, for the most part, 

extensively managed.  That is, pastures receive little to no supplemental nutrient 

additions in the form of inorganic fertilizers sourced from off-site (e.g. ammonium 

nitrate, urea, etc.).  Instead, availability of nutrients to plants relies primarily on the return 

of nutrients to the system from dung, urine, and trampled vegetation, and on the abiotic 

and microbial decomposition and transformation of aboveground inputs and soil organic 

matter into their plant-available inorganic forms (Bardgett and Wardle, 2010; Evans et 

al., 2017).  Therefore, the long-term sustainable management of grazed ecosystems 

necessitates the sustainable management of nutrient resources and the cycling processes 

that determine their availability, which in turn relies on the skillful (i.e. creative, adaptive 

and scientific) management of livestock and grazing systems (Provenza, 2003; Teague, 

2018; Wilmer et al., 2018).  There is an increasing urgency about this task, as more 

recognition is being given to the role of soil health in rangeland systems and the need for 

understanding its underlying ecological drivers, including nutrient cycling dynamics 

within different management and ecological contexts (Derner et al., 2018b).  Such 

knowledge will be crucial in helping land managers sustain healthy rangeland systems far 

in to the future in the face of climate change, widespread soil loss and degradation, and 
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escalating pressure from invasive plant species (DeLonge and Basche, 2018; Derner et 

al., 2018a). 

The impacts of grazing on soil and nutrient cycling processes 

 At its most fundamental level, grazing facilitates the transformation and physical 

re-location of nutrients through the consumption of vegetation and its later excretion, 

accelerating nutrient cycling by short-cutting the decomposition process and providing 

nutrients in more readily-available forms (McNaughton et al., 1997; Piñeiro et al., 2010; 

Yoshitake et al., 2014).   There are subsequent cascading effects that reverberate 

throughout the ecosystem, transforming communities and processes at both the micro- 

and macro-scale levels. For example, grazing has been shown to influence:  soil nutrient 

levels and rates of nutrient cycling and mineralization (Augustine and McNaughton, 

2006; Haynes and Williams, 1993; Odriozola et al., 2014; Schrama et al., 2013; Wang et 

al., 2016); soil organic carbon dynamics (Abdalla et al., 2018; Barsotti et al., 2016; 

Wilson et al., 2018); soil food web stability (Andrés et al., 2016); abundance and 

diversity of arbuscular mycorrhizal fungi  (Ba et al., 2012; Eom et al., 2001; Ren et al., 

2018) and other soil microbial communities (Andriuzzi and Wall, 2017; Olivera et al., 

2016), to name just a handful of studied outcomes.  Grazing also has the potential to alter 

plant community composition, structure, and dynamics (Gillet et al., 2010; Medina-

Roldán et al., 2012; Volesky et al., 2004), which may lead to long-term changes in the 

ecosystem aboveground (Augustine, 2003; Porensky et al., 2016; Teague et al., 2011) 

and, subsequently, in the belowground community as it responds to  changes in litter 

characteristics, root morphology, and nutrient inputs (Bardgett and Wardle, 2003; Hunter, 

2016; Vályi et al., 2015).    
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Grazing-mediated outcomes are complex and often context-specific, dependent 

upon variables such as: grazing intensity and management, climate, vegetation type, 

topography, site history, and existing soil physical, chemical, and biological properties 

(Andriuzzi and Wall, 2017; Bardgett and Wardle, 2003; Piñeiro et al., 2010; Ren et al., 

2018; Teague et al., 2013; Ward et al., 2016; Zhang et al., 2018).  This makes it difficult 

to attribute grazing effects solely to the presence of grazing livestock in an ecosystem and 

can lead to conflicting outcomes in studies, which may give rise to very different pictures 

of how grazing and/or grazing management affect an ecosystem (Briske et al., 2011; 

McSherry and Ritchie, 2013; Provenza, 2003; Teague et al., 2013)      

Dung Composition  

 The nutrient and moisture content of dung is highly variable and can be affected 

by an animal’s diet, age, reproductive status (e.g. pregnant or lactating), an individual 

animal’s unique physiology, or even by the time of year (Eghball, 2000; Kissinger et al., 

2007; Sutton et al., 2006; van Vliet et al., 2007).  Dung nutrient composition, as well as 

C:N ratios, can also vary by species of ruminant, so the nutrient cycling patterns 

associated with, for instance, the degradation of sheep or goat manure may be quite 

different than that of cattle manure.  Additionally, micronutrients found in dung may 

impact soil and vegetation health (Eghball et al., 2002; Sager, 2007). These are not 

considered here, but are nonetheless an important component of dung’s contribution to 

nutrient cycling on rangelands. 

There are several potential challenges in synthesizing the existing research on 

nutrient content of cattle excreta and its effect on vegetation and soils.  First, much of the 

published research comes from studies of cattle fed in confinement for production 
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purposes:  often either dairy cows or beef cattle in feedlots.  And much of what we know 

about manure-soil interactions comes from studies reporting on the results of manure 

spread in agricultural fields after being collected from holding areas in these operations.  

Because diet plays a defining role in the nutrient content and physical consistency of 

manure, generalizing outcomes from these studies to dung from grazing animals 

subsisting solely on pasture may be problematic (Eghball et al., 2002).  Additionally, 

there is a common research practice of gathering manure en masse from confined cattle 

being fed a concentrated ration, then homogenizing the samples and forming artificial 

pats to place on pasture for observation (Aarons et al., 2009, 2004a; Evans et al., 2019; 

Lovell and Jarvis, 1996).  Again, due to discrepancies in diets and differences in the 

physical structure of the manure, using this manure to study the decomposition dynamics 

of as-excreted dung from cattle grazing on pasture may give rise to decomposition and 

nutrient cycling processes that differ from those associated with naturally-deposited 

dung.  Finally, if formed dung pats are introduced to a system which has either never 

been or has not recently been grazed, it is possible that the dung-feeding and dung-

dwelling earthworm, arthropod, and insect communities may not be structured as they 

would in a pasture that has a long history of grazing (Holter, 1979).  In this review, an 

effort has been made to use studies utilizing dung as-deposited on pasture, but due to the 

limited number of studies (and the age of many of them) available on the topic, it has also 

drawn from more recent research that uses one of the above alternative methods or 

settings to study dung composition and decomposition. 

A typical newly-deposited dung pat is composed of water (usually about 70-80%), 

ash, partially-digested vegetation, a suite of nutrients in various inorganic and organic 
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forms, and millions of microbes, both dead and alive (Evans et al., 2019; Holter, 2016).  

The following discussion looks more closely at three major nutrient components of dung: 

phosphorus (P), nitrogen (N) and carbon (C), and how they affect and are affected by 

both biotic and abiotic factors within dung and within the environment they are released 

into. 

Phosphorus 

 Phosphorus is found primarily in its inorganic forms in cattle manure, in about a 

65% inorganic to 25% organic ratio (Aarons et al., 2004a; Sharpley and Moyer, 2000).  

McDowell and Stuart (2005) found slightly more skewed ratios using dung from grazing 

cattle: 85% inorganic to 15% organic.  However, this distribution can be greatly impacted 

by diet and organic matter levels, and Sharpley and Moyer (2000) strongly state that both 

total amounts and the fractionation between organic and inorganic forms may vary 

substantially between studies and manure types.  In addition, water-extractable 

phosphorus (WEP) results reported in the literature have historically been obtained using 

a wide range of methods that vary in the extraction ratio, type of manure (air-dried, oven-

dried or fresh), length of extraction, and analysis method, which makes comparisons 

between studies difficult to impossible (Kleinman et al., 2002; Pagliari and Laboski, 

2012; Studnicka et al., 2011; Vadas and Kleinman, 2006). 

Inorganic phosphorus leaves the dung pat through leaching (primarily as 

dissolved reactive phosphorus (DRP) (Kleinman et al., 2005)) and can be taken up by 

plants, used by microorganisms, or lost from the system entirely through entry into the 

soil water and groundwater (Vadas et al., 2011).  Organic phosphorus in dung is more 

stable and less plant-available due to its complexation with organic matter in dung and 
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soils; it will primarily be transported into the surrounding soil with particulate organic 

matter either as a result of decomposition processes that break up the pat, or due to the 

action of dung beetles or other soil fauna who physically move dung (Aarons et al., 

2004a).  There is, however, a more labile pool of organic P that is also available to plants 

and microorganisms (Aarons et al.,  2004b).  Over time, the organic P in dung will be 

microbially-converted to inorganic P and this will be reflected in increasing values of 

inorganic P in dung (Dao and Hoang, 2008). 

Nitrogen 

 Nitrogen is perhaps the most studied nutrient in manure, given its importance to 

plant growth and nutrition, and overall ecosystem productivity.  Nitrogen is present in 

dung as both organic N and inorganic ammonium (NH4) and nitrate (NO3), with solid 

manures composed primarily of organic N (Eghball et al., 2002).  All N is subject to a 

variety of transformations and losses over time.  Volatilization of NH4 to NH3 occurs 

soon after excretion while moisture and warmth are both plentiful (Hao and Benke, 

2008).  MacDiarmid and Watkins (1972) found that just under 5% of the total dung N 

from a pat was lost as NH3 in the first five days, after which loss tapered off.   And 

Cardoso et al. (2019) found that between 2 and 12% of total applied N was volatilized as 

NH3, with significant variation between years and seasons.  This is less than what is 

reported for NH3 losses during composting (Hao and Benke, 2008) of manures or field 

spreading of manure, and may be due to the early formation of a relatively-impenetrable 

crust on undisturbed dung (Aarons et al., 2009; Dickinson and Craig, 1990). 

Conversion of organic N to NH4 happens within the pat as a result of microbial 

actions and makes inorganic N available to both microbes and plants.  NH4 can then be 
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transformed into NO3 via nitrification, and some losses of N20 and N2 may occur via 

denitrification of NO3.  As NH4 is immobilized by the microbial community for growth 

and reproduction, NH4 is returned to organic N and is no longer readily available (Hao 

and Benke, 2008).   

Carbon 

 Carbon (C) is present in dung primarily as organic C.  Soon after deposition, 

microbes will mineralize organic C into CO2 via respiration, as they utilize carbon as an 

energy source.  It has been shown that upwards of 50% of carbon is lost through 

mineralization (Bol et al., 2000; Yoshitake et al., 2014), and carbon is lost to the 

atmosphere as CO2 in much greater amounts than is retained and incorporated into the 

soil.  For example, Yoshitake et al. (2014) found that only between 4-9.8% of carbon 

returned to the soil, and Bol et al. (2000) found only 12.6% of the original dung C in the 

top 1-5 cm of soil.  Within the pat there is certain to be use of carbon as a substrate for 

other microbial processes to fuel various growth and survival needs.  However, the 

internal processes of mineralization and immobilization within the dung pat seem to be 

poorly accounted for in the literature.   

Dung decomposition and its effect on soils and nutrient cycling 

 While the effects of grazing on soils and vegetation have been extensively 

studied, disentangling the influence of grazing (i.e. vegetation removal, trampling, 

compaction) from the impact of dung deposition1 on the landscape (and on nutrient 

cycling specifically) remains elusive due to the complex spatial and temporal relationship 

                                                           
1 The focus here is specifically on the dung input to the system.  We acknowledge that urine and trampled 
vegetation represent additional pools of resources, also distributed across the landscape in a spatially and 
temporally diverse manner, but those are not explicitly considered here. 
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between vegetation removal and trampling, and dung and urine deposition (Andriuzzi and 

Wall, 2017; Cherif and Loreau, 2013; Tate et al., 2003).  There are an abundance of 

studies available that have evaluated the impact of grazing on vegetation and soils, but 

many of these studies have either ignored the impact of dung deposition and distribution 

altogether or have generalized its potential influence across a pasture (Schrama et al., 

2013).  For example, in an entire chapter on rangeland soils, dung and urine inputs were 

not mentioned a single time as contributing factors to nitrogen or carbon cycling (Evans 

et al., 2017), but the influence of changing plant community composition and the impact 

of invasive species on soil health were covered extensively.  These omissions are no 

doubt due, in large part, to the logistical complexity of gathering and analyzing data on 

vegetation and/or soils concurrently with dung distribution data, all of which are time- 

and labor-intensive endeavors.  However, because dung can lead to changes in 

aboveground biomass and plant community composition (Augustine, 2003; Gillet et al., 

2010; Weeda, 1977), which in turn can affect belowground insect and microbial 

communities and nutrient cycling processes, not considering this spatial and temporal 

variable while assessing the impact of grazing on plants and soils leaves out an essential 

piece of the holistic picture of a site’s ecology.  

 On the other hand, there are studies focused primarily on the impact of dung 

deposition on soil nutrient content (and/or on the associated changes in vegetation 

biomass or species composition) that either remove pats to a separate study area protected 

from grazing (Aarons et al., 2009; Evans et al., 2019; Yoshitake et al., 2014) or ignore 

grazing effects (e.g. stocking density, trampling of vegetation and dung pats, cattle 
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congregating sites, etc.) in the pasture area, which also potentially leaves out an important 

set of variables that may influence outcomes.   

 In a healthy grazed ecosystem, decomposition may begin almost immediately.  

Earthworms and dung beetles are attracted to the dung and will affect it primarily by 

removing mass (and the associated nutrients and organic matter) to other locations, 

mixing the dung with soil below the pat and in the surrounding area, bringing soil upward 

into the pat, and creating numerous channels in the dung that contribute to the structural 

dynamics of decomposition over time (Holter, 2016, 1979; Mohr, 1943).  Studies have 

found increased rates of decomposition with increasing numbers of dung beetles and 

earthworms  (Evans et al., 2019; Yamada et al., 2007; Yoshitake et al., 2014). 

 Moisture and temperature also play key roles in the decomposition of dung 

(Mohr, 1943; Yoshitake et al., 2014). As temperature increases to a maximum ideal, rates 

of microbial respiration and nutrient use will increase, and decomposition processes can 

be accelerated.  Since water is needed as a substrate for chemical reactions and microbial 

movement both within the soil and within the dung pat, moisture content plays an 

essential role in decomposition rates and processes.   

Although precipitation also has the potential to affect the decomposition rates of 

dung, both my own research and observations in the field, and observations from others 

(for example, see Dickinson and Craig, 1990, Aarons, 2009, and Holter, 1979) show that 

once the top of the dung has formed a dry crust, it is nearly impenetrable to rainfall from 

above.  This also has the effect of locking moisture in below the crust and preserving it 

for a prolonged period of time and thus helping to facilitate further use and transport of 

the dung (MacDiarmid and Watkin, 1972).  If, however, rainfall is plentiful while the 
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dung is still moist, it will contribute to the degradation of the pat, the loss of nutrients 

from the pat and their leaching into the soil below (Aarons, 2009). 

 Multiple studies have found little to no increase in soil total N values (Dickinson 

and Craig, 1990; Lovell and Jarvis, 1996; Yoshitake et al., 2014) under dung pats, 

although increases in NH4 and NO3 were recorded.  Lovell and Jarvis theorize that this 

discrepancy between organic and inorganic N source dynamics can be attributed to 

increased warmth under the dung pat, decrease in plant uptake from plants smothered by 

dung and decreased leaching, all of which would increase mineral N concentrations 

(either directly from the dung or as a result of increased mineralization in the soil below 

it).  Evans et al. (2019) found a peak in NH4 and NO3 levels between 7 and 14 days after 

dung placement, with levels then dropping back to initial levels by day 56. 

 As mentioned previously, many studies have recorded minimal increases in 

organic carbon below dung pats. Bol et al. (2000) found only 15% of carbon retained in 

the soil from dung when tracking dung-derived carbon with tracers.  However, Evans et 

al. (2019) found a significant increase in water-extractable organic carbon beneath dung 

pats compared to a control site, although they do not report the value as a percentage of 

initial dung carbon. When present in an ecosystem, dung beetles and earthworms are 

responsible for burying dung-derived carbon in the soil, and can have a substantial effect 

on transporting carbon below the soil surface and stabilizing it in casts.  For example, 

Schon et al. (2015) were able to recover between 13-32% of initial dung carbon in the 

soil below a dung pat, depending on the earthworm assemblages in the mesocosm.  

Microbial transformations in dung also lead to the production of dissolved organic 

carbon, which can leach out of the pat into the soil below. Bol et al. (2000) found a large 
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flux of dissolved organic carbon in the soil around 25 days after dung deposition.   They 

also observed that the addition of dung had a priming effect on the soil microbial 

community, leading to an increase in DOC arising from the soil and not the dung.  They 

theorize that the input of labile C to a system may increase microbial activity, mobilizing 

carbon in SOM.  It is also possible that the nutrient flux of other dung nutrients (N, P, K) 

stimulates microbial activity, leading to greater utilization of SOM and production of 

DOC.   

 Stoichiometry may also play a role in determining how nutrient inputs from dung 

are utilized by plants and microbes, and may affect subsequent vegetation dynamics in 

response to stoichiometry mismatches between plants, soil microbes, and grazers (Cherif 

and Loreau, 2013; Sitters and Olde Venterink, 2018) 

The impact of the dung-derived organic carbon and organic matter on soil organic 

matter (SOM) represents a much-studied but still unpredictable and complex interaction 

in grazing systems.  Some studies and reviews have found increased soil organic carbon 

(SOC) and SOM in grazed vs. ungrazed sites (McSherry and Ritchie, 2013; Wang et al., 

2016; Wilson et al., 2018), but it is challenging to attribute this solely to dung 

contributions.  However, studies specifically looking at dung placement effect on 

SOC/SOM, have shown increases in both of these.  For example, During et al. (1973) 

report that even three years after the placement of their experimental dung pats there was 

still a “pronounced effect” on both organic matter and total nitrogen in the soil.  But 

correlating dung OM inputs to actual increases in soil OM is difficult due to the small 

increases in values weighed against total SOM (Lovell and Jarvis, 1996).  As is the case 

with organic carbon originating from dung, dung beetles and earthworms physically 
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move dung-derived organic matter below the surface, incorporating significant amounts 

into the soil and, in the case of earthworms, refining it to an even more stable, nutrient-

rich addition to the soil ecosystem (Holter, 1979; Schon et al., 2015).   

Although the true nature and origin of SOM has been a topic of scientific debate 

for some years (Lehmann and Kleber, 2015), newer analysis methods have allowed for 

substantive progress on the illumination of its structure and makeup, and there is 

increasing evidence that significant amounts of SOM are derived from microbial sources 

(Caruso et al., 2018; Kallenbach et al., 2016; Miltner et al., 2012).  Movement of 

microbes between dung and soil is virtually unstudied, so we have very little insight into 

how the microbial community that is native to the dung pat (i.e. rumen microbes) 

interacts with the soil microbial community upon deposition, and how this dynamic may 

ultimately contribute to SOM in grassland soils. However, given the fact that 

approximately 50% of dung is comprised of living and dead microbes (Holter, 2016), we 

can assume a large contribution of nitrogen, phosphorus, and carbon from the dung 

microbial biomass alone.   

 Studies have reported mixed findings regarding soil microbial biomass (SMB), 

soil microbial carbon (SMC) and nitrogen (SMN) associated with the presence of dung.  

Lovell and Jarvis (1996) found no measureable effect on soil nutrient content or soil 

microbial biomass (SMB) when dung was placed on the soil surface, but significant 

effects on SMB, C, N, and respiration when dung was dried, then pulverized and mixed 

with soil.  Aarons et al. (2009) and Williams and Haynes (1995) also found a significant 

increase in SMC associated with dung presence.  It is theorized that this is a result of a 

microbial population explosion, with the subsequent increase in microbial biomass 
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adding to what was initially present.  If dead and decaying microbes do indeed form the 

basis of much of SOM, then there is a virtual gold mine of OM potential in a single dung 

pat that probably exceeds our current estimates (Miltner et al., 2012).   

The spatial distribution of dung   

 Both dung distribution and grazing are non-uniform in space and time across a 

pasture (Auerswald et al., 2010; Augustine et al., 2013; Haynes and Williams, 1993; Tate 

et al., 2003) and both are influenced by a suite of factors that create unique grazing 

microcosms shaped by pasture size and shape (Oñatibia and Aguiar, 2018); management 

(Teague et al., 2011); topography (Ren et al., 2018; Zhang et al., 2018); vegetation 

communities and soils (Bardgett and Wardle, 2010; McNaughton et al., 1997); climate 

(Dubeux et al., 2014); livestock type and breed, as well as livestock behavior (Provenza, 

2003).   

The uneven return of herbivore dung within a pasture has been an ongoing source 

of frustration and research efforts for scientists and livestock managers for many years, 

due to the environmental and ecological issues raised by the concentration of dung in 

small areas.  For example, Weeda (1967) referred to this unevenness as a “striking 

feature,” and investigated the use of chain harrowing in order to promote evenness of 

dung distribution.  This patchiness of harvest and nutrient return creates microbial and 

nutrient "hot spots" (Kuzyakov and Blagodatskaya, 2015) in some areas, while leaving 

other portions of the pasture largely devoid of nutrient inputs, which may lead to declines 

in soil nutrient levels and soil microbial activity (Haynes and Williams, 1999). Average 

number of defecations per cow per day is estimated to be between 10 and 13 (During and 

Weeda, 1972; Weeda, 1966), which illustrates the potential for rapid accumulation of 
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dung and its associated nutrients in favored areas of the pasture used by cattle. In what 

Pineiro et al. (2010) called a spatial 'uncoupling' of nutrients, vegetation and its 

associated organic matter and nutrients can be harvested in one area, but returned via 

dung and urine to a different part of the pasture altogether.  This exodus of nutrients and 

organic matter from certain areas, and their accumulation in other areas, can have 

profound effects on patterns of vegetation production and community composition, as 

well as on nutrient cycling processes at the pasture and/or landscape-scale (Augustine, 

2003; Augustine et al., 2013; Bardgett and Wardle, 2003; Hunter, 2016; Porensky and 

Veblen, 2015).  . 

Management of grazing to manage dung distribution  
 
 Over the history of rangeland science there has been no shortage of prescriptions, 

scholarly advice, and outright warring factions that seek to resolve the heterogeneity of 

grazing's impacts through various management strategies (Briske et al., 2011; Sayre, 

2017; Teague et al., 2013).  However, actual cattle distribution and vegetation utilization 

patterns are highly site-specific and hard to reproduce in other locations, even if identical 

grazing strategies are used (Bailey et al., 1996; Dubeux et al., 2014; Tate et al., 2003).  In 

addition, cattle foraging behavior is complex and often difficult to both predict and 

control, and may operate at multiple spatial scales within a pasture, making consistent, 

even distribution of cattle across the landscape nearly impossible (Bailey et al., 1996).  

Land use history, especially in arid and semi-arid locations, may play a significant role in 

the responses of vegetation and soils to changes in management and can also impact 

spatial dynamics of grazing.  This history may be difficult or impossible to obtain, 

leading to an information gap in how historical land use may be a driving factor in 
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present-day plant community composition, soil microbial community composition and 

soil health  (Sayre, 2017). 

Fencing, herding, mineral and salt locations, and water source placement have all 

been used successfully to encourage livestock to more efficiently utilize available 

vegetation resources and spread dung in an orderly manner across pastures, instead of 

congregating in certain areas or over-grazing preferred patches of vegetation.  Yet despite 

these efforts to simultaneously manage for homogeneity of vegetation use and 

homogeneity of dung distribution, there has been little evidence that the two are related 

(Tate et al., 2003).  In fact, there is probably more evidence that segregation of grazing 

and ruminating/resting areas is a major driver of the spatial dynamics of dung deposition 

and accumulation, despite the management strategy used.  Augustine et al. (2013) found 

highly-concentrated areas of dung in the corners of their study pasture where cattle 

preferred to congregate.  Others have shown that cattle preferentially choose shade, 

watering points, certain topographical features, locations of gates, and riparian areas as 

lounging areas, naturally leading to an increase in dung in these areas (Bailey et al., 1996; 

Dubeux et al., 2014; Haynes and Williams, 1999; Tate et al., 2003).  It appears that 

despite changing grazing management strategies and other efforts, cattle will still most 

often choose their preferred area(s) for lounging and ruminating based on comfort and 

perceived safety, and large quantities of dung will accumulate in these areas.  It is hard to 

escape the fact that cattle are herd animals who feel safest in groups; therefore, when not 

grazing their time will often be spent together in communal areas.  As dung density 

increases, this area becomes less-attractive for grazing due to avoidance of fouled 
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vegetation, and subsequent grazing will take place away from these congregation sites, 

giving rise to distinctly partitioned areas for different activities. 

Methods for measuring dung distribution 

 Historically, accounting for nutrient input on rangelands has often taken the 

“average” approach.  That is, the expected average amount of daily manure production 

per animal is multiplied by the average amount of nutrients expected in that manure and 

the nutrients are averaged across the defined grazed area as if they are spread more or less 

evenly.   But, as discussed above, it is well-established that nutrient concentrations are 

highly variable depending upon animal growth stage, reproductive status, and feed 

source, and that dung is not evenly spread across pastures.   

 Previous methods to assess distribution and density of dung in a pasture include 

manual mapping of dung across a pasture (Auerswald et al., 2010); transect establishment 

(Augustine, 2003; Tate et al., 2003); use of the line intercept method (Oliver and Young, 

2012); quadrat placement either randomly or along transects (Oñatibia and Aguiar, 2018; 

Yoshitake et al., 2014); or simply walking and marking pats and returning at a later date 

to observe changes (Dubeux et al., 2014). Tate et al. (2000) used a novel technique to 

establish fecal loading on rangelands based on an existing method to estimate vegetation 

yield, but which did not explicitly map spatial locations of each dung pat.  One study 

used true color aerial imagery (Dennis et al., 2013) from a remote control helicopter.  

However, this study looked primarily at urine patches using vegetation height and 

greenness as indicators for urine placements from a couple of weeks prior, and did not 

specifically address dung locations.   
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 What is missing from the scientific toolbox is a method for evaluating dung 

distribution over ranch-size spatial scales and at a temporal frequency that returns usable 

data with an efficiency that makes the information worth collecting in the first place.  The 

time and cost associated with manually collecting distribution data, as well as the 

severely-limited scope of scale when viewed against large ranch-scale landscapes, has 

been a hindrance to the in-depth exploration of the influence of non-uniform dung 

distributions on soils and vegetation.   This has profound implications for rangeland 

monitoring and the acquisition of soil and vegetation samples which are the primary 

source of feedback on the health of a system, whether in relation to start or cessation of 

grazing, or a change in management strategies.   

 A UAV-based approach to mapping dung over large spatial and temporal scales 

 A novel approach to solving this problem could be to take advantage of the 

increased availability of unmanned aerial vehicle (UAV) technology and sensor 

capabilities for the spectral identification and mapping of dung, and the use of spatial 

analysis for the statistical assessment of dung distribution patterns across a landscape.  A 

UAV offers the benefit of being able to obtain imagery at high spatial and temporal 

resolutions that are conducive both to the identification of dung (e.g. spatial resolutions 

of 6-7 cm or less per pixel) and to its mapping and monitoring at frequent intervals.  In 

addition, there are a range of sensor options, from consumer-grade RGB cameras, to 

multispectral and thermal sensors, which may be of benefit for detecting dung and 

discriminating it from other features on the landscape (soils, vegetation).  

 UAV’s have been used in diverse range management projects, from vegetation 

monitoring (Sankey et al., 2019), to characterization of site ecohydrology (Vivoni et al., 
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2014), to mapping invasive plants (Sandino et al., 2018).  However, to my knowledge, 

there has not been a published study using UAV-sourced imagery for the identification 

and mapping of dung.   

 Evolving classification methods, such as geographic object-based image analysis 

(GEOBIA) (Blaschke et al., 2014; Hay and Castilla, 2008), combined with machine 

learning approaches, such as random forest and support vector machine, are making 

classification of images at higher spatial resolutions both more efficient and more 

accurate (Maxwell et al., 2018) and have already been successfully applied to a number 

of UAV-remote sensing projects (Pande-Chhetri et al., 2017; White et al., 2018).  These 

methods could also be applied to the classification of dung, with perhaps a greater 

likelihood of success than has ever before been possible. 

Conclusion  

Dung from grazing ruminants comprises a substantial and influential component 

of total nutrient input in grazed ecosystems and has both immediate and long-lasting 

effects on nutrient cycling processes, soil chemical and biological properties, and 

vegetation dynamics.  However, isolating the effects of dung and dung distribution 

patterns from other grazing-associated variables (e.g. trampling, harvesting of vegetation, 

urine excretion) is difficult due to the large spatial scales at which grazing occurs and the 

high temporal variability of dung deposition and decomposition.   

A new method to detect dung and document its location both spatially and 

temporally is needed to further our knowledge of dung’s important contribution to 

nutrient cycling in grasslands.  This would facilitate improved specificity of soil sampling 

efforts and long-term monitoring of the interactions between dung locations, concentrated 
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areas of dung deposition, and vegetation changes at scales that are appropriate for the 

investigation of pasture-scale effects.   Aerial imagery sourced from a UAV combined 

with remote sensing classification approaches using object-based image analysis and 

machine learning algorithms present the potential to do just that.  If successful, this type 

of high-resolution mapping and analysis could be combined with knowledge of dung 

nutrient contributions to soils and vegetation to create more accurate models of the 

effects of different grazing strategies and dung distribution patterns on the long-term 

dynamics of nutrient cycling processes across a wide range of ecosystem types.   
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CHAPTER 2:   
 

REMOTE SENSING OF CATTLE DUNG USING A UAV AND                               
MULTI-SPECTRAL IMAGERY: DETECTION, CLASSIFICATION AND 

SPATIAL ANALYSIS OF DISTRIBUTION 
 

 
Abstract 
 
 Knowledge and documentation of the distribution of cattle dung across grazed 

pastures is important for determining the spatial and temporal dynamics of nutrient 

cycling processes in grasslands and their effects on soils, microbial communities, and 

aboveground plant communities.  However, in-depth investigation of these distributions 

at adequate spatial extents and over meaningful time periods (i.e. years) is hindered by 

the lack of a time- and cost-efficient method for documenting dung pat locations and 

monitoring them over time.  In order to meet this need, we used an unmanned aerial 

vehicle (UAV) with a multispectral sensor to develop a novel technique of dung pat 

identification based on spectral reflectance and object-based image classification 

techniques.  Imagery was collected on eleven flight dates over two different grazing 

treatments which utilized vastly different stocking densities.  Images were then classified 

using supervised classification techniques with a support vector machine algorithm, and 

post-classification accuracy assessment was performed.  Results from the classification of 

eleven dates of imagery showed an overall classification accuracy of 82.6 % and a Kappa 

coefficient of 0.71.  The majority of classification errors were related to the 

misclassification of dung as vegetation, often in spectrally-complex areas where 

shadowing affected the ability of the classifier to correctly identify dung.  In pastures 

with lower stocking densities and longer cattle residence times, dung detection was 

hindered initially by the presence of tall vegetation, and subsequently by the loss of 
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spectral signal as dung dried over time.  Classification accuracy declined precipitously 

after dung reached 10-14 days of age.  Ripley’s K was successfully used to identify high-

density dung areas (clusters) at varying densities and spatial extents, which facilitated the 

identification of dung distribution patterns under the different grazing strategies and 

stocking densities used in this study.  The success of this method in other settings has yet 

to be tested, and overall classification accuracy needs to be improved before using it on a 

large scale.  However, this new approach to high-resolution dung identification, mapping, 

and spatial cluster analysis presents a promising alternative to existing methods.    
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Introduction 
 

Remote sensing has a long history of providing insightful data in the fields of 

agriculture, range management and natural resource management.  It has been 

instrumental in the development of precision agriculture (Mulla, 2013); has aided novel 

methods of detecting biodiversity (Wang et al., 2016; Wang et al., 2018), and has been 

used for monitoring vegetation changes in rangelands (Boswell et al., 2017; Eddy et al., 

2017).  Most imagery has historically been obtained by either satellite or manned aircraft, 

but more recently unmanned aerial vehicles (UAV’s), or drones, have also been used to 

obtain remotely-sensed data and imagery.  UAV’s offer the advantages of high spatial 

resolution imagery (e.g. centimeters instead of meters), greater flexibility in timing of 

obtaining imagery, cost savings (compared to owning or chartering a plane or helicopter), 

and a range of sensor options, from LiDAR, to multispectral, to high-resolution color 

imagery and 3D sensors.  Previous applications of UAV technology in agronomy and 

natural resource management include:  high-throughput phenotyping projects 

(Haghighattalab et al., 2016), monitoring senescence in crops (Andries B. Potgieter et al., 

2017; Hassan et al., 2018), and mapping and monitoring invasive plants (Martin et al., 

2018). 

However, UAV’s have not, to our knowledge, been used to detect and map a 

more neglected component of agricultural data:  the distribution of cattle dung in pastures 

or on rangelands.  In extensively managed grazinglands, where little to no inorganic 

fertilizer is applied to pastures, the dung and urine from cattle (and other ruminant 

livestock) constitute the majority of nutrient inputs back in to the system (Augustine et 

al., 2003; Bardgett and Wardle, 2003; Haynes and Williams, 1993; Rumpel and Rumpel, 
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2015).  It is estimated that upwards of 80% of plant nutrients consumed during grazing 

are returned to the ecosystem, with only a small percentage retained by the animal 

(Heady, 1994).  Digestion and subsequent excretion of plant-derived nutrients in both 

dung and urine make nutrients more available not only to plants (McNaughton et al., 

1997; Piñeiro et al., 2010), but also to the soil microbial community and others that feed 

on dung, such as earthworms, flies, and dung beetles (Holter, 1979; Merritt and 

Anderson, 1977).  Fresh dung is roughly 75-90% water, with the remaining contents split 

between inorganic ash and organic matter (Holter, 2016).  The organic matter is 

comprised of both undigested plant matter and millions of microbes—both fungi and 

bacteria (Holter, 2016).  Consumption of the organic matter component (aided by 

adequate moisture availability) by earthworms and dung beetles transports and transforms 

nutrient substrates further, spreading dung across a pasture and adding it to soil below the 

surface.  This, along with belowground plant responses to grazing which can stimulate 

growth in microbial communities (Bardgett et al., 1998), may explain why many studies 

find an increase in soil organic matter content in grazed vs. ungrazed sites (Abdalla et al., 

2018; Wilson et al., 2018).   

The re-distribution of nutrient and mineral resources from where they were 

consumed (via grazing) to where they were deposited (in dung) can have landscape-scale 

effects on everything from the soil microbial community (Bardgett and Wardle, 2003), to 

water quality (Tate et al., 2003), to the phytochemistry of the plant communities in the 

pasture (Hunter, 2016).  Thus, understanding the drivers of dung distribution patterns, as 

well as their long-term effects, is crucial for making grazing management decisions and 

managing nutrient cycling on rangelands.  For instance, studies have shown that cattle 
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congregation sites with high dung densities have lasting impacts on soils and vegetation 

(Augustine et al., 2003; Gillet et al., 2010; Porensky et al., 2016).  As such, knowledge of 

the spatial distribution patterns of dung in different grazing systems can be an important 

component of understanding grazing behavior (Bailey et al., 1996; Dubeux et al., 2014; 

Tate et al., 2003), carbon sequestration in pastures (Piñeiro et al., 2010; Rumpel, 2015), 

pasture ecology (Yoshitake et al., 2014), the behavior of coprophagous insects (Mohr, 

1943) and even the influence of commercial de-worming products on dung-feeding 

insects and animals (Beynon, 2012; Cooke et al., 2017).  Previous research addressing 

these drivers has demonstrated the site-specific nature of dung distribution patterns, 

which may be influenced by climate, season and/or weather (Dubeux et al., 2014); 

topography (Ren et al., 2018; Tate et al., 2003); stocking strategy or density (Oñatibia 

and Aguiar, 2018), or management decisions, including placement of water and mineral, 

the location of shade, or the size and shape of a pasture (Augustine et al., 2013; Oñatibia 

and Aguiar, 2018; Sigua and Coleman, 2006).   

Despite abundant knowledge about the important and complex (as well as 

potentially detrimental) effects of dung on soils and vegetation, and the keystone role 

excretion of dung plays in the nutrient cycles of rangelands, there has been relatively 

scant research devoted to studying the spatially-relevant and spatially-dependent 

cascading effects of dung within the grazed pasture ecosystem, especially over extended 

periods of time (years).  This may be due, in part, to the inherently messy nature of dung 

research, as well as the amount of time and large spatial scales involved in identifying 

and marking the location of dung pats, and subsequently monitoring their decomposition. 
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         Previous methods used to assess distribution and density of dung in a pasture 

include manual mapping of dung across a pasture (Auerswald et al., 2010); transect 

establishment (Augustine et al., 2003; Tate et al., 2003); use of the line intercept method 

(Oliver and Young, 2012); quadrat placement either randomly or along transects 

(Oñatibia and Aguiar, 2018; Yoshitake et al., 2014); or simply walking and marking pats 

and returning at a later date to observe changes (Dubeux et al., 2014).  Tate et al. (2000) 

used a novel technique to establish fecal loading on rangelands based on an existing 

method to estimate vegetation yield, but which did not explicitly map spatial locations of 

each dung pat.  One study using aerial imagery was located (Dennis et al., 2013) that 

utilized color imagery from a remote control helicopter.  However, this study looked 

primarily at urine patches using vegetation height and greenness as indicators for urine 

patches excreted a couple of weeks prior.  It is also not uncommon for ‘artificial’ dung 

pats to be created from manure from confined cattle and then placed on a pasture area 

separate from cattle for observation and analysis (Aarons et al., 2009; Evans et al., 2019) 

as a way to control the timing of dung placement and the environment, as well as to 

facilitate long-term monitoring in a protected space.   

All of these methods are temporally and spatially limited in their scope, and give 

only a small glimpse into the dynamics of dung distribution and the way it influences and 

is influenced by vegetation communities, grazing dynamics and management strategies 

(Auerswald et al., 2010).  On a typical ranch or grazing allotment that may encompass 

hundreds or thousands of hectares, it is not logistically possible to map and monitor dung 

at scales which are relevant or meaningful for these operations.  As such, remote-sensing 

technology, particularly UAV-sourced imagery, holds the potential to revolutionize our 
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ability to map and monitor dung distribution at much higher spatial and temporal 

resolutions than have previously been possible.  With centimeter-scale resolution, high 

temporal frequency of repeat image data capture, and the expanded analytical 

possibilities that multispectral sensor data and geographic information system (GIS) 

integration offers, UAV imagery presents an opportunity to gain new insight and analysis 

options in important areas of research that have thus-far been fairly elusive and under-

studied. 

This research project utilized a UAV-based multi-spectral sensor to capture high-

resolution images of cattle pastures in a Nebraska Sandhills meadow.  These images were 

then classified using geographic object based image analysis (GEOBIA) with a support 

vector machine algorithm, and dung distribution was mapped and analyzed using spatial 

statistics methods.  Our objectives were:   

   1.  Design a methodology for the acquisition, processing, and analysis of multispectral 

aerial image data to classify and map the spatial distribution of dung pats 

   2.  Evaluate the imagery for classification accuracy across multiple dates in order to 

understand how differences in image quality and ambient light conditions, as well as 

variation in vegetation characteristics and dung ages, may impact classification outcomes  

   3.  Determine the efficacy of spatial statistics methods to detect variation in the 

distribution and clustering of dung between low and high density grazing strategies on a 

subirrigated meadow in the Nebraska Sandhills. 

 
 
 
 
 
 



37 
 

Methods and Materials 
 
Site Description                                                                                                                                                        

The research site was located at the University of Nebraska's Barta Brothers 

Ranch, approximately 40 km southwest of Bassett, NE (42°13'13"N, 99°38'27"W), in the 

Nebraska Sandhills ecoregion.  The pastures that were part of this research were used in a 

long-term grazing study (2010-2017) that investigated the effects of different grazing 

strategies on animal performance, vegetation characteristics, and soil properties 

(Shropshire, 2018) and were located on a subirrigated meadow site with a seasonally high 

water table.  These wet, interdune areas are characteristic of the Sandhills region and are 

generally high-producing areas with good potential for hay production or beef cattle 

grazing (Horney et al., n.d.; Mousel et al., 2007).  Vegetation communities are dominated 

by cool season grasses (Phalaris arundinacea L., Poa pratensis L., Elymus repens (L.)  

Gould), Phleum pratense L.), rushes (Eleocharis and Juncus spp.) and sedges (Carex 

spp.), with a lesser occurrence of warm season grasses and forbs.  Soils at this site are 

sandy to fine sandy loam in texture and classified as mixed, mesic Aquic Ustipsamments.  

Average summer temperatures range from 21° C to 25° C and average yearly 

precipitation  (past 20 years) at the site is 665 mm with approximately 40% of the yearly 

total falling during the summer months of June-August (High Plains Regional Climate 

Center, 2018). 
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Grazing Treatments 

The 25 ha meadow was divided into five different treatments with two 

replications each, arranged in a randomized complete block design (Figure 2.1).  

Stocking rates were held constant across the treatments (7.4 AUM ha-1), but stocking 

densities varied between treatments due to the research objectives of the grazing study 

(Shropshire, 2018).  Treatments included: seasonal haying (one cutting per year in July); 

Figure 2.1.  Location of study site and aerial image of the Nebraska Sandhills meadow 
where the grazing study took place.  Only grazing treatments that were part of aerial 
imagery collection and analysis for this study are outlined, with pasture subdivisions 
for the 4PR1 replications also shown. 

4PR1 North 
 

Mob North 

4PR1 South 

Mob South 
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an ultra-high stocking density rotation (225,000 kg live weight ha-1, n=32 steers) in which 

cattle were moved twice per day across 120 paddocks (0.06 ha each, equal to a strip 5.8 

m x 98.8 m) over the 60-day grazing season; a four-pasture rotation in which cattle 

grazed each 0.42 ha pasture once during the season (7,000 kg live weight ha-1, n=9 

steers); a four-pasture rotation in which cattle grazed each 0.64 ha pasture twice during 

the season (5,000 kg live weight ha-1; n=10 steers); and a 0.40 ha control which received 

no haying or grazing. Yearling steers were brought to the site each June to begin grazing 

and remained at the site until early to mid-August of each year, at which point they left 

the site.  Therefore, no grazing occurred between mid-August and early June.  Imagery 

and analysis for this study was taken from the ultra-high stocking density (hereafter 

referred to as “north mob” and “south mob”) and the four pasture, once grazed (“4PR1 

north” and “4PR1 south”) treatments.  The large contrast between the stocking densities 

and rates of rotation between these two treatments enabled the assessment of changes in 

dung distribution patterns between two different grazing strategies, as well as the testing 

of spatial statistics to successfully identify these patterns, which was one of the goals of 

this research.   

Imagery Acquisition and Post-Flight Data Processing 

 Figure 2.2 summarizes the workflow for the entire process from imagery 

acquisition to final spatial analysis.  A senseFly eBee SQ (senseFly SA, Lausanne, 

Switzerland (www.sensefly.com)) and Parrot Sequoia multispectral sensor (Parrot SA, 

Paris, France (www.parrot.com)) were used to fly the research site and collect both RGB 

(i.e. true color) images and multispectral images.  The Sequoia contains a 16 Megapixel 

RGB camera, as well as four individual bands that record reflectance in the green, red, 

http://www.sensefly.com/
http://www.parrot.com/
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red edge, and near infrared wavelengths.  Band centers are located at 550 nm, 660 nm, 

735 nm, and 790 nm, with ranges of 530-570 nm; 640-680 nm; 730-740 nm; and 770-810 

nm, respectively.  The sensor is integrated with an irradiance sensor which, when 

combined with calibration target readings taken before a flight, uses at-sensor radiance to 

calculate absolute surface reflectance across dates and flying conditions.  This sensor also 

houses the GPS unit, the inertial measurement unit (IMU) and magnetometer.  

Radiometric calibration was performed prior to each flight using an Airinov calibration 

panel supplied as part of the Sequoia system.  senseFly eMotion flight control software 

was used for flight planning, execution, and in-flight operations, as well as for initial 

processing of the flight and geotagging of images. 

Flights took place within two to three hours of local solar noon, except when wind 

or weather conditions necessitated data collection either slightly before or after this ideal 

time period.  Flight altitudes were consistently around 70 m above ground level (AGL) 

and stayed constant regardless of topographical variation, which resulted in a ground 

sampling distances (GSD) of between 6-7 cm for all flights and images.  Flight line 

overlap was maintained at 75% for each flight.  Normal flight times for a single flight 

that covered one entire mob pasture (6.8 ha) 
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Figure 2.2. Image acquisition, classification, and accuracy assessment workflow 

 

and one replication of the 4PR1 treatment (1.7 ha) ranged from 35 to 50 minutes, 

depending upon wind conditions and the exact flight pattern on a given day.  Ground 

control points were selected by identifying fixed, readily-identifiable features (e.g. wood 

corner posts, corners of exclosure cages, water tanks) on the landscape and their GPS 

locations recorded using a Trimble Geo 7X unit (Trimble, Inc., Sunnyvale, CA, USA).  

These points were then used in Pix4D to increase horizontal accuracies during image 

processing (to achieve final accuracies of 15-40 cm).   

 

senseFly eBee:                 
Image Acquisition

Pix4D:                             
Image processing and 

georectification;  
creation of reflectance 

files (.tif) 

ArcGIS:                 
composite 4 bands plus 

calculated blue band 
into single raster file 

ArcPro:                          
training sample selection 
and object-based image 
classification with SVM

Initial assessment of 
accuracy; if needed, add 

additional training 
samples and re-run 

classifier

Accuracy assessment 
using ground truth data 

points

Create polygons from 
raster data and point 
data from polygons

Export dung points to 
new feature class and 
clip at pasture polygon   

boundaries

Perform spatial 
analyses on dung point 

data
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Table 2.1.  Summary of UAV flight dates, dung ages, and ground truth data points used 
in the image classification accuracy assessments   

Date Pasture 
Age of Dung 

Being Classified 
(days) 

No. of 
Ground 

Truth Points 
June 30, 2017 Mob 22 1-15 days  49 

July 7, 2017 Mob 11 7 days 25 
July 7, 2017 Mob 11 1-4 days 13 

July 10, 2017 4PR1S 3-14 days 39 
July 10, 2017 Mob 22 1-2 days 21 
July 10, 2017 4PR1N 1-14 days 40 
July 21, 2017 Mob 22 1-7 days 24 
July 21, 2017 Mob11 1-12 days 25 

August 6, 2017 Mob 22 1-7 days 57 
August 6, 2017 Mob11 1-10 days 37 
August 8, 2017 4PR1N and S 1-15 days 52 

             

  Post-flight processing (georectification and addition of ground control points, 

image stitching/mosaicking, and reflectance calculations) occurred in Pix4D (Pix4D SA, 

Lausanne, Switzerland).  The resulting individual reflectance files were then exported to 

ArcMap (ESRI, Redlands, California) and stacked together into a multi-layered GeoTIFF 

that contained all 4 bands, plus an ‘artificial’ blue reflectance band calculated using 

reflectance values from the visible green band and the NIR band ((visible green*3 + 

NIR)/4; calculated using Raster Calculator in ArcMap).  This file was then used as the 

base for all further image analysis.  The blue band was added as an extra dimension due 

to the findings from previous research (Shine, unpublished data) with a hyperspectral 

sensor that showed that the greatest spectral variation between dung and soil occurred in 

the visible blue spectrum, which may make it particularly important in distinguishing 

between dung and soil.  However, a brief examination of the outcomes of classification 

results for four-band composite images (without the visible blue band) vs. five-band 
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composite images did not reveal any striking loss or gain of accuracy or clarity in dung 

discrimination.  However, subsequent analyses continued to use the 5-band composites to 

provide as much spectral resolution as possible during the classifier training process.   

Image Classification 

 Supervised classification of the 5-band image was performed in ArcPro 2.4.0 

(ESRI, Redlands, CA, USA) using the image classifier tool with a support vector 

machine (SVM) machine learning algorithm.  Random tree (RT) and maximum 

likelihood (ML) analyses were also performed for initial comparison between the 

accuracies of the three techniques.  The ML classifier did not approach the accuracies of 

the SVM and RT classifiers, so it was immediately eliminated as an option.  This is 

consistent with results from other imagery classification studies that have found poorer 

performance from ML compared to more advanced classification techniques, like SVM 

(Maxwell et al., 2018).  After classifying imagery from three different flight dates with 

both RT and SVM, it was determined that RT usually under-classified dung (false 

negative classification error) and SVM dung classification often spilled over into other 

classes (false positive classification error), but overall the support vector machine 

classifier outperformed the random tree.  In refining training sample selection, it was 

found that optimizing selection for one classifier did not necessarily improve the 

accuracy of the other classifier.  In addition, sometimes RT worked better in one part of 

the image, and SVM worked better in another.  For these reasons, additional comparisons 

between classifier method accuracy were halted in order to focus on training the SVM 

model over the long term to better understand what was needed to make training sample 

selection more accurate and efficient.   
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Table 2.2.  Description of classes used for classifier training 

 

 

Object-based classification was chosen over pixel-based, in order to include 

information relating to size, shape, texture, and location of features (especially dung) in 

the training data (Hay and Castilla, 2008; Pande-Chhetri et al., 2017).  Continuing 

advances in the science of geographic object-based imagery analysis (GEOBIA) have 

helped to make this method a preferred option for image classification work (Maxwell et 

al., 2018), and it was particularly applicable to this analysis which required classification 

at vastly different spatial scales and the separation of small objects from a background of 

varying spectral characteristics which sometimes were nearly-identical to the object itself 

(Blaschke et al., 2014).  This allowed for the selection of the same area for different 

classes, which appeared to have led to excellent results in the final classification.  For 

instance, a large area could be delineated as “grazed vegetation,” but within that polygon 

addition training samples could be selected as “dung” or “soil”.  This technique was used 

most frequently in the challenging areas of grazed and trampled vegetation where the 

classifier either under- or over-classified dung based on the dominant spectral signature 

of the vegetation it was found on. 

Class   Description
Dung Readily-identifiable dung pats from a range of ages (1-10 days old)
Soil Bare soil patches within pastures and along farm roads; gopher mounds
Wet Soil Saturated soil found near watering points 
Water Watering troughs
Lush Vegetation Ungrazed vegetation with a relatively homogeneous spectral signature
Trampled Vegetation Vegetation that was trampled or showed trampling lines, not grazed
Grazed Vegetation Heavily-grazed areas with little vegetation left 
Fencelines Vegetation beneath fencelines which was not heavily grazed or trampled
Cows Cows visible in the final image
Cages Exclosure cages present in the pasture used for vegetation sampling
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In each image set, training samples were selected across the image to represent 

the eight thematic classes shown in Table 2.2.  Between 200 and 300 dung training 

samples were selected to use in the model training process for each image file.  In terms 

of absolute number, polygons of classes other than dung made up a fraction of the dung 

samples (approximately 5-25 polygons of each class).  In terms of total number of pixels, 

however, they greatly outnumbered the pixels contained collectively in all dung training 

samples (dung pixels usually represented less than 1% of the total number of pixels 

selected for training).  Figure 2.3 shows a representative image with multiple training 

data class locations highlighted.  Although not every class is visible in this image 

snapshot, it still provides an accurate overview of what training sample selection looked 

like in a typical image.   

Accuracy assessment 

Accuracy assessment of the classified images (6 dates; see Table 2.1) was 

performed manually due to the slight discrepancies in geolocation between ground truth 

data and image data, even after post-flight corrections using ground control points.  With 

higher locational accuracies (1-2 cm) this analysis could have been automated in ArcPro 

by assessing the matches between GPS point labels and the corresponding pixels or 

polygons.  However, the small size of the target object (i.e. dung), the geolocational 

accuracy limits of both the Trimble GPS unit and the eBee/Sequoia data, and the lack of 

real-time kinematic (RTK) or post-processing kinematic (PPK) processing options 
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Figure 2.3: Example of training data selection in an image of the south mob pasture     
(July 21, 2017).  Colors represent different training classes.  Pink = “fencelines”; blue = 
“trampled vegetation”; light green = “grazed vegetation”; brown = “dung”; black (visible 
in top left corner) = “soil”. 

 
presented enough variation between mapped locations within the GIS that this was not 

possible for this project.  These discrepancies fell within the normal range of accuracies 

expected for the UAV imagery and the Trimble GPS points, and were consistently within 

0-40 cm of each other.  When verifying the accuracy of a classification, pixels (and 

groups of pixels) were deemed correctly-labeled when they fell within 7 pixel lengths 

(42-49 cm, depending on GSD) of the GPS ground truth point which referred to them.  

This allowed for some leeway in accommodating the limits of the precision of the 

equipment that was used to collect the data, without over-extending the accommodation 

to pixels that were too far from the GPS point.  On one image date, the accuracies were 
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reduced below this expected threshold, but distance discrepancies were consistent across 

the image in direction and magnitude.  Therefore, for this image set, an additional 2-3 

pixel lengths were allowed in order to capture the true performance of the classifier, 

regardless of the poor geolocational accuracy.  In the mob treatments, only ground truth 

points corresponding to dung that was 10 days old or less were evaluated for accuracy.  

After dung passed this age, classification errors rose precipitously and the imagery was 

no longer useful for accurately detecting dung (see discussion).  Ground truth data for 

vegetation was not collected in the field with the GPS unit, so an alternate visual 

interpretation method of checking for classification accuracy had to be used.  Accuracy 

assessment points (2000 per image set) were randomly generated in ArcPro across the 

classified raster.  Of these points, all four of the vegetation categories were selected as 

potential ground truth data and approximately 25 points in each pasture, per image date, 

were used as substitute ground truth data.  Accuracy was not assessed within vegetation 

classes (e.g. “trampled vegetation,” “lush vegetation,” etc.), but on correct classification 

as vegetation as an aggregated, general class. 

Spatial Analysis 

 Classified raster data has limited use in spatial analyses.  Because each pixel is 

still classified as just one distinct class, the data is not in a form amenable to object-based 

analysis of distribution or clustering patterns.  Therefore, after classification and accuracy 

analysis was performed for each of the image dates, the raster data was converted to 

polygons using the raster-to-polygon tool in ArcPro, which transformed each group of 

similarly-classified pixels (i.e. segments) into a polygon.  This transformation was 

necessary in order to then create point data from the polygons, which subsequently 
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allowed the dung distribution to be modeled and analyzed as discrete points, a task not 

possible using raster data alone.   

 After all of the polygons were transformed into points, the subset of points which 

were classified as dung were extracted from the shapefile and a new feature class layer 

was formed that contained only dung data.  Then, each pasture was clipped from the 

larger image so that the subsequent spatial analysis was confined to one replication of a 

grazing treatment at a time.  The density-based clustering tool with the defined distance 

(DBSCAN) method was used to identify clusters.  With this tool the spatial scale of 

clusters and the density of dung pats within them could be set manually after iteratively 

exploring different combinations of distance and density.  This clustering tool is not 

affected by the size of the area being analyzed, as it is only identifying clusters that meet 

the space parameters set by the analyst.  This allowed clusters to be identified within the 

two different grazing treatments, even though the total areas of each treatment, and the 

area of each rotation within each replication, varied significantly (the effect of pasture 

sizes and shapes on dung distribution patterns that led to the results of the clustering 

analysis is explored further in the discussion section of this paper).  There are other tools 

available for clustering analysis within ArcPro, but these take into account point attribute 

data (i.e. a value associated with the point in addition to its location) when assigning “hot 

spots” or “cold spots” of clustering.  Since there was no attribute data of significance to 

the determination of clustering of dung, these tools were not evaluated for their 

performance. 

The multi-distance spatial cluster analysis tool (Ripley’s K) was assessed for its 

correlation to the magnitude of clustering across imagery dates and pastures.  Ripley’s K 
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also measures degree of clustering, but it does so at a selected number of user-specified 

distances (e.g. every 3 meters)  in order to assess how clustering changes over different 

spatial scales, and at what distance(s) it is most significant (Mitchell, 2009).  It looks at 

all the neighboring points present at a specified distance, not just at the nearest point as in 

the nearest neighbor index.  This analysis has the advantage of producing visual output in 

the form of a graph that plots the expected K values (or their transformed counterpart 

value, L(d)) as well as the observed K values from the study area and does so across all 

distances used in the analysis so that it is evident at which distance clustering peaks.  

Distributions can be graphed alongside each other in order to compare clustering patterns 

over time or between multiple data sets. 

Results 

Classification 

 The primary way to measure the success of an imagery classification project is 

through the creation of a confusion matrix, or an accuracy assessment in table form 

(Jensen, 2005).  This matrix not only shows the overall accuracy of a classification, but 

also breaks down the results into individual categories so that classification errors can be 

assessed between and within classes, giving more insight into which class categories are 

the most problematic.  In addition, scores are calculated for the producer’s accuracy and 

the user’s accuracy, which measure errors of omission and commission, respectively.      

 Our analysis showed promising overall accuracy, 82.6%, with even better results 

for individual classes, especially for dung (Table 2.3).  The corresponding Kappa 

coefficient was .72, indicating “substantial” agreement between ground truth data and the 

classification after accounting for statistical chance in agreement of the results 
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(Congalton, 1991).  The results for individual classified vegetation categories were not 

assessed for accuracy in this analysis because the focus was on delineating dung from 

vegetation and soils, not classifying specific vegetation patterns or types.  As a result, the 

accuracy assessment results for a generalized vegetation class were calculated.   

 There were several unexpected findings related to classification that had not been 

anticipated during the ground truth data collection phase of the project.  First, because the 

spectral signatures of dung and vegetation are typically quite distinct, it was not expected 

that there would be many classification errors between dung and vegetation.  However, 

this was not the case and, in fact, the majority of dung mis-classifications were due to it 

being assigned to a vegetation class, not to a soil class, as we had expected (due to the 

very similar spectral signatures between the two).  In particular, the dark shadowing 

found under fencelines where cattle were not able to graze as heavily (the lines that 

separated each 24 hour grazing period, not the 12 hour periods) mimics a reflectance 

pattern characteristic of dung, which leads the classifier to easily misinterpret these areas 

(Figure 2.4c).  This is likely due to the similarity in NIR absorption characteristics in 

shadowy areas, and possibly also to the lower reflectance values in the red edge band.  

Figure 2.5 graphically demonstrates how closely aligned the spectral signatures are for 

“old dung” and “fencelines.”  Adding “fencelines” as a class during the training phase 

helped reduce this source of error, had the effect of minimizing the number of pixels 

classified as soil in these areas, and increased the classifier’s accuracy in correctly 

assigning bare soil and gopher mounds to the “soils” class. 
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Table 2.3.  Error matrix of the accuracy assessment results from all image analysis dates 
(6) using supervised classification and a support vector machine algorithm 

Class Dung  Soil Vegetation Total User's  
Dung 221 11 6 238 0.93 
Soil 13 52 1 66 0.79 
Vegetation 70 15 278 363 0.77 
Total 304 78 285 667  
Producer's 0.73 0.67 0.98     
Overall Accuracy:     82.6%   
Kappa:       0.71   

 

Interestingly, both the RT and SVM classifiers rarely misclassified dung on areas which 

hadn’t been grazed (which were part of the original flight mission—peripheral areas that 

were photographed without good overlap were subject to much spectral distortion).  In 

other words, in areas of lush vegetation with deep shadowing, dung was rarely assigned 

to pixels in these areas.  This may have been a result of the strong vegetation signal that 

was consistent across the canopy, even when shadowed areas existed below, which made 

the vegetation type more distinct from dung.  It was also evident from early classification  

attempts that trampled vegetation was another prominent source of error, mis-classifying 

vegetation pixels as dung, and vice-versa, and that another vegetation category would 

need to be added for trampled vegetation.  Image exploration using known areas of 

trampling (e.g. tire tracks in a meadow area with adequate vegetation cover) revealed that 

these areas showed a complex mix of reflectance patterns, with spectral characteristics of 

abundant vegetation, soils, and dung (corresponding to, respectively, high NIR                                      
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reflectance (both soils and healthy veg) and high NIR absorption (shadowed areas deep in 

the vegetation).  Figure 2.4 shows an up-close image of cattle trampling tracks in one of 

the mob pastures.  It is easy to see how diverse this area is spectrally, and at what a fine 

spatial scale it changes over, producing dung-sized shadowed areas that easily could be 

mis-classified.  Again, once this category was added there was a significant reduction in 

the number of vegetation pixels mis-classified as dung. 

Trampling lines in 
mob pastures

b.

Cows and the 
shadowing effect 

from their movements 
during UAV flight

a. 

Fenceline effect and 
change in reflectance 
with underlying wet 

soil 

c.

Figure 2.4.  Three common causes of classification error:  a. trampled vegetation and its 
complex spectral pattern; trampled areas are dark green and standing vegetation is light 
purple. Note especially the large amount of variation in reflectance qualities (represented 
by different hues) across short distances.  b. presence of cows and shadows from their 
movements during UAV image capture over multiple flight lines.  c. fenceline effect on 
vegetation height and structure under temporary fencelines and its effect on spectral 
reflectance, and the change in reflectance due to the wetter soils (bright yellow-green 
stripe) underlying an ephemeral stream through the pasture. 



53 
 

The most successful classification of dung occurred when it was found on areas 

that had a consistent spectral response pattern across pixels (e.g. an expanse of 

homogeneous vegetation).  In this instance, the dung ‘object’ is more readily identifiable 

by the computer-based classification method as something that is its own entity, separate 

from the background class.  When the spectral picture is more complex, it becomes more 

challenging to assign a class to an object (dung) that is already spectrally-heterogeneous  

(wet interior, dry edges).  Figure 2.5 shows the spectral signatures of the most common 

classes and how closely some of them overlap spectrally. 

 
Figure 2.5.  Spectral signatures of selected classes.  Bands are as follows: 1: visible blue, 
2: visible green, 3: near infrared (NIR), 4: visible red, 5: red edge 

 

 Another classification pitfall that was encountered was that of obtaining imagery 

while cattle are still in the photo (Figure 2.4b).  The stitched final image contained 

shadowy cows in different locations across the pasture due to their movement between 

drone flight passes.  Depending on how active the cattle were during the drone flight, this 

can create substantial noise in the image and cover-up underlying details of the 
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vegetation and dung patterns due to the shadowing.  Cattle (Black Angus, in this 

instance) are apparently very dung-like in their reflectance characteristics and were 

classified as dung until a separate category was created for them.  Training sample 

selection of cows was most successful when it included a generous boundary around the 

animal that also captured their dark shadow on the ground around them.  Otherwise, those 

areas would have been classified as dung. 

 Our results show that there is a limited window of time for UAV-acquired 

imagery to be useful in assessing distribution in productive pasture areas.  Dung must be 

fresh enough to send a strong spectral signal that distinguishes it from soil or other 

features (via moisture characteristics), but at the same time vegetation must be at a height 

and density that allows detection of dung.  However, in other pasture or rangeland 

settings that are characterized by shorter, sparser vegetation, dung may be much easier to 

detect both immediately after grazing begins and for a longer time period after initial 

deposition, if re-growth of grazed vegetation is slow.  In this sub-irrigated meadow, there 

was a window of 7-10 days during which dung was most easily identified.  This was fine 

for the mob grazing trial, where cattle were moved off of the grazing strip after 24 hours, 

but in the four-pasture rotation where stocking density was lower and residence time in 

the paddock was longer, it was challenging to see dung in the deep vegetation during the 

first few days.  By the end of the rotation 15 days later, dung distribution was apparent, 

but a significant proportion of total dung would have dried or been decomposed enough 

that it was no longer visible to the sensor (or to the human eye).  For example, in the June 

30th imagery of the south mob pasture, 47% of dung was classified correctly prior to day 

14, but after day 14 (i.e. dung was two weeks old) only 17% of dung was accurately 



55 
 

classified.  In order to fully capture and map dung distribution over time in these 

pastures, UAV imagery would need to be acquired at the beginning, middle and end of 

the 15 day period. 

While dung and soil were not as frequently mis-classified between classes as they 

were with vegetation, there are definitely still concerns about this source of error.  Wet 

and dry soil (which was present primarily as gopher mounds at this location) had to be 

assigned their own classes due to their very different spectral signatures (Figure 2.5).  If 

enough training samples were included in both classes then the confusion between dung 

and soils was minimized.  In other settings soil type and moisture will also likely have 

significant impacts on the effectiveness of detection and classification of dung.  If soil 

moisture is high, and there is a significant amount of bare soil visible, NIR absorption is 

increased and makes discerning patches of dung from bare soil more difficult.  Along 

those same lines, soils with high organic matter content and/or high clay content will 

reflect both visible and NIR light differently than sandy, low-OM soils (Askari et al., 

2015; Wight et al., 2016), also changing the algorithm needed to discern dung from soil. 

An additional area of classification confusion was in the most heavily-trafficked 

areas (corners, watering points), where there was a tendency for the classifier to produce 

nearly solid blocks of dung pixels when they should have been easily-delineated as pats 

or classified as soil (Figures 2.6 and 2.7).  This was particularly evident in the mob 

pastures with ultra-high stocking density.  There are two possible causes of this error.  

First, the soil signal is probably much stronger in these areas due to heavy trampling and 

grazing which allows the soil to be ‘seen’ by the sensor.  The similarity between soil and 

dung then leads the classifier to blanket-classify large areas as dung.  However, there is 
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another possibility for this error.  Because there is so much trampling, walking, resting 

and ruminating in this area, it is possible that there is actually a large amount of dung that 

has been spread more thinly across the surface of the pasture after being excreted.  This 

dung is not visible to the naked eye, but the spectral signature is still intact enough that 

the algorithm correctly classifies it as dung.  Returning to these areas within a short 

timeframe after classifying the image would reveal if this was in fact the case. 

 
Figure 2.6. Example of a classified image from the mob grazing treatment 
 
 
 
 
 
 
 



57 
 

 

 

Figure 2.7. Over-classification of dung in highly-grazed and trampled areas of the 
pasture.  On the left is a false-color image (3 of 5 bands loaded to different color guns); 
on the right is the classified image with only dung-classified pixels colored (brown 
pixels).  It is easy to see that many more pixels were assigned a “dung” classification than 
were actually dung, based on the image on the left. 
 

II. Spatial Analysis 

 The process of converting raster to point data gave a highly-accurate rendering of 

actual dung locations.  In areas where classification produced groupings of dung-

classified pixels that were not exclusively dung (i.e. pixels that were not dung were 

classified as dung; see Figure 2.7), the transformation from raster to point data served as 

a way to visually minimize error, as each of those larger polygons of contiguous dung 

pixels became a single point.  This allowed for an easier overall visual inspection of the 

accuracies of points vs. actual dung visible in the image.  However, this is still an 

inaccurate representation of a dung location, and had significant effects on the clustering 

analyses performed later on (as discussed below).  

 Another advantage of transforming raster data for dung into point data is that it 

makes it possible to increase the accuracy of the final shapefile by manually performing 

an accuracy analysis of the point data against the orthomosaic and eliminating points that 

are not clearly associated with dung on the ground, though this may present its own set of 
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issues in cases where dung is detected correctly by the sensor and classifier, but not by 

the human eye.     

 Results from the density-based clustering analysis clearly showed differences in 

distribution across mob-grazed strips and the 4PR1 pastures.  Figure 2.8 shows three 

iterations exploring the process of choosing optimal distances and dung points to 

accurately represent clustering at a meaningful spatial scale.  Because there is no 

definition of what qualifications a grouping of dung pats has to meet in order to be 

considered a ‘cluster,’ the results of the analysis had to be weighed against knowledge of 

what is likely to be significant clustering for not only the system under study, but for 

other grazing strategies as well.  A distance of 6.1 m was chosen as a large enough area 

that multiple animals could potentially be present for an extended time in, and a density 

of approximately 12 dung pats per meter gave rise to statistically-significant clusters 

(2.8C) that were neither too large and poorly-defined (Figure 2.8A), nor so small that the 

  

 

Figure 2.8. Results of density-based clustering using parameters of A. 50 points in 6.1 
m., B. 25 points in 3 m. and C. 75 points in 6.1 m.  Colors only represent different 
clusters and have no analytical or classification significance. 
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clusters could have been the result of a short duration of dung accumulation by a few 

animals, instead of from heavy and/or repeated utilization (Figure 2.8B).  

Additionally, a distance of 6 m is approximately the width of each grazing strip in the 

ultra-high stocking density treatment.  This allowed an assessment of clustering to be 

conducted at a scale  that corresponded to the smallest grazing unit (both spatially and 

temporally) being used in this study, which was important for our research objectives.  

While the goal of this project was primarily to assess the potential for a new 

methodology in detecting and mapping dung, we also hoped to gain insight into thec 

changing patterns of dung distribution between different grazing strategies, a high-

stocking density treatment with fast rotations and a low-stocking density treatment with 

longer residence times in each pasture.  This proved to be more challenging than 

anticipated due to the early inability to detect dung in the 4PR1 pastures (due to thick 

vegetation) and the loss of detection capabilities after dung reached 7-10 days of age.  In 

addition, as mentioned previously, relatively small (in terms of spatial area)  

errors in classification of dung can have large impacts on the assignment of clustering for 

a given date and over a range of dates in the same pasture, which makes assessment of 

changes in clustering over time nearly impossible in the absence of highly-accurate 

classifications, or post-classification intervention and point editing as suggested earlier. 

  In Figure 2.9 the results of a particularly over-zealous classification scheme of 

dung are shown.  This leads to two analysis challenges: first, it gives the impression of 

one giant cluster spanning nearly 3 weeks of grazing rotations, which is not accurate.  

Second, it obscures the underlying true clusters that do exist, prohibiting the utilization of 

the correct data for spatial analysis.  These classification errors also impact the statistical 
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measure of distribution that we carried out:  multi-distance spatial clustering (Ripley’s 

K).  Again, the differences in classification errors between dates changes not only the 

location of clusters, drawing into question the validity of results, but also the statistical 

significance of the clustering. 

 

 

Figure 2.9: Over-classification of dung in a mob pasture.  Colors represent independent 
clusters and have no other analytical or classification significance.  

 
Despite these shortcomings, it was obvious from both the non-classified raster 

image, and the density-based clustering analysis after classification, that the ultra-high 

stocking density treatment did not lead to consistently dispersed (i.e. more evenly 

distributed) dung distributions.  Figure 2.12 is a good representation of typical dung 

patterns in the mob.  Most often dung was concentrated on the side of the strips nearest 

the water source; although there were dates where the heaviest clustering occurred in the 

middle or opposite end of the grazing strip.  The 4PR1 treatments also consistently 

showed clustering, usually in the corners of the paddock.  The last date of imagery in 

2017 (8/6) surprisingly showed no clustering in the last 4PR1 rotation, however. 
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We found that Ripley’s K was closely-aligned with the density-based clustering 

results and gave a good indication of how much clustering took place, with the added 

benefit of assessing how it changed over increasing distances.  Figure 2.10 shows the 

image from August 8, 2017, of the 4PR1 north pasture.  The density based cluster 

analysis found no clustering at the end of this rotation.  Ripley’s K (Figure 2.11) mirrored 

this result, showing that clustering was close to what was expected for a random 

distribution until a search distance of 12 m. was reached, at which point the observed 

values fell below the expected, indicating a more dispersed pattern.  In the north mob 

treatment from that same date, we find similar good agreement between the cluster map 

and Ripley’s K, with clustering relatively stable across the examined distances (Figures 

2.12 and 2.13). 

 

Figure 2.10:  Density-based cluster analysis of 4PR1 North from 8/6/2017, showing no  
statistically-significant clusters (grey dots are dung locations). 
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Figure 2.11: K Clustering Analysis for 4PR1 South, 8/6/2017 

 

 

Figure 2.12: Density-based clustering analysis for north mob treatment, 8/6/2017 
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Figure 2.13: K Clustering Analysis for the north mob, 8/6/2017 
 

Discussion 

Scale has always been an essential component of both the philosophical and the 

scientific discussions surrounding the management, ecology, and sustainability of 

grazinglands (Sayre, 2017; Kothmann et al., 2009). This research is no exception; scale 

once again must be addressed to answer the most basic questions regarding dung nutrient 

and organic matter inputs, and what they mean for rangeland health and grazing 

management.  At what scale does clustering become meaningful?  At what scale is it no 

longer meaningful?  If our analysis stops at the pasture fence, are we missing landscape-

scale patterns that continue on the other side?  Oñatibia et al. (2018) highlights the 

difficulty of disentangling scale (in this case, paddock size) from other factors such as 

increasing vegetation heterogeneity at larger paddock sizes, stocking density, and 

watering locations.  They also address the non-linearity inherent in grazing effects at 

different scales.  In this research project, there are likely confounding effects of pasture 
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size and shape on dung distribution that make a true, unbiased analysis of dung 

distribution based on stocking density alone a challenge.  Future research should continue 

to explore the density-dung distribution relationship within the framework of identical 

pasture sizes and shapes to remove confounding variables (Augustine et al., 2013).  

Spatial modeling of dung with highly-accurate classification maps and across ranch-scale 

pasture sizes may be one way to continue to develop more accurate models of dunging 

and grazing behavior and their effect on nutrient re-distribution patterns.  In addition, 

aerial imagery may help to reveal previously-unnoticed patterns in vegetation and dung 

distribution at different spatial scales, facilitating the scaling of ecological investigations 

on rangelands by changing both the grain and extent of our viewpoint (Wiens, 1989). 

 There is a popular assumption that higher stocking densities lead to more even 

dung distribution.  It is reasoned that more homogeneous vegetation use and higher 

numbers of cattle in a small space must lead to more even distribution of dung and urine.  

But as Tate et al. (2003) point out, spatial patterns of vegetation use do not mimic dung 

distribution patterns, and this assumption ignores basic cattle biology and behavioral 

science, as well as abundant research on the preferences of cattle for specific lounging 

and ruminating areas (e.g. near watering points or mineral feeders) that naturally give 

way to higher densities of dung accumulation over time in certain areas (Augustine et al., 

2013; Bailey et al., 1996; Oñatibia and Aguiar, 2018).  Our early assessments of dung 

clustering in two different grazing management strategies show that increasing stocking 

density does not automatically lead to more even dung distribution, and support previous 

research findings that the drivers of when and where dung accumulates are both 

predictable (corners, watering points, shade) and complex (heterogeneity of vegetation 
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and associated quality factors across a pasture, paddock size and shape, etc.).  Image 

analysis and classification of dung presents the opportunity to more objectively study and 

statistically evaluate these claims and beliefs at scales that are relevant to rangeland 

management and livestock production (Sayre, 2012). 

Perhaps one of the most promising aspects of being able to create spatially-

accurate dung maps is the potential for geographical analysis across dates, both within a 

grazing season and across years.  For example, prior to grazing an area, imagery could be 

collected and classified into vegetation categories, with ground truth validation for 

species composition and abundance.  After cattle are removed from the area, the two 

imagery layers could be combined to perform spatial regression analysis on the 

relationship between vegetation type, severity of grazing, and patterns of dung 

distribution.  If this was to be performed over a series of years, deep insight could be 

gained into how nutrient re-distribution affects grazing preferences and vegetation 

communities across large areal expanses and at spatial resolutions that heretofore would 

have been impossible to capture with data collection solely on the ground.  Additional 

map layers with soils information, topography, or other relevant data could be added in to 

the analysis, as well, to increase the dimensionality of data.  Accurate dung maps could 

guide soil sampling efforts in the field, predict the potential for non-point source 

pollution of water by manure in susceptible areas when combined with hydrology data 

(Oliver and Young, 2012; Tate et al., 2000; Vadas et al., 2011),  and serve as a locational 

guide and spatial record-keeping resource for entomologists studying dung-dwelling and 

dung-feeding insect ecology (Holter, 2016).   
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There is a large body of work surrounding the impact of grazing on soil properties 

and the soil microbiological community, but given the complexity of ecosystem variables 

and processes at play in any given pasture, authors often report that it is challenging or 

impossible to separate out the most meaningful influences of aboveground drivers, such 

as dung and urine, trampling, and grazing, on belowground processes (Bardgett and 

Wardle, 2003; Schrama et al., 2013).  Tying specific dung locations and their effects on 

associated soil microbiological communities and soil physical and chemical properties at 

a very fine scale may help refine our understanding of these impacts (Ford et al., 2013; 

Odriozola et al., 2014).  This type of layer analysis has been called for in previous 

research (Auerswald et al., 2010; Tate et al., 2003, 2000) and would be beneficial across 

a wide range of disciplines and study topics.  We also feel that there is the potential to use 

this imagery to assess trampling patterns and possibly estimate the amount of vegetation 

(and nutrients) being returned to the soil via trampling pathways.  Trampling was evident 

in our images, but whether or not it would also be evident in other vegetation 

communities, or at other times of the year, remains questionable.  A reliable method for 

translating the amount of trampling into a measure of biomass would also have to be 

derived, which may be difficult. 

 In terms of imagery acquisition, classification, and analysis, subsequent research 

could address several points that were not able to be rigorously evaluated in this project.  

More comprehensively assessing the impact of the inclusion of the visible blue band 

would help determine just how important it is to either use a calculated band or a sensor 

with a blue band embedded in it.  Pixel resolution is another topic that could be explored 

further, as well.  Achieving the highest resolution possible was the aim in this study, but 
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flights over larger pasture areas than those in this study would realistically need to be at 

higher altitudes to efficiently collect imagery given the constraints of data collection and 

storage limitations, flight times, and battery life, which would lead to lower pixel 

resolutions.  It is possible that a coarser image (i.e. an image with pixel resolution of 8-9 

cm instead of 6-7 cm) may prove to be more accurate by removing finer spatial details 

that can make classification more challenging for a machine classifier.  There are a wide 

variety of machine learning classification methods that could be applied to this problem, 

and it is possible that an alternate method such as artificial neural network (ANN) would 

produce better classification results. Image enhancement techniques, such as band 

ratioing or smoothing (Jensen, 2010), could prove to be beneficial for the visual 

identification of dung in an original reflectance raster file, and for analysis purposes, 

which makes this another area worth exploring. 

Ideally, a single algorithm could be developed to apply to any imagery set which 

would reliably classify dung, regardless of the physical site characteristics.  However, 

after classifying the images used in this research it seems unlikely that this is truly 

feasible given the huge amount of variation in reflectance values for any given class 

between image dates, due to both image quality issues that arise during acquisition and 

processing, and the inherently diverse spectral properties of different soils and vegetation.  

At present, an individualized, site-specific approach to classifying dung using supervised 

classification methods via a GIS platform is recommended as the ideal way to assess 

dung distribution patterns across a variety of ecological sites.  If geolocational accuracies 

of 2-3 cm could be obtained using RTK or PPK technologies, then training and accuracy 

checking could be much more streamlined and analysis completed more quickly.  
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However, the additional investment of time and financial resources needed to obtain 

high-precision imagery would have to be weighed against the goals of each project to 

determine whether or not it would result in accuracy improvements such that these 

expenditures would be justified.   

Each run of the classifier that involved adding more training samples to a 

previously-classified image became more accurate, and classification also became more 

successful and more accurate as analyst experience accumulated, suggesting that expert 

knowledge and familiarity with both with the study site and the classification process will 

be an important component of the evolving use of this methodology, as it is in other 

imagery classification workflows (Arvor et al., 2013; Hoffman, 2018).  

 To summarize, at present, the major limitations to the application of this 

technology on a widespread scale are: 

1. Limits of spatial and classification accuracies 

2. High frequency of data capture required for accurately identifying and classifying 
dung over time 

 
3. Size of land areas being studied 

4. Technology acquisition, accessibility, and learning curve 

5. Data storage 

6. Ground truth data collection and knowledge of study area 

7. Diversity of ecological site characteristics across grazinglands/rangelands, 
including weather patterns, soil type and moisture, vegetation communities, 
seasonality of vegetation growth and topography 
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Conclusion 

The results of this research show that using multispectral imagery from a UAV 

for the identification, mapping, and spatial analysis of dung distribution holds potential to 

change the scales at which land managers and scientists are able to monitor and analyze a 

variety of nutrient cycling processes, animal grazing behavior, and landscape-scale 

ecological interactions.  However, classification consistency and accuracy across flight 

dates and between different pastures in the same image set is, for now, a significant 

barrier to obtaining a useful data layer to be used in additional spatial analyses.  There are 

also unexplored questions regarding the proposed methods’ widespread applicability on 

different rangeland and pasture types in different climates, as well as which spectral 

bands are optimal to use for identifying dung and discriminating it from soil and 

vegetation. 
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CHAPTER 3: 

TEMPORAL CHANGES IN THE NUTRIENT CONTENT OF CATTLE DUNG                         
IN A GRAZED ECOSYSTEM 

 

Abstract 

 Dung excreted by cattle on extensively-managed grasslands comprises a 

substantial proportion of the nutrient inputs available to these grazed ecosystems, and the 

influx of nutrients and organic matter associated with dung can have profound effects on 

the aboveground and belowground plant, insect, and microbial communities.  Although 

manure has been analyzed extensively for its nutrient content, relatively little work has 

been performed on dung in situ after excretion and without human manipulation prior to 

analysis.  In this study, we analyzed over 200 dung pats (1-24 days old) that were 

collected from a Nebraska Sandhills meadow over two grazing seasons and determined 

percent dry matter (DM), water-extractable nitrogen (WEN), water-extractable organic 

carbon (WEOC) and water-extractable phosphorus (WEP).  In addition, we investigated 

the effects that freezing samples at -20°C prior to analysis had on the subsequent analyses 

of nutrient content.  WEN and WEOC both followed exponential decay curves of nutrient 

loss over time and were modeled as a function of age.  WEN concentrations ranged from 

a mean high of 1.20 g kg-1 at three days of age, to a low of 0.252 g kg-1 at 24 days.  The 

highest WEOC values were also found at one day of age, 19.25 g kg-1, with a low of 2.86 

g kg-1 in 14-day-old dung.  WEP either remained relatively constant or increased slightly 

by 24 days of age, and percent dry matter along with sample WEOC concentration were 

stronger determinants of WEP than age alone.  Highest mean WEP was 3.24 g kg-1 at 12 

days and lowest was 1.28 g kg-1 in one-day-old dung.  Split plot analysis of the effects of 
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sample age and date of harvest showed age was significant for all analytes and DM, but 

date of harvest and interaction of date and age were not consistently significant across 

analytes.  Freezing samples prior to analysis increased WEN and WEOC 37% - 124% 

compared to the same samples analyzed fresh, but WEP responded inconsistently across 

sample age groups.  WEN and WEOC had a linear response to freezing based on fresh 

values (R2 = 0.67 and 0.71, respectively).  Frozen WEP was not linearly related to fresh 

WEP, but the addition of DM and age to the linear model resulted in R2 of 0.59. 
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Introduction 

 Knowledge regarding the nutrient contributions of cattle dung to a grazed 

ecosystem is essential for understanding the spatial and temporal components of nutrient 

cycling patterns in these systems (Bardgett and Wardle, 2003; Haynes and Williams, 

1993; Lovell and Jarvis, 1996).  This knowledge is also foundational for estimating soil 

carbon sequestration potential and monitoring changes to the physical, chemical, and 

biological properties of soils over time as a result of grazing and grazing management 

decisions. In addition, tracking spatial and temporal changes in vegetation quality and 

community composition that stem from heterogeneity of vegetation use and dung 

deposition can reveal landscape-scale processes that impact ecosystem functioning 

(Aarons et al., 2004b; During et al., 1973; Gillet et al., 2010; Piñeiro et al., 2010). 

 One of the challenges of conducting research on dung nutrient dynamics and dung 

decomposition is that both are highly site-specific and dependent upon several controlling 

factors (Eghball et al., 2002; Holter, 2016, 1979; Mohr, 1943).  Dung nutrient content and 

decomposition can be affected by livestock diet (Sørensen et al., 2003), animal age and 

size, animal species, time of year (Cardoso et al., 2019), absence or presence of dung 

beetle and earthworm communities (Pecenka and Lundgren, 2018), and weather.  

Therefore, relying on averages or a general model of how nutrient cycling proceeds at 

both macro- and micro-scales across different ecosystems may not produce accurate 

models for other sites. 

Compounding these issues is that dung is not commonly studied in the pasture 

where it was deposited, absent of human manipulation.  Instead, researchers have relied 

on the creation of artificial dung pats from bulk manure collected in holding areas, or 
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have harvested dung off of pastures, and then reformed the pat into a particular size, 

shape, or weight to facilitate controlled, long-term monitoring of changes (Aarons et al., 

2004b, 2004a; During et al., 1973; Evans et al., 2019; Holter and Hendriksen, 1988; 

Lovell and Jarvis, 1996; Schick et al., 2019; Weeda, 1977).  While these techniques are 

useful for providing insight on a range of dung-related processes that might otherwise be 

impossible to study (Bol et al., 2000; Dickinson and Craig, 1990), it does raise the 

question of how accurately nutrient content and decomposition of dung in situ is reflected 

by these studies, given what we know about the influence of dung moisture and nutrients, 

animal diet, and wider ecological context (e.g. dung beetle and earthworm assemblages) 

on both.  For example, Weeda (1967) found that the disappearance of dung was 

determined by two major factors:  hard crust formation on the top of the dung and the 

consistency of dung.  Both of these factors could be altered by cattle diet, the 

manipulation of dung in the field or by the bulk homogenization of dung from holding 

areas (Eghball et al., 2002).  Subsequently, changes in the consistency and moisture 

content of dung, in comparison to unaltered dung, may lead to either increased or 

restricted decomposition activity by the microbial population, and by macrofauna such as 

dung beetles and earthworms, both of which are major contributors to the disappearance 

of dung and its incorporation in soils (Nichols et al., 2008).   

If rates of decomposition change, this may affect the microbial dynamics that 

determine mineralization or immobilization rates of nutrients due to a relative increase or 

decrease in the flow of available nutrients (Dao and Schwartz, 2010; Sitters and Olde 

Venterink, 2018).  This subsequently affects the long-term retention of nutrients in soils, 

and their availability to plants (Aarons et al., 2009; Yamada et al., 2007; Yoshitake et al., 
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2014) and may change the potential for groundwater contamination by nutrients such as 

nitrate and dissolved reactive phosphorus (DRP) (Kleinman et al., 2017, 2005) .   

 Laboratory analyses of manure nutrient content are often performed on samples 

that have been harvested in the field, frozen for transport and storage, and then thawed 

prior to analysis.  Multiple studies have evaluated the effect of freezing and drying of 

samples prior to analysis on water-extractable phosphorus (WEP); (Studnicka et al., 

2011; Vadas and Kleinman, 2006), and found significant differences in concentrations.  

Studnicka et al. (2011) found that freezing manure prior to analysis consistently raised 

WEP levels compared to fresh sample analysis.  However, to our knowledge, there have 

been no studies directed at evaluating whether or not this freeze-thaw event after dung pat 

harvest may affect the results of other nutrient concentrations, such as carbon and 

nitrogen.  There is ample evidence that freezing may change soil nutrient availability and 

chemical form (Freppaz et al., 2007; Song et al., 2017; Xu et al., 2016), therefore it is 

hypothesized that freezing manure before analysis may also bring about physical and 

chemical changes in the manure (for example, see Chen et al., 2019).  If so, this could 

lead to assumptions about the amounts and forms of nutrients that are present in dung in a 

field setting, and thus lead to inaccurate predictions of the availability and loss of 

nutrients from within a given site. 

 The first objective of this research was to evaluate changes in dung nutrients 

(nitrogen, phosphorus and carbon) over time when dung is left on pasture, unaltered, after 

being excreted by grazing cattle and prior to collection for analysis.  To our knowledge, 

there are no existing studies that have evaluated such a large number of dung pats in the 

field (n=244), across study years (2), sampling dates (8), and ages (1 day to 24 days).  
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Therefore, this work presents an important body of knowledge that can contribute to our 

understanding of how dung nutrient levels change over time in a grazed ecosystem.   

The second study objective was to compare water-extractable nutrient concentrations in 

fresh vs. frozen dung.  We hypothesized that concentrations of dung nutrients would be 

altered by differences in sample storage prior to analysis, specifically, whether samples 

were analyzed fresh from the field or after being frozen and then thawed.  To test this 

hypothesis we analyzed fresh dung pats that had never been frozen, then re-analyzed the 

same samples after a period of freezing, and compared nutrient values from both types of 

samples. 

 

Methods and Materials 

Site Description 

 The research site was located at the University of Nebraska's Barta Brothers 

Ranch, approximately 40 km southwest of Bassett, NE (42°13'13"N, 99°38'27"W), in the 

Nebraska Sandhills ecoregion.  The pastures where dung collection took place were part 

of a long-term grazing study (2010-2017) that investigated the effects of different grazing 

strategies on animal performance, vegetation characteristics, and soil properties 

(Shropshire, 2018).  The pastures were located on a subirrigated meadow site with a 

seasonally high water table.  These wet, interdune areas are characteristic of the Sandhills 

region and are generally high-producing areas well-suited for hay production or beef 

cattle grazing (Horney et al., 1996; Mousel et al., 2007).  Vegetation communities at the 

site are dominated by cool season grasses (Phalaris arundinacea L., Poa pratensis L., 

Elymus repens (L.) Gould), Phleum pratense L.), rushes (Eleocharis and Juncus spp.) and 
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sedges (Carex spp.), with a lesser occurrence of warm season grasses and forbs.  Soils at 

this site are sandy to fine sandy loam in texture and classified as mixed, mesic Aquic 

Ustipsamments.  Average summer temperatures range from 21°C to 25°C and average 

yearly precipitation (over the past 20 years) at the site is 665 mm with approximately 

40% of the yearly total falling during the summer months of June-August (High Plains 

Regional Climate Center, 2018). 

Study context 

 Grazing treatments at the research site began annually in early June, when steers 

were moved to the ranch, and concluded in early August, when they were removed from 

the site.  In this treatment, 32-36 yearling steers (depending on the year) were grazed on 

0.06 ha strips (dimensions of 5.8 m x 98.8 m), giving a stocking density of 225,000 kg 

live weight ha-1.  Moves to new strips occurred twice per day, at approximately 7 am and 

3 pm. When cattle were moved in the morning, they no longer had access to the pasture 

they had been in the day before, but afternoon moves allowed the use of both the morning 

strip and the new afternoon strip, until the next morning.  This grazing strategy allowed 

dung to be accurately classified by age for each 24-hour period without any new 

accumulation of dung and without any disturbance of pats after the cattle had left that 

pasture.                  

Dung collection and processing 

Dung was collected in June and July of both 2016 and 2017 (Table 1).  Dung was 

analyzed for nutrient content across a 24-day age range.  In addition, a separate set of 

twenty-five pats was followed from one to twenty-four days of age, with each pat being 

sampled three times over this period.  
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During the first two collection periods in 2016 (June 25 and June 26), dung was 

collected from every age group between one and fourteen days of age (i.e. fourteen 

different age groups, one for each 24-hour period of time of deposition).  However, on 

each subsequent sampling date in both 2016 and 2017, dung was collected only from 

grazing strips containing pats that were 1, 3, 5, 7, 10 and 14 days old.  This change 

allowed a greater number of dung pats to be sampled from evenly-spaced age groups 

across a fourteen-day window, as opposed to fewer pats from every single day.  For 

purposes of statistical analysis, pats from these first two sampling dates were grouped 

with dung samples in the age category closest to its own age from the consistently 

sampled age groups (i.e. 1, 3, 5, 7, 10, 12 and 14 days).  Sample dung pats were randomly 

chosen across each pasture, and only intact pats that had not been stepped on or laid on 

were used.  Sub-samples were collected from near the middle of the dung pat, taking care 

to avoid the drier, thinner edges.  After collection, fresh samples were placed in Ziploc 

plastic bags and stored on ice in a cooler until they arrived in the lab, one to two hours 

later. 
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Table 3.1:  Summary of the total number of dung pats sampled on each harvest date.  Numbers in 
each cell are the number of dung pats sampled on a given date in a particular age group. 

 

 2016 2017   

Dung 
Age 

(days) 

25-
Jun 

26-
Jun 

26-
Jul 

30-
Jul 29-Jun 8-Jul 22-Jul 23-Jul Total  

1   4 5 5 
25 

(LTNM) 10   10 59 (34)* 
3   7 5 5   10   10 37 
5   6 5 5   10   10 36 
7 4 8 5 5   10   10 42 

10 6   5 5   25 (LTNM)   4 45 (20)* 
12 10   5           15 
14 10   5     10   10 35 

24             
25 

(LTNM)   25 (0)* 

        TOTAL: 294 (219) 
*Totals in parentheses exclude LTNM data, which was analyzed separately 
LTNM=long-term nutrient management study (same 25 pats sampled 3 times in 24 days)  

In 2017, in addition to the random sampling described above, another set of dung 

pats was added for a second study (hereafter referred to as the “LTNM” study).  These 

pats were identified and marked at 24 hours of age, sampled, and then re-sampled at 10 

days of age and 24 days of age.  Physical samples from these dung pats were also taken 

from as near to the center of the pat as was possible, given repeated sampling of the same 

pat. 

 After samples were brought to the lab, a sub-sample was weighed and then dried 

at 60°C for 48 hours to determine moisture and dry matter content. In 2016, the 

remaining sample (not dried) was immediately frozen and stored at -20°C until nutrient 

analysis took place in spring, 2017.  These samples were thawed overnight prior to the 

start of extractions.  In 2017, fresh dung samples were kept chilled in a refrigerator for 

24-48 hours until analysis began; therefore, this dung was not frozen prior to analysis.  In 
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order to evaluate the effect(s) of the freeze/thaw cycle on nutrient analysis results, these 

samples were then frozen at -20°C. They were then thawed and re-analyzed in the spring 

of 2018 using the same methods as the two previous sets of analyses. 

Laboratory analyses 

 Dung samples were analyzed for water-extractable phosphorus (WEP), water-

extractable nitrogen (WEN) and water-extractable organic carbon (WEOC) using a 1 g. 

dry weight equivalent sub-sample extracted in 200 mL deionized water (Kleinman et al., 

2007).  Flasks were shaken briefly to break up and disperse the dung sample, and then 

allowed to settle overnight to aid in filtering.  Extracts were then filtered through 

Fisherbrand P2 (particle size retention 1-5 µm) filter paper and refrigerated until analyses 

took place.  The WEP was determined using the molybdate method of Murphy and Riley 

(1962), at 880 nm on a Thermo Scientific Genesys 10S VIS Spectrophotometer (Thermo 

Fisher Scientific Inc., Waltham, MA, U.S.A.).   The WEN and WEOC were analyzed on 

an OI Analytical Aurora 1030C TOC Combustion Analyzer with an OI Analytical 1088 

Rotary TOC Autosampler and TNb module for total nitrogen (OI Analytical, College 

Station, TX, U.S.A.). 

Statistical Design and Analysis 

 Data from randomly-sampled pats of different ages during 2016 and 2017 were 

analyzed as a split-plot experimental design.  Date of harvest was the whole-plot factor 

and age of dung was the split-plot factor.  Year (2016, 2017) was considered a random 

factor in the analysis.  Data from the LTNM project were analyzed separately with a 

repeated measures experimental design, where each identified pat was considered its own 
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block and each nutrient being analyzed was the repeated measures factor in each type of 

analysis.  All nutrient analysis results are reported on a dry matter basis. 

All analyses were performed in the statistical software package R (R Core Team, 

2019) and figures were created with ggplot2 (Wickham, 2016).  Models of exponential 

decay were created using the base R function “nls”, with a self-starting model, 

“SSasymp”, available in the “stats” package.   

 

Results 

Change in dung nutrients over time  

The means and standard deviations of dung nutrient concentrations for each age 

group in both 2016 and 2017, as well as the LTNM study, are shown in Table 3.2.  

Figures 3.1 to 3.4 give more detailed information regarding the distribution of nutrient 

concentrations and dry matter content for each sampling date and dung age combination.  

Data from the LTNM study are not included in these graphs and are shown separately in 

Figure 3.5.  Our findings were consistent with many other studies of dung nutrient 

composition that have shown wide variation in nutrient concentrations, even when 

samples are taken from cattle of the same ages and weights, with the same diet.  For 

example, at one day of age, dung was found to contain anywhere from 1.3 to 2.8 g kg-1 of 

WEP and 9.4 to 19.2 g kg-1 WEOC.  Levels of all of the nutrients fell over time, except 

for phosphorus.  In both 2016 and 2017, WEP sharply rose between days 10 and 14.  

However, in the LTNM study, WEP values fell consistently from day 1 to day 24.  Means 

of the variances tended to decrease over time (i.e. with increasing age) for WEOC and 

WEN; however, WEP variance increased over time.  Despite the means of variance 



87 
 

generally decreasing as dung aged, the distributions of the variances resisted clustering 

and were often dispersed across a wide range of values. 

 

 

Figure 3.1.  Water-extractable nitrogen (g kg-1) in dung across sampling dates                             
and dung ages 

 

 

Figure 3.2.  Water-extractable organic carbon (g kg-1) in dung across sampling dates                          
and dung ages 
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Figure 3.3.  Water-extractable phosphorus (g kg-1) in dung across sampling dates and 
dung ages 

  

  

Figure 3.4.  Percent dry matter content of dung across sampling dates and dung ages 
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Figure 3.5.  Concentrations of WEN (a), WEP (b), and WEOC (c) (g kg-1) at the three 
sampling dates of the LTNM study. 

 

 

 

a. 

b. 

c. 



 

Table 3.2.  Means and standard deviations of nutrient and dry matter analyses across years and for the LTNM study. WEP: water-extractable 
phosphorus; WEOC: water-extractable organic carbon; WEN: water-extractable nitrogen; DM: dry matter 

 2016 

Analyte 1 d. 3 d. 5 d. 7 d. 10 d. 12 d. 14 d. 

WEP (g kg-1) 1.281 ± 0.51 1.543 ± 0.53 1.510 ± 0.95 2.004 ± 1.14 1.873 ± 1.50 3.236 ± 2.30 2.792 ± 1.89 
  WEOC(g kg-1) 9.352 ± 4.33 6.324 ± 5.21 4.013 ± 3.83 3.463 ± 2.68 3.882 ± 2.97 4.162 ± 2.04 2.857 ± 1.37 

WEN (g kg-1) 0.949 ± 0.37 0.848 ± 0.32 0.521 ± 0.29 0.469 ± 0.25 0.300 ± 0.21 0.344 ± 0.22 0.329 ± 0.14 
DM (%) 0.242 ± 0.08 0.302 ± 0.12 0.411 ± 0.17 0.528 ± 0.25 0.550 ± 0.21 0.720 ± 0.178 0.717 ± 0.180 

   
 2017  

Analyte 1 d. 3 d. 5 d. 7 d. 10 d. 14 d.  
WEP (g kg-1) 1.569 ± 0.7 2.181 ± 0.65 2.386 ± 0.53 1.997 ± 0.63 1.920 ± 0.10 2.786 ± 1.21  

 WEOC (g kg-1) 16.918 ± 4.98 13.183 ±  3.32 8.869 ± 3.07 8.099 ± 2.98 4.399 ± 0.677 8.341 ± 5.09  
WEN (g kg-1) 0.992 ± 0.28 1.199 ± 0.34 0.728 ± 0.24 0.590 ± 0.26 0.260 ± 0.075 0.545 ± 0.40  

DM (%) 0.191 ± 0.016 0.304 ± 0.138 0.372 ± 0.131 0.492 ± 0.26 0.405 ± 0.137 0.607 ± 0.24  
      
 LTNM     

Analyte 1 d. 10 d. 24 d.     
WEP (g kg-1) 2.797 ± .59 1.907 ± 0.47 1.392 ± 0.71     

WEOC (g kg-1) 19.246 ±  2.73 9.262 ± 3.18 5.165 ± 2.38     
WEN (g kg-1) 1.067 ± 0.27 0.569 ± 0.24 0.252 ± 0.15     

DM (%) 0.180 ± 0.02 0.722 ± 0.19 0.616 ± 0.11     
 

 
 
 
 
  

90 
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Models of nutrient change over time 

 Model creation was attempted using only non-LTNM data and again using all 

data, including the LTNM (Figures 3.6-3.8).  However, because there were so few 

sampling dates (n=3) for the LTNM data, a model could not be created from this data 

alone, so all resulting models are based on the combined data.  R2 values are not given for 

model evaluation purposes due to the problematic nature of using R2 in conjunction with 

nonlinear models (Spiess and Neumeyer, 2010).   

Both WEN and WEOC were modeled using exponential decay functions with all 

statistically significant parameters, either at P < 0.001 or P < 0.05 (Figures 3.6 and 3.7).  

However, WEP showed little to no mean response across time, and it did not conform to 

the same exponential decay model as WEN and WEOC.  Unlike with WEN and WEOC, 

age was not a significant predictor of WEP concentration (P = 0.99).  Figures 3.8 and 3.9 

show the change in mean WEP over dung ages in the complete data set (3.8) and without 

the LTNM data (3.9) for comparison with the WEN and WEOC data.   

Percent dry matter and WEOC were strong predictors of WEP.  Figure 3.10 gives 

the model and shows the relationship between percent dry matter and WEP, with the 

trend line present for visual pattern detection only, not as a representation of the actual 

model.  In this figure WEOC concentration is mapped to the data points as a continuous 

color scale in order to better visualize how WEOC interacts with WEP and DM.  

Although both WEOC and DM were highly statistically significant (P < 0.001)  



92 
 
 

 

 Figure 3.6. Exponential decay model for WEOC over 24 days as a function of dung age 
 

 

  Figure 3.7.  Exponential decay model for WEN over 24 days as a function of dung age 

 

 

WEN = 0.238 + (1.19-0.238)e -0.143age 

WEOC = 5.65 + (22.8 – 5.65)e -0.487age 
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Figure 3.8. Change in water-extractable phosphorus (WEP) in relation to dung age in 
combined 2016 and 2017 data, including LTNM samples 
 
 
 

 

Figure 3.9. Change in water-extractable phosphorus (WEP) in relation to dung age in 
2016 and 2017 data, without LTNM samples 
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Figure 3.10. Relationship of water-extractable phosphorus (WEP) to percent dry 
matter.  Water-extractable organic carbon concentrations for each sample are indicated 
by the color scale given on the right. The trend line is shown for visualization purposes 
only and does not represent the model equation. 

 

in both the complete data set and that without the LTNM samples, R2 was still very low:  

0.16 with the LTNM data and 0.21 without it. 

The WEN model that contained LTNM data was nearly identical to the one 

without, with an only slightly lower standard error of regression (0.296 vs. 0.316)    

and very similar Akaike Information Criterion (AIC) scores of 123 and 121, respectively.  

ANOVA showed no significant difference between the models (P = 0.99).  Although the 

WEOC models with and without LTNM data had larger differences in AIC (1719 vs. 

1291, respectively), ANOVA also showed no statistically significant difference between 

the two models (P = 0.80).   

WEP = 2.512*DM + 0.06*WEC + 0.48 
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Split-plot ANOVA 

 Analysis of the effects of both dung age and the date of harvest, with year 

included in the model as a random effect, are shown in Table 3.3.   

 
Table 3.3.  Statistical F values and their corresponding P > F values of the fixed effects 
of age, sampling date, and age-sampling date interaction on dung water-extractable P 
(WEP), water-extractable organic carbon (WEOC), water-extractable N (WEN) and 
percent dry matter (DM).  

 Analyte Age Date  Age*Date 
WEP (g/kg) 3.25** 22.88* N/S 
WEOC (g/kg) 33.70*** 22.61*** 5.60*** 
WEN (g/kg) 25.19*** N/S N/S 
DM (%) 19.33*** 20.33*** 2.27** 

* P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001; N/S = not statistically significant 

 

The variable “date” not only serves as a whole plot factor for the actual date of collection, 

but could also be used as a proxy for location, since different ages of dung were gathered 

from different areas of the grazing study, which spanned two, 6.48 ha treatment 

replications.  However, specific harvest locations within the two replications were not 

recorded, so analyzing the effects of dung location separate from date of harvest was not 

possible in this study.  

IV.  Differences between fresh and frozen sample nutrient analyses in 2017 

 There were statistically significant differences between all but two of the age-

nutrient pairings.  WEOC values increased after freezing by 3.4 to 6.8 g kg-1 (37% - 

98%), and WEN increased by 0.26 to 0.8 g kg-1 (37% - 123%).  However, WEP only 

increased on two out of 7 dates and decreased by 0.8% to 65% on all other dates.   
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Table 3.4.  Change in mean dung nutrient concentrations between dung samples analyzed 
fresh and dung samples analyzed after freezing. 
 

       
*All differences in means significant at P < 0.01 except for * cells 

 

The difference (percent change) between fresh and frozen samples did not appear to 

follow a clear or consistent trend between ages of dung, although all three nutrients 

increased dramatically in the 24-day frozen samples than in the other age groups.   

 The change in values between fresh and frozen analyses for both WEOC and 

WEN followed a linear trend (Figures 3.9 and 3.10).  Conversely, WEP frozen values 

were not linearly related to fresh values alone, and there was no significant correlation 

between the two (Figure 3.11).  However, the addition of percent dry matter and age as 

independent variables yielded a statistically significant model for the prediction of frozen 

WEP values with an  R2 value of 0.59.   

Dung 
Age 

(days)

Fresh 
WEP 
(g/kg)

Frozen 
WEP 
(g/kg)

Change 
(g/kg)

Percent 
change

Fresh 
WEN 
(g/kg)

Frozen 
WEN 
(g/kg)

Change 
(g/kg)

Percent 
change

Fresh 
WEC 
(g/kg)

Frozen 
WEC 
(g/kg)

Change 
(g/kg)

Percent 
change

1 2.251 0.785 1.466 65.12% 1.034 1.845 0.812 78.51% 18.211 25.012 6.800 37.34%
3 2.181 1.539 0.642 29.42% 1.199 1.643 0.444 37.03% 13.183 18.263 5.080 38.53%
5 2.386 1.580 0.806 33.77% 0.728 1.132 0.403 55.36% 8.869 12.526 3.657 41.23%
7 1.997 1.851 0.145 * 7.28% 0.590 0.949 0.358 60.75% 8.099 12.037 3.938 48.63%
10 1.908 2.394 0.485 25.43% 0.554 0.906 0.352 63.55% 9.042 14.241 5.199 57.50%
14 2.786 2.764 0.022 * 0.78% 0.545 0.808 0.263 48.24% 8.341 11.776 3.435 41.17%
24 1.392 3.004 1.612 115.79% 0.252 0.563 0.312 123.71% 5.165 10.267 5.102 98.77%
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Figure 3.11. Change in water-extractable organic carbon (WEOC) between samples 
analyzed fresh and the same samples analyzed after freezing  
 
 
 

 

Figure 3.12. Change in water-extractable nitrogen (WEN) between samples analyzed 
fresh and the same samples analyzed after freezing  
 

 

y(frozen) = .251 +1.30x(fresh)  
R2 = 0.67 

y(frozen) = 3.92 + 1.1x(fresh) 
R2 = 0.71 
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Figure 3.13. Change in water-extractable phosphorus (WEP) between samples analyzed 
fresh and the same samples analyzed after freezing.  The equation given is the statistical 
model using fresh dung WEP value (fresh WEP), percent dry matter (DM), and dung age 
in days (age) that yielded an R2 of 0.59. 
 

Discussion 

 In this study, WEN and WEOC were lost from dung pats at a rate consistent with 

an exponential decay function.  This pattern mirrors other research results that have 

shown similar outcomes when monitoring dung pats over time (Aarons et al., 2004a; 

Dickinson and Craig, 1990; Evans et al., 2019).  Although the type of decay function was 

similar, rates of loss of WEOC and WEN in this study were greater when compared to 

rates of analyte loss in Evans et al. (2019), a study that also measured loss of dung WEP, 

WEN, and WEOC over time.  In 2016, the loss of WEOC and WEN were at 70% and 

65%, respectively, by 14 days of age.  In the Evans et al. (2019) study, WEOC and WEN 

had decreased by only 25% and 42%, respectively, which was closer to our findings from 

y(frozen) = 1.7431 - 0.4476(fresh WEP) -   
2.2457(DM) + 0.0855(age) + 1.4674(fresh WEP*DM) 
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2017, when losses were only at 50% and 45% for WEOC and WEN.  However, there was 

a pronounced spike in both WEOC and WEN values in the day 14 data (see Appendix A, 

Figures A.2 and A.3), and data from this sampling day has a wide range of values with a 

number of large outliers that would have skewed the mean upwards (Figures 3.1 and 3.2).  

This may have been due to chance via random selection of dung pats, or it is possible that 

the vegetation in the grazing strip where the day 14 data was gathered differed 

significantly in quality from other areas of the pasture and caused mean values to rise in 

this dung.  If rate of loss is instead based on day 10 data, the 2016 and 2017 data show 

remarkably similar loss rates of 70 and 73% for WEOC and 65 and 73% for WEN.  The 

LTNM nutrient loss on day 10 (no day 14 values collected) was lower, at 52% for WEOC 

and 46% for WEN.   

The changes in WEP were inconsistent across dung ages, with poor model 

prediction based on age alone.  In both the 2016 and 2017 data, WEP rose consistently 

across time, more than doubling in mean concentration in 2016 and almost doubling in 

2017.  However, in the LTNM data from 2017, WEP maintained a consistent downward 

trend across the 24 days the dung was monitored.  There are several possible explanations 

for this discrepancy in findings.  First, because the same 25 pats were monitored over 

time in the LTNM study, concentrations of WEP would have been similar and more 

correlated than those of randomly selected pats in each age class.  This may have better 

modeled WEP dynamics across time.  Second, there were no data for the time period 

between day 10 and day 24 for the LTNM experiment.  In both 2016 and 2017, a 

pronounced spike in values occurred in WEP concentrations between days 10 and 14.  
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The Evans et al. (2019) study also showed a spike in WEP values at day 14 before they 

began decreasing again.  It is possible that if data had been collected at day 14 for the 

LTNM study there would have also been a spike in values, prior to a decline as age 

increased.  Interestingly, all three datasets had nearly the exact same mean WEP value at 

day 10, despite having drastically different initial values ranging from 1.3 to 2.8 g kg-1     

at one day of age. 

An increase in WEP across time would not be unusual in dung, as organic P is 

converted to inorganic P after deposition and may accumulate in the pat prior to 

microbial utilization or physical removal from the pat through the actions of dung beetles 

or earthworms (Aarons et al., 2009, 2004b; Holter and Hendriksen, 1988).  Aarons 

(2004b) found only moderate decreases in phosphorus over 40 days, and Dao and 

Schwartz (2010) found an increase in inorganic P over time in suspensions of manure 

sourced from dairy cattle.  Although that study showed a correlation of organic P 

transformation to inorganic P with increasing C:P levels, no such relationship or 

explanatory effect was found in this study.   

The comparison between fresh and frozen sample nutrient concentrations showed 

that there is a linear relationship between fresh and frozen values for WEN, WEP, and 

WEOC.  For WEOC (R2 = 0.71) and WEN (R2 = 0.67) this relationship was simple, with 

frozen values being predicted solely from fresh values.  Neither age nor percent dry 

matter were significant when added to these models.  Phosphorus results were not as 

consistent, and there was not a simple linear relationship between fresh and frozen 

values.  However, when both age and percent dry matter were added to the model, R2  
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rose to 0.59.  It appears that older dung (with higher DM values) followed a more 

predictable response of increased WEP amounts (Figure 3.11) with age.  It is also evident 

that WEP in fresher dung (ages 1 day to 7 days) is less-responsive to freezing than dung 

aged 10-24 days of age, as demonstrated by the samples from 1-day-old dung.  This 

complex relationship between dry matter, age, and WEP needs further investigation in 

order to better understand how these variables are driving the response in WEP values. 

The results from the study of fresh and frozen samples confirmed our hypothesis 

that changes would occur due to the freezing and thawing process.  This relationship 

should continue to be investigated, given its potential implication for estimations of 

nutrient cycling on grasslands, as well as the potential estimation of manure nutrients for 

land application in other agricultural systems where manure comprises a large proportion 

of the nutrient inputs for crop production. 

One unanticipated result of the freezing study was the response of carbon and 

nitrogen, both individually and coupled, as shown by the water-extractable C:N ratio.  As 

expected, this ratio rose as dung aged and dry matter increased, while moisture decreased.  

This is exemplified in the LTNM data, where C:N ratios were at 18.4, 16.9 and 21.8 at 1 

day, 10 days and 24 days of age, respectively.  However, after freezing, the mean C:N 

ratios decreased at each time period, to 14.2, 15.8 and 17.8.  The decrease in C:N ratio 

was the result of larger increases in the amounts of WEN between fresh and frozen 

analyses, although WEOC also consistently increased, as well.  In the 24-day-old dung 

pats, WEOC increased by 119% and WEN increased by 179%.  At 10 days, WEOC 

increased by 30% and WEN 70%, and in the initial sampling at 1 day of age, WEOC 
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increased by 28.8% and WEN by only 32.3%, leading to the rather narrow change in C:N 

ratio compared to the other two dates. 

Studies of the effects of freeze-thaw cycles on soil nutrient content have 

consistently shown increases in dissolved organic nitrogen (DON), dissolved organic 

carbon (DOC), and dissolved organic matter (Freppaz et al., 2007; Xu et al., 2016).  In a 

meta-analysis of the effects of freeze-thaw cycles on soil carbon and nitrogen, Song et al. 

(2017) showed that across nearly 50 studies, DON and DOC increased, on average, 

27.5% and 37.3% after being subjected to freezing temperatures.  This finding is 

consistent with our own, and likely points to freezing as a disruptive mechanism in cattle 

manure that lyses microbes, breaks down plant matter, and decreases particle size, all of 

which would lead to increases in labile nitrogen and carbon compounds.  Chen et al. 

(2019) examined the effects of freezing on pig manure and also found similar 

mechanisms at work:  increase in fine particle size, increase in available P, and a 30% 

increase in DOC. 

The strength of this analysis lies in the fact that for the randomly sampled dung 

pats (i.e. not the LTNM data), a large number of samples were able to be analyzed in 

order to help minimize the effects of high rates of variance between samples at any given 

age.  In addition, data were gathered from dung pats which had not been physically 

altered in any way until the sample was taken.  This means that decomposition processes 

were able to proceed without interference, theoretically leading to a more accurate 

reflection of nutrient dynamics at a certain dung age within a given pat (however, we are 

not aware of any research that either supports or refutes this claim).  The weakness of this 
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analysis is that for each date a new set of samples was gathered, which means that the 

initial concentrations of any given nutrient in a particular dung pat spanned a wide range 

of values which may have differed greatly from the starting points of the dung pats used 

in the analyses of other days.   

Conversely, data from the LTNM study showed changes across time within each 

dung pat, which can more accurately assess change in nutrient content with age based on 

any given starting point.  However, this comes at the cost of disturbing the pat via 

removing a sample for each sampling date, potentially altering the decomposition process 

by removing organic matter and nutrients, as well as potentially increasing the surface 

area of the dung if a hole is left behind after removing a sample.  If samples are taken 

from the middle of the pat, a greater amount of surface area is exposed which may 

change evaporation of moisture and/or volatilization rates, or may affect the use of dung 

by important arthropod and earthworm decomposers.  If samples are taken from the edges 

of the pat, it is likely that the dung will be thinner and drier in these areas, and thus less-

representative of what is happening in the rest of the pat.  

There is often a substantial crust that forms over the top of the dung within a short 

timeframe after deposition (24-48 hours, depending on weather conditions).  Over time, if 

the pat remains undisturbed, the difference in moisture content between the exterior and 

interior of the pat widens.  In addition, it is also likely that two very different sets of 

processes are taking place due to temperature and moisture differences between the drier 

exterior and the moist interior.  As observed by Holter and Hendriksen (1988), and 

MacDiarmid and Watkin (1972), it appears that decomposition proceeds by physical 
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removal and consumption of dung organic matter from below the pat, where moisture and 

temperature levels remain ideal for the microbial, insect, and arthropod communities to 

access nutrients.  At the same time, the crust prevents access from the top of the pat and 

may slow release of gaseous compounds (e.g. NH3, N2O, CO2) from within the pat.  The 

crust also prevents rainfall from entering the pat and contributing to its disintegration, as 

it effectively sheds water once sealed over (Dickinson and Craig, 1990; MacDiarmid and 

Watkin, 1972; Weeda, 1967).   

This segregation between layers of dung may complicate the outcome of 

laboratory analyses due to different moisture contents and, potentially, different nutrient 

contents between the two.  However, to our knowledge, there has been no research 

conducted that characterizes these differences.  In order to investigate this further, a small 

set of sub-samples was taken from one of the pastures used in this study.  Four dung pats, 

22 days old, were selected and from each pat a portion of the dry crust was taken and a 

sample of the still-wet interior was also gathered.  Results of the nutrient and moisture 

analyses are shown in Table 3.5.  Although the sample size is too small for a robust 

statistical analysis, it is informative to see the stark contrast in nutrient concentrations 

between the crust and the interior.  The disparity in values was maintained even after 

freezing for WEN and WEOC.  WEP increased dramatically, but the differences that 

existed in the fresh data were evened out post-freezing between wet and dry samples.   
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Table 3.5.  Difference in nutrients and dry matter between dung crust and the interior at               
22 days of age.  All nutrient values are given in g kg-1and were calculated on a dry matter 
basis. 

 

 

 

 

 

 

 

 

Though these preliminary data provide only a small glimpse of what is taking 

place in the crust and interior of cattle dung as it ages, it is an important component of the 

whole nutrient-cycling picture to know that nutrients are concentrated in the crust of 

dung.  It is possible that this crust then becomes a long-term reservoir of organic matter-

associated nutrients that are less easily-accessible than the moist interior is immediately, 

but which serves as a pathway to long-term organic matter accumulation in grazed 

pastures and a stable sequestration pathway for nitrogen, phosphorus, and carbon (During 

et al., 1973; During and Weeda, 1973).  Others have reported on the increased release of 

labile C and N in dry soils as compared to wet soils (Haney et al., 2012), and it is possible 

that this same mechanism is at work here. 

 Because WEP, WEN and WEOC account for the most labile, easily-accessible  

nutrients for microbes, future research should incorporate additional analyses such as 

total N and total C to understand more fully how these different fractions change over 

time.  It has been shown that WEOC makes up approximately 1-2% of total carbon in 

Sample %DM Fresh 
WEP 

Frozen 
WEP 

Fresh 
WEN 

Frozen 
WEN 

Fresh 
WEOC 

Frozen 
WEOC 

1_wet 0.24 1.591 5.451 0.272 0.841 4.398 10.941 
1_dry 0.74 2.034 5.408 0.598 1.042 8.777 14.61 
2_wet 0.24 1.219 3.755 0.221 0.551 4.112 6.704 
2_dry 0.61 1.338 3.785 0.38 1.045 6.978 15.741 
3_wet 0.31 1.078 4.529 0.131 0.4 2.895 7.105 
3_dry 0.74 1.744 4.731 0.335 1.056 6.156 17.192 
4_wet 0.27 0.797 4.31 0.145 0.462 2.843 6.374 
4_dry 0.73 2.688 4.252 0.518 0.864 8.383 14.168 
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manure  (Katoh et al., 2015) and WEP makes up approximately 25-40% of total manure 

P (Dao and Schwartz, 2010).  The proportion of total nitrogen which is extractable as 

WEN or water-extractable organic nitrogen (WEON) is somewhat more difficult to 

determine from the existing scientific literature, but Reeves and Van Kessel (2002) show 

that about 40-50% of total manure N is in an organic form, although this may be greater 

in solid dung as opposed to slurry or semi-solid manures where NH4 is often found in 

higher proportions (He, 2013).  WEN may include both inorganic N (NO3, NH4) and 

organic nitrogen forms, and there appears to be scant research devoted to determining 

WEN in total as a proportion of total N.  Determining these ratios in dung deposited 

directly on pasture may provide additional insight into the different pathways and 

residence times that dung pat layers and their associated nutrients have in an ecological 

system.  In addition, monitoring the change in microbial C and N, as well as biomass, 

would further illuminate intra-pat ecological dynamics of microbial substrate use and 

perhaps provide better insight into how the microbial community shifts over time.  It is 

plausible that dung microbial communities undergo similar dynamics as soil microbial 

communities, and there is a shift to K-strategist dominance after r-strategists have utilized 

all easily-available nutrients in a fresh pat (Kuzyakov and Blagodatskaya, 2015; Rinkes 

et al., 2014).  Whether these functional groups arrive in situ with the pat, or migrate from 

the soil upwards, and how the two communities interact, is still relatively unknown and 

deserves additional attention, as well. 

 One of the objectives of this study was to be able to qualify whether or not the 

nutrient contents and the progression of their change over time was impacted by artificial 



107 
 
 
dung pat creation, but to our knowledge there is only one other study which measured 

this same suite of water-extractable nutrients and used pre-formed dung pats.  We have 

drawn some comparisons and contrasts with the Evans et al. (2019) study throughout the 

paper, but given the wide variation in dung nutrient values, making any definitive 

statements regarding how artificial vs. natural dung pats behave over time would be 

shortsighted.  The question remains an important one, however, and it would be a benefit 

to have additional studies that compared the two methods at the same pasture location, 

using the same analysis techniques, so that the only variable was whether the dung pat 

had been artificially-created from bulk feedlot manure, or had been deposited on pasture 

directly from a grazing animal.   

Conclusion 

Our findings from the analyses of over 240 individual dung pats across two 

different years and seven age groups mirror findings from other studies that have 

evaluated the change in nutrients over different ages in dung in several important ways.  

First, we found that phosphorus did not behave like nitrogen and carbon and either shows 

an inconsistent pattern of depletion over time, or actually increases in concentration as 

dung ages.  We showed that carbon and nitrogen follow an exponential decay model of 

loss over time, although there exists a tremendous amount of variation in their 

concentrations between individual samples at each sampling date.   

We have also contributed new information to the study of nutrient cycling in 

grazed ecosystems by documenting significant changes in the concentration of WEN and 

WEOC, and sometimes WEP, in dung samples that have been frozen prior to analysis, 
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when compared to their levels in the same fresh samples.  In a preliminary exploration of 

the differences in nutrient contents between dry crusts of dung pats and the still-moist 

interiors, we found that nutrients are concentrated in the dry crust and hypothesized that 

this may serve as a pathway for the long-term retention of nutrients and organic matter in 

grazed ecosystems.  Additional research is needed with substantially larger sample sizes 

and across different pasture types to confirm that this is a pattern present beyond our 

study site, and, if so, to understand this contribution to soil chemical and physical 

properties over the long term.  Future research should also seek to expand upon this work 

by isolating the impacts of vegetation quality and pasture location from larger whole plot 

or blocking factors such as date of collection and weather variables.  Cattle dung is and 

will continue to be an essential part of soil fertility in both pasture ecosystems and in 

cultivated agroecosystems, thus it is imperative that we continue to deepen our 

understanding of the complex factors that drive dung nutrient availability, utilization, and 

loss across a wide range of environments.  
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APPENDIX A 

Additional Graphs Related to Dung Nutrient Dynamics 

 

 

Figure A.1: Comparison of the mean values of WEP concentration between the Long    
Term Nutrient Management study (LTNM), 2016 samples (no_LTNM_16), and 2017 
samples (no_LTNM_17) 
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Figure A.2. Comparison of the mean values of WEN concentration between the 
Long Term Nutrient Management study (LTNM), 2016 samples (no_LTNM_16), 
and 2017 samples (no_LTNM_17) 

 

 
Figure A.3. Comparison of the mean values of WEOC concentration between the 
Long Term Nutrient Management study (LTNM), 2016 samples (no_LTNM_16), and 
2017 samples (no_LTNM_17) 
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Figure A.4. Comparison of dry matter content (%) between the Long Term Nutrient 
Management study (LTNM), 2016 samples (no_LTNM_16), and 2017 samples 
(no_LTNM_17) 

 

 
Figure A.5.  Dry matter content in the LTNM study over sampling dates and dung ages 
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