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Abstract 
The feasibility of a hydrogeological modeling approach to simulate several thousand 
shallow groundwater-fed lakes and wetlands without explicitly considering their con-
nection with groundwater is investigated at the regional scale (~40,000 km2) through 
an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are 
compared to local land-surface elevations from a digital elevation model (DEM) within 
a geographic information system to assess locations of lakes and wetlands. The water 
bodies are inferred where hydraulic heads exceed, or are above a certain depth below, 
the land surface. Numbers of lakes and/or wetlands are determined via image clus-
ter analysis applied to the same 30-m grid as the DEM after interpolating both simu-
lated and estimated heads. The regional water-table map was used for groundwater 
model calibration, considering MODIS-based net groundwater recharge data. Result-
ing values of simulated total baseflow to interior streams are within 1% of observed 
values. Locations, areas, and numbers of simulated lakes and wetlands are compared 
with Landsat 2005 survey data and with areas of lakes from a 1979–1980 Landsat 
survey and the National Hydrography Dataset. This simplified process-based model-
ing approach avoids the need for field-based morphology or water-budget data from 
individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it 
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reproduces observed lake-wetland characteristics at regional groundwater manage-
ment scales. A better understanding of the NSH hydrogeology is attained, and the ap-
proach shows promise for use in simulations of groundwater-fed lake and wetland 
characteristics in other large groundwater systems.  

Keywords: Numerical modeling, Wetlands, Groundwater recharge, Geographic infor-
mation systems, USA  

Introduction 

Inland lakes and wetlands in many parts of the world have undergone 
significant transformations at large spatio-temporal scales (e.g. Junk et 
al. 2013; Riordan et al. 2006; Smith et al. 2005)—for example, satellite-
based evaluations of lake numbers in parts of Mongolia and China (Liu 
et al. 2013; Tao et al. 2015) show a precipitous drop in lake numbers 
over the last few decades of ~30–50% due to human activities and cli-
mate change. In light of recent trends, there remains a gap in hydrogeo-
logical modeling of future changes to large regions with numerous lakes 
and wetlands. The list of hydrogeological modeling studies of systems 
of groundwater-fed lakes or wetlands is rather short (e.g. Ala-aho et al. 
2015; Donovan et al. 2002; Lemieux et al. 2008; Feinstein et al. 2010a, 
b; Urbano et al. 2004; Woldeamlak et al. 2007; Voss and Soliman 2014). 
Largely, these studies deal with relatively permanent lakes or wetlands 
in humid climates and simulate fewer than ~50 water bodies. The ma-
jor challenge of such studies is emulation of lake processes (with areas 
~10−2–10 km2) and upscaling to the regional groundwater management 
scale (with areas ~103–105 km2). Associated limitations include data 
availability, overall complexity of process representation and model pa-
rameterization, difficulty of calibration, and significant computational 
demands (Beven 2012; Brunner et al. 2012). 

At regional scales, data requirements associated with the complex-
ity of surface-water features in integrated groundwater/ surface-water 
models cannot generally be met in practice, unless coarsely resolved 
topography/bathymetry is used (Lemieux et al. 2008), making it espe-
cially difficult to use these models in regions with strongly varying to-
pography such as dune regions (Klove et al. 2014). However, lake-aqui-
fer systems exhibit similarities in response to climate, groundwater 
recharge (GR), terrane, and topography at large spatial scales that can 
become more important than local properties (Haitjema and Mitchell-
Bruker 2005; Hunt et al. 2003). In such systems, intra-annual and local 



R o s s m a n   e t  a l .  i n  H y d r o g e o lo gy  J o u r n a l  2 6  ( 2 0 1 8 )      3

subtleties of individual lake and wetland dynamics may be of second-
ary interest when addressing long-term and large-scale environmental 
threats to lakes and wetlands. 

Options of modeling lake-wetland systems at regional groundwater 
management scales include: (1) integrated groundwater/surface-wa-
ter models, accounting for bathymetry and lakebed parameters of indi-
vidual lakes (e.g. HydroGeoSphere, ParFlow, MIKE-SHE, MODHMS); (2) 
groundwater models capable of lake mass balance calculations and es-
timation of GR from the vadose zone (e.g. GSFLOW); (3) groundwater 
flow models with GR as an explicit input (no vadose zone), emphasiz-
ing robust accounting of water balance of individual lakes (LAK Pack-
age for MODFLOW); (4) groundwater models that avoid water balance 
of individual lakes but use the fictitious domain method of high hydrau-
lic conductivity cells (Anderson et al. 2015); and (5) the statistical ap-
proach that correlates the state of the lake-aquifer system and climate, 
omitting consideration of hydrogeological processes (Liu and Schwartz 
2011, 2014). Commonly, calibration techniques are manual trial-and-er-
ror for systems exceeding more than a few lakes or wetlands (e.g. Ala-
aho et al. 2015; Feinstein et al. 2010a; Voss and Soliman 2014). 

The primary objective of this paper is to develop and evaluate fea-
sibility of a simplified modeling approach for systems of thousands of 
groundwater-fed lakes and wetlands. When the lake depths are ~1 m, 
stage fluctuations cause lakes to evolve into wetlands that create both 
technical and data quality issues. The Nebraska Sand Hills (NSH), lo-
cated in central USA, provides the site for a practical modeling ap-
plication example. The recent historic locations, numbers, and areas 
covered by the groundwater-fed lakes and wetlands are estimated by 
developing a rather simple hydrogeological model application, based 
on available water levels, GR, aquifer hydraulic properties, and land 
surface topography. This work extends past modeling efforts under-
taken over parts of the NSH with various purposes, areal extents, and 
complexity (e.g. Ayers 2007; Carney 2008; Chen and Chen 2004; Gins-
berg 1987; Luckey and Cannia 2006; Luckey et al. 1986; McLean et al. 
1997; Peterson et al. 2008; Stanton et al. 2010); however, none of them 
had the objective of emulating lake processes to infer lake and wetland 
areas and numbers. 

The proposed modeling approach does not explicitly consider ground-
water/surface-water fluxes or water budgets of individual lakes or wet-
lands. Instead, a geographic information system (GIS) analysis is used 
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to compare simulated hydraulic heads and land surface elevations to 
identify and map water bodies. After calibration, the model will be suit-
able for predicting the impacts on the lake-wetland-groundwater system 
caused by long-term land use and/or climate changes, and evaluation 
of times needed for the system to approach steady state (e.g. Rousseau-
Gueutin et al. 2013). 

The process of completing the objective involved the following tasks: 
(1) evaluation of hydraulic head and lake stage (DEM) data validity for 
model calibration; (2) reconciliation of different spatio-temporal scales 
in data on GR, transmissivity, head values, land surface elevations, and 
land cover classifications; and (3) adjustment of available data on stream 
elevations and leakance, transmissivity, and GR fluxes. With ongoing ex-
pansion of data sets collected for different interrelated processes and 
with various resolutions, such tasks are becoming progressively com-
mon for developing regional-scale groundwater flow models. 

Study area 

Lakes and wetlands 

The study area in northwestern Nebraska (Fig. 1) covers 39,300 km2 

of the central and western NSH, the largest dune region in the Western 
Hemisphere (Ahlbrandt and Fryberger 1980). Abundant marshes and 
sub-irrigated meadows (wetlands), and small shallow lakes are embed-
ded in the High Plains aquifer (Fig. 2) where the water table intersects 
the land surface or is close to it in many interdunal depressions (McCar-
raher 1977; Rundquist 1983). Shallow groundwater sustains the fen eco-
systems supporting unique flora and fauna (Harvey et al. 2007) and the 
beef cattle industry of great economic importance (Bleed and Flowerday 
1998). In the current semiarid climate, there are approximately 4,700 
distinct water bodies (lakes) and over 2,000 km2 of wetlands (Dappen et 
al. 2007) adjacent to up to 130-m tall, wind-blown sand dunes stabilized 
by native grasses (Rundquist 1983). Nearly 75% of precipitation (430–
580 mm/yr) is received from April to September (Bleed and Flowerday 
1998). The topography is highly variable because of the sand dunes, but 
slopes generally from west to east (Fig. 2). The NSH study area has lim-
ited irrigation and ecological changes (McGuire 2014) due to high GR 
rates (~13% of precipitation; Szilagyi et al. 2011a) compared with many 
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other arid or semiarid regions (e.g. Scanlon et al. 2012; Tao et al. 2015). 
Groundwater pumping is negligible in the study area, except in parts of 
Box Butte County (west of the Sand Hills boundary; Fig. 2; cf. Fig. 6 in 
Szilagyi et al. 2011a). 

Lakes are most common in the western “closed-basins area” where 
stream drainages have been dammed by dune migration in the early Ho-
locene (Loope et al. 1995) and where the water-table gradient is shal-
low due to land uplift (Bleed and Flowerday 1998). Most of the lakes 
do not have surface inlets or outlets (Winter 1986), evaporation from 
them greatly exceeds precipitation (Winter 1986, 1990), and lake lev-
els are generally lower than the regional potentiometric surface (Ong 
2010; Winter 1986), as is typical for groundwater-fed lakes (Zlotnik et al. 
2009), providing evidence that the lakes act as areas of focused ground-
water discharge and high evapotranspiration (ET). 

Fig. 1. Location of study area (outlined in red) with location of the Sand Hills topo-
graphic region, major streams, and major bedrock units of the High Plains aquifer in 
Nebraska. Gray lines are county boundaries. Major streams are shown for reference.  



R o s s m a n   e t  a l .  i n  H y d r o g e o lo gy  J o u r n a l  2 6  ( 2 0 1 8 )       6

Most lakes are small, only a few tens of hectares, but some are larger 
than 5 km2 (Bleed and Flowerday 1998). Lakes are shallow in the NSH 
(mean depth ~0.8 m) and dynamic seasonally, annually, and over geo-
logic time, due to their shallow depths (Gosselin et al. 2000; McCarra-
her 1977). Surveys of the total area covered by natural lakes in the NSH 
range from about 349 km2 (Dappen et al. 2007) to 455 km2 (Rundquist 
1983)—depending on the methods used, season, and year of survey due 
to the influence of weather and climate—indicating variability of lake 
and wetland areas of roughly 25%. 

The map of the regional water table, based on spring 1995 measure-
ments from wells screened in the High Plains aquifer and elevations of 
surface water features (streams, lakes, and wetlands) from 7.5-min US 
Geological Survey (USGS) topographic maps (Summerside et al. 2001), 
provides the basis for understanding flow directions and areas of re-
charge and discharge. Streams almost entirely act as discharge points 
for the groundwater system, and a large area with a shallow water table 
occurs in the west-central part of the study area, forming a wide saddle 

Fig. 2. Topography of the land surface, lakes, wetlands and major streams, and the 
outline of the Sand Hills topographic region within the study area. Box Butte County 
is also labeled.  
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directly to the west of it (Fig. 3). The major rivers on the north and south 
boundaries of the model originate outside of the study area, while the 
other rivers have headwaters within the NSH (Fig. 1). Estimated long-
term (10 years) total baseflow from all six major streams exiting the 
model domain equals 4.185 × 106 m3/d, based on streamflow gauge re-
cords (see Fig. 4a for locations and the electronic supplementary mate-
rial (Supplementary Materials) for methods used to estimate baseflow, 
and see Table S1 of the Supplementary Materials for gauge data and 
baseflow estimates). 

Geology and hydrostratigraphy 

The High Plains aquifer is primarily composed of Miocene Ogallala Group 
fine-to-medium sand and sandstone (Korus et al. 2011). The Oligocene 
and Miocene Arikaree Group, comprised of sandstone and siltstone, is 
an important part of the High Plains aquifer in western Nebraska, cover-
ing parts of the western third of the NSH, and some local paleovalleys in 

Fig. 3. Saturated aquifer thickness (color shaded) and water-table topography from 
1995 (20-m contours), including the water-table measurement wells and base-of-aqui-
fer boreholes.  
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Fig. 4. Mean net groundwater recharge flux to/from the water table from 2000 to 2009, 
from the difference between P and satellite-derived ET (MODIS), created using data 
published in Szilagyi and Jozsa (2013): a) spatial distribution and magnitude of fluxes 
(mm/yr), stream gauges used to estimate baseflow, model (MODFLOW) grid cells (1-
km), and boundary conditions for the finite-difference model; and b) histogram and 
cumulative frequency of net groundwater recharge fluxes. Blue colors represent areas 
of net groundwater discharge (ET > P), and other colors represent areas of net ground-
water recharge (P >ET). Note the nonlinear scale of the horizontal axis.  
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other parts of the region (Bleed and Flowerday 1998; Korus et al. 2011). 
Pliocene alluvial sands and gravels, and Holocene eolian dune sands, 
comprise the uppermost portion of the High Plains aquifer; in the up-
lands, these uppermost units are mostly unsaturated (Korus et al. 2011). 
Generalized geologic and hydrostratigraphic frameworks and cross-sec-
tions of Nebraska are presented by Bleed and Flowerday (1998) and Ko-
rus et al. (2013). The unconfined aquifer exhibits minimal contrasts of 
hydraulic conductivity (K) between hydrostratigraphic units, sufficient to 
simulate the regional flows as two-dimensional (2D), which is common 
practice for models simulating flow in the High Plains aquifer. Previous 
modeling studies have successfully calibrated and applied single-layer 
regional models for various purposes in the NSH (e.g. Luckey and Can-
nia 2006; Luckey et al. 1986; Peterson et al. 2008; Stanton et al. 2010). 

The base of the aquifer generally coincides with the base of the Ogal-
lala Group and the top of the Cretaceous Pierre shale (Bleed and Flow-
erday 1998); however, along western parts of the NSH, the base of the 
aquifer is in the Arikaree Group siltstone, and in a small region along the 
North Platte River, it is in the Brule Formation of the White River Group 
siltstone. These basal units are poorly permeable and considered to have 
negligible flow (Chen and Chen 2004; Peterson et al. 2008). 

Groundwater flow modeling 

Description of data 

Several published data sets collected by the USGS, units of the Univer-
sity of Nebraska-Lincoln (UNL)—including the Conservation and Survey 
Division (CSD) and Center for Advanced Land Management Information 
Technologies (CALMIT)—and the Nebraska Department of Natural Re-
sources (NDNR), are available for construction, calibration, and assess-
ment of the performance of groundwater flow model simulations in the 
NSH. Data sets include: (1) regional water table contour map; (2) digital 
elevation model (DEM) of land surface elevations; (3) base of the princi-
pal aquifer contour map; (4) hydraulic conductivity estimates from the 
statewide test-hole data base; (5) spatially distributed net groundwater 
recharge (GRn) from remote sensing estimates (MODIS-based ET); (6) 
land-cover map based on Landsat 5 Thematic Mapper satellite imagery; 
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and (7) streamflow gauge data for baseflow estimates. Further detailed 
information about these data sets and their sources is provided in sec-
tion S1 of the Supplementary Materials. 

Conceptual model 

The majority of model lateral boundaries (Figs. 1 and 2) follow streams 
and major rivers. The ground surface elevations are based on 10-m res-
olution National Elevation Dataset (NED) DEM data from USGS. The bot-
tom elevations are from an interpolation of the elevation contours of the 
base of the principal aquifer (empirical Bayesian kriging method with 
ArcGIS). Elevations of the top and bottom of the domain were aggregated 
to 250-m resolution and used to determine aquifer thickness (Fig. 3). 
Saturated aquifer thickness ranges from near zero—where aquifer units 
pinch out along parts of the northern and southern margins of the study 
area at the Niobrara and North Platte River valleys (Fig. 1)—to 314 m in 
the central part of the domain, and averages 161 m. 

As shown by other regional models covering the NSH (e.g. Chen and 
Chen 2004; Stanton et al. 2010), the water budget flow components 
are dominated by diffuse GR, discharge to streams as baseflow, and un-
derflows with parts of the unconfined High Plains aquifer outside of 
the model. Currently, the average GRn

 rates in the NSH is about 70 mm 
(~13% of precipitation), exceeding 200 mm in a few areas (~37% of 
precipitation; Szilagyi et al. 2011a). The MODIS-based spatial average 
of GRn

 over the selected (smaller)model domain equals 46 mm/yr, rep-
resenting an inflow of 4.96 × 106 m3/d. This is expected to represent a 
large majority of inflows to the aquifer system, dwarfing underflow and 
stream leakage to the aquifer. 

Discretization 

A uniform 192 × 348 grid with 1-km horizontal dimensions of the grid 
cells, consistent with the GRn

 map resolution (1 × 1 km; Fig. 4a), was 
used. Information about vertical variations in lithology permitted the 
simplest one-layer vertical discretization (sections “Geology and hydro-
stratigraphy” and “Description of data”). Early testing of three and five 
layers had minor impacts on the flow field and head gradients, so a sin-
gle layer model was retained. The final grid design included 39,640 ac-
tive grid cells. Using Visual MODFLOW Flex (VMF; v. 2014.2) parameters 
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were transferred to the finite-difference grid, and simulations were per-
formed with MODFLOW-2005 and PEST (Parameter ESTimation). Simu-
lation results were processed in ArcGIS (v. 10.2) and MATLAB (R2012b). 
The simulation was performed assuming steady-state conditions, rather 
than transient, for the following reasons: 

1. Changes in water-table elevations in the NSH were minor with mi-
nor spatio-temporal trends (<±2 m) since predevelopment, and 
from 2001 to 2011 (Korus et al. 2011; McGuire 2014). 

2. Minimal groundwater pumping occurs in the NSH—only about 4% 
of the total area is irrigated (Sridhar et al. 2006). 

3. Streamflows of the Dismal River, representative of the NSH headwa-
ter streams, were nearly identical in 1995 as they were from 2000 
through 2009, as evidenced by the USGS stream gauge data; these 
are the two time periods in which calibration targets (heads) and 
hydrologic stress (GRn), respectively, were available. 

4. The choice to develop a steady-state simulation relies on GRn
 esti-

mates derived from MODIS satellite temperature measurements 
(Szilagyi and Jozsa 2013; Szilagyi et al. 2011b) that are also based 
on steady-state assumptions for vadose zone fluxes (see section 
S1 of the Supplementary Materials). Rossman et al. (2014) showed 
that this assumption holds for time-scales of ~5–10 years for the 
NSH. 

Boundary conditions, water sources and sinks 

The model base is assigned a zero-flow boundary, as the formations 
underlying the principal aquifer are poorly permeable. Major streams 
provide accurate and minimally changing estimates of hydraulic head, 
so they were modeled using the Constant Head package, including the 
streams along the northern, southern, and eastern parts of the domain 
(Fig. 4a). These boundaries are located far from areas of interest in cen-
tral portions of the domain—areas that control the overall water balance, 
as can be verified by comparison with baseflows to internal streams 
(gauge locations shown on Fig. 4a). The boundary in the southeastern 
part of the domain has been selected to correspond closely with stream 
gauges for ease of comparing simulated and estimated baseflow rates. 
Major streams and other lateral boundaries of the model in the upland 
areas were assigned Constant Head elevations based on the interpolated 
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1995 regional water-table map (Figs. 1 and 4a for locations), except for 
the North Platte River where elevations were assigned using the mini-
mum DEM elevation within the model grid cells. 

The western boundary was extended beyond the Sand Hills bound-
ary to minimize artificial boundary effects, requiring the inclusion of 
most of Box Butte County, where the water table is in decline (Korus 
et al. 2011). Although there are densely spaced irrigation wells in this 
county (Fig. 2), after approximately 70 years of large-scale groundwa-
ter pumping, there has been no detection of effects to the water table in 
the Sand Hills region (e.g. Ayers 2007; Korus et al. 2011; McGuire 2014). 
Diffuse GR from precipitation (P), and losses from the groundwater sys-
tem caused by groundwater ET from native and afforested vegetation, 
evaporation from lakes and open water, and groundwater pumping, are 
sources/sinks in the one-layer model through application of positive and 
negative MODIS-based GRn

 rates. Based on 2000–2009 P–ET estimates 
(Fig. 4a), net groundwater discharge (negative GRn) occurs in 15.5% of 
the model grid cells (Fig. 4b). 

Interior streams 

The specification of boundary conditions along interior streams is con-
sistent with the 1995 regional water-table map and other stream–aqui-
fer interaction studies in the NSH (e.g. Chen and Chen 2004; Chen et al. 
2003; Stanton et al. 2010). Stream locations and length of stream seg-
ments within each MODFLOW grid cell are from the high-resolution USGS 
National Hydrography Dataset (NHD; NDNR 2016). Streams located in 
the interior of the model (Fig. 4a) were simulated with the Drain and 
River package. Drain boundary conditions only allow the streams to re-
move water from the aquifer—an appropriate conceptualization for sand 
dune areas, where overland flow is small relative to infiltration (Bleed 
and Flowerday 1998). The only stream in which the River Package was 
applied was on the North Loup River due to its relatively high streamflow 
and relatively low baseflow index (Table S1 of the Supplementary Mate-
rials), allowing for the river to recharge the aquifer in sections where the 
specified river stage is higher than simulated aquifer heads. 

River stage and drain boundary elevations were assigned using the 
minimum DEM value within a given model grid cell with river bottom 
elevations assumed as 1 m below stage. Initial linear leakance values 
(conductance of streambed materials per unit length within a grid cell) 
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were based on USGS modeling studies covering the eastern half of the 
study area (Peterson et al. 2008; Stanton et al. 2010). 

Lakes and wetlands 

Groundwater-fed lakes and wetlands constitute just a thin sliver on the 
land surface in spite of their large quantity and areal coverage. Their 
numbers and areas, modulated by groundwater conditions, smoothly 
fluctuate under the current climate and land use conditions, as evi-
denced by Landsat surveys (Dappen et al. 2007; Rundquist 1983) and 
the NHD, as well as maps of groundwater level changes (McGuire 2014). 
At the same time, thousands of individual lake depth records and ba-
thymetry are unlikely to be available in the foreseeable future even with 
progress in remote sensing. 

The groundwater model is used to simulate hydraulic heads that are 
then used to infer position of lakes and wetlands by comparing to the 
local land surface topography (from the DEM). Areas with a shallow wa-
ter-table elevation are proxies for landscape positions where ground-
water discharge to depressions is likely to occur and groundwater-fed 
lakes and wetlands should be found (cf. Zlotnik et al. 2009). The hydrau-
lic heads from the 1995 regional water-table map, and those simulated 
with the groundwater model, were resampled (bi-linearly in ArcGIS) to 
the same 30-m resolution as the 2005 Landsat land cover map before 
being mapped and analyzed for total lake and wetland characteristics. 
Next, water table depth was calculated as the difference between DEM 
elevations (aggregated to the 30-m grid) and hydraulic heads. Those lo-
cations where the regional water table is above the local land surface 
were classified as (groundwater-fed) lakes—being consistent with the 
use of a 1-km grid spacing, the regional water-table map—contour in-
terval of 50 ft (15.24 m)—and the variable topography of the NSH re-
gion. Areas where the water table is less than 3 m deep were classified 
as wetlands, consistent with the extinction depth of ET of 2–5 m, repre-
sentative of the NSH (Szilagyi et al. 2013). More importantly, it produced 
the best match with observed lakes and wetlands in the 2005 Landsat 
survey (Dappen et al. 2007); depths of 4–5 m were also analyzed. 

Total areas of lakes and wetlands within the Sand Hills region were 
quantified by multiplying the number of 30-m pixels in each class by 
their area. The total number of lakes and numbers of combined lake-
wetland complexes were quantified in MATLAB, where the built-in 
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“bwconncomp” function (cluster analysis script) was used to deter-
mine the number of connected components (connected 30-m grid pix-
els); an 8-connected neighborhood was used. A flowchart (Fig. S1 of 
the Supplementary Materials) provides the processing steps taken to 
quantify and map areas and numbers of lakes and wetlands. These fea-
tures were mapped across the entire study area, but the characteris-
tics of total areas and numbers were only quantified within the NSH 
portion of the study area assessed (Sand Hills region excluding a 1-km 
buffer area around major rivers; covering 32,122 km2). Note that de-
termination of the number of wetlands separate from lakes was not 
possible since many wetlands are fringing lakes, and therefore grade 
from one land use class to another. 

Feasibility of approach 

Among all variety of process-based models, only the least data-demand-
ing and simplest models were feasible. Even the relatively simple fic-
titious domain (or high-K) approach needs 3-D lake bathymetry and 
aquifer properties near individual lakes and wetlands that are typically 
unavailable. Here, a single-layer model, emphasizing long-term remotely 
sensed GRn

 estimates to constrain calibration, was used. 
This approach can be immediately tested by comparing delineated 

lakes and wetlands in the NSH with available observations, in this case 
the 2005 Landsat survey (Dappen et al. 2007). A successful match in-
dicates that when process-based models can reproduce the water-ta-
ble map (head targets) they can also match overall areas and numbers 
of observed lakes and wetlands without explicit consideration of them 
individually in the model formulation. This approach has not been ex-
plored previously at regional scales. Following the above procedure, a 
total area covered by lakes and wetlands of 2,104 km2 (6.55% of area as-
sessed) was obtained using the interpolated 1995 regional water-table 
map (Topo to Raster geoprocessing tool in ArcGIS), which compares fa-
vorably with the 2005 Landsat survey of Dappen et al. (2007; Fig. 5a,b), 
where total area of lakes and wetlands is 1,879 km2 (5.85% of area as-
sessed). The comparison is encouraging, especially considering the un-
certainty of total areas from Landsat surveys. 

In the process of inferring lakes and wetlands from the regional wa-
ter-table map, some areas were found where the water table was greater 
than the DEM elevation, but lakes were not present in the 2005 Landsat 
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Fig. 5. Spatial distribution of lakes and wetlands in the study area and Sand Hills re-
gion: a) estimated using elevations from the 1995 regional water-table (WT) map; b) 
observed from the 2005 Landsat land cover survey of CALMIT (Dappen et al. 2007); 
and c) estimated using DEM-adjusted 1995 regional water table elevations (the source 
of hydraulic head calibration targets).  
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survey (Dappen et al. 2007), as well as other areas in which water-table 
elevations were lower than the DEM elevations where lakes were pres-
ent in the 2005 Landsat survey (Fig. 5). Therefore, in these areas of bias, 
the interpolated 1995 regional water-table elevations were slightly ad-
justed by substituting DEM elevations (lake stage or land surface eleva-
tion) for the water-table elevations. Since lakes are inferred where the 
water table is above the local land surface, and the DEM elevations were 
used to replace the interpolated regional water-table elevations, this pro-
cessing step effectively removed lakes and only results in wetlands be-
ing mapped (Fig. 5c). With this correction, total area of lakes and wet-
lands obtained equal 2,147 km2 (6.68% of area assessed). 

Model calibration 

Initial simulations using parameters based on existing models and avail-
able data (K, GRn, stream leakance and stage) indicated the need for ad-
justments to the model. Analyzing feasibility of calibration of large-scale 
steady-state models, Knowling and Werner (2016) discussed tradeoffs 
between constraining recharge versus constraining K distributions. In 
the study reported in this paper, the recharge distribution data obtained 
from remote sensing are treated as having a higher degree of informa-
tion content than the K parameter because each grid cell (39,640) has 
a GRn

 estimate from remote sensing, whereas the basic K data are lim-
ited to 261 thickness-weighted average estimates (one observation in 
every ~152 km2). 

Manual and automatic calibration techniques were used in an effort to 
minimize differences (residuals) between simulated and observed (esti-
mated) hydraulic heads. Calibration was considered complete if the root 
mean square error (RMSE) was less than the maximum potential error 
in water-table elevations, about one-half of the contour interval (7.6 m), 
with a smaller mean error (ME). Visual match with the 1995 water-ta-
ble contour map was also used to evaluate the calibration. In addition, 
calibration was assessed by comparing total simulated net outflow with 
observation-based baseflows of interior streams, and simulated and in-
terpreted lake and wetland areas and numbers were compared with the 
2005 Landsat land cover survey. However, the observed total baseflow 
from gauges and the land cover classes were not formally a part of the 
objective function. 



R o s s m a n   e t  a l .  i n  H y d r o g e o lo gy  J o u r n a l  2 6  ( 2 0 1 8 )      17

The model calibration involved six key steps—Table S2 of the Sup-
plementary Materials lists the order of calibration steps and provides 
condensed descriptions. For brevity, only the most important steps in-
volved in the calibration approach and the results from assessment of 
the calibration performance are presented in this section. Readers in-
terested in further details of model calibration are encouraged to read 
section S3 of the Supplementary Materials. 

After substituting DEM elevations for water-table elevations from the 
1995 water-table map (Fig. 5c), average water-table elevations within 
each grid cell (aggregated from 30-m to 1-km resolution) were calcu-
lated for use as quantitative calibration targets. Grid cells used as tar-
gets were those containing: (1) observed lakes; (2) observed wetlands, 
either type having an area greater than 10 ha based on the 2005 Land-
sat survey; (3) wells with 1995 water-table measurements; or (4) evenly 
spaced grid cells at 10 km (every other pilot point). This resulted in a 
total of 7,937 grid cells with head targets (20% of active cells), a major-
ity containing lakes (1,457) and wetlands (6,035; Fig. S3b of the Sup-
plementary Materials). Targets were assigned weights (1.5, 1.3, 1.1, and 
1.0, for grid cells containing lakes, wetlands, water-table measurements, 
and pilot points, respectively) in PEST according to their perceived im-
portance and accuracy. 

The pilot point method (Doherty et al. 2010) was used to perform 
PEST optimization of K. Two PEST runs were performed, one with origi-
nal MODIS-based GRn

 (from Szilagyi and Jozsa 2013), and one after man-
ual adjustment of GRn. The GRn

 estimates greatly constrained the cali-
bration process, and the manual adjustments made were not dramatic 
(maximum changes of 20 mm/yr). All adjustments to GRn

 were lower 
than the expected error, which is at least 60 mm/yr (at the MODIS pixel 
scale) in the NSH, considering an error range of about 5% in P, and 10% 
in ET, and that P and ET are each no lower than ~400 mm/yr (Szilagyi et 
al. 2011a). The relatively small changes made to GRn

 indicate a high level 
of reliability of the original GRn

 estimates, especially considering the large 
uncertainty typical of GR estimation methods (Healy 2010). The final 
PEST run on K was performed using a Tikhonov-regularization process to 
constrain the inversion (Tikhonov and Arsenin 1977) and the lower and 
upper limits to K of 1 and 36 m/d were applied, as well as the adjusted 
GRn

 values. Initial K values were those assigned as means to 29 zones 
based on borehole lithology (Fig. S2 of the Supplementary Materials). 
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Hydraulic head contours from the calibrated MODFLOW simulation 
were compared with the interpreted heads—interpolated 1995 water-
table contours (with some DEM-substituted elevations) as shown on Fig. 
6. The ME equaled −0.23 m, and the RMSE equaled 2.8 m. Absolute head 
residuals of less than 5 m accounted for 92.9% of the targets, and 61.1% 
were less than 2 m. Graphical comparisons of simulated heads, head re-
siduals, and head targets, are shown on Fig. 7. All of these results dem-
onstrate limited spatial and topographic bias, and a reasonable calibra-
tion meeting the established criteria. 

Results 

Groundwater recharge and hydraulic conductivity 

The spatial average of calibrated GRn
 values equaled 52.6 mm/yr, an in-

crease by 6.6 mm/yr (14.3%) over the original average of 46 mm/yr; 

Fig. 6. Comparison of simulated (calibrated) and estimated hydraulic head contours 
based on interpolated DEM-adjusted 1995 regional water-table elevations. The con-
tour interval is 20 m. Lakes and major streams are shown for reference.   
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such a small overall change supports the emphasis of assigning higher 
weight to the recharge data from remote sensing than to K. The range 
of values remained unchanged, having a minimum of −588 mm/yr and 
a maximum of 249 mm/yr. The spatial distribution of manual adjust-
ments made to GRn

 during calibration is depicted on Fig. S4 of the Sup-
plementary Materials. 

Figure 8a,b present maps of the calibrated K and transmissivity fields 
achieved, respectively. Much of the northern half of the study area has 
lower K than the southern half—consistent with the spatial distribution 
of thicker Pliocene/Pleistocene deposits in the NSH (Bleed and Flower-
day 1998). The calibrated transmissivity ranges from 0 to 4,090 m2/d, 
and has a mean of 1,156m2/d and a median of 1,018m2 d. Hydraulic con-
ductivity within the study area ranges from 1.6 to 30.2 m/d, and has a 
mean of 7.8 m/d. The mean calibrated K at each of the 261 borehole lo-
cations is 8.5 m/d, about 3 m/d lower than the mean of published esti-
mates from borehole lithology (11.5 m/d). Approximately 83% of the 

Fig. 7. Comparison of simulated and observed (estimated) hydraulic heads at all 7,937 
grid cells with head targets used during automatic calibration; a) simulated and esti-
mated hydraulic heads (correlation coefficient, R2, is 0.9996); and b) head residuals 
plotted with respect to estimated hydraulic heads.  
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differences between borehole and calibrated K values are within ±10 
m/d. Further, the calibrated K values are close to those reported by Chen 
and Chen (2004), and have a spatial distribution that is generally simi-
lar to published interpolations based on borehole lithology (Korus et al. 
2013). Considering the nonuniform distribution of boreholes over the 

Fig. 8. Calibrated hydraulic conductivity and transmissivity distribution: a) hydraulic 
conductivity in m/d; and b) transmissivity in m2/d. Water-table elevation contours, 
borehole locations, lakes, wetlands and major streams are shown for reference.   



R o s s m a n   e t  a l .  i n  H y d r o g e o lo gy  J o u r n a l  2 6  ( 2 0 1 8 )      21

study area and the low density (one borehole per 152 km2), these dif-
ferences are reasonable at the regional scale. In addition, the calibrated 
values of K were similar to those from previous studies in the region (see 
Table S3 of the Supplementary Materials). 

Simulated water budget 

The volumetric water budget estimates (Table 1) include simulated net 
groundwater discharge to internal streams. During the recent period, 
representing approximately 1995–2009 average conditions, total flows 
to and from the High Plains aquifer in the study area were simulated to 
be 7.75 × 106 m3/d. Inflows to the aquifer were dominated by GRn

 to the 
water table (80.5% of inflows), followed by underflows from outside the 
model domain through constant heads located primarily along the west-
ern border (15.4%), and stream leakage from rivers (4.1%). Outflows 
from the aquifer were dominated by flows to streams through drain 
and river cells (58.6% of outflows), followed by underflow to areas out-
side the model domain (along the eastern and northeastern boundaries) 
through constant heads (34.0%) and internal cells with net discharge—
negative GRn

 (7.4% of outflows). 
The calibrated model parameters were used for evaluation of sim-

ulated baseflow, calculated as total discharge via drain cells and to-
tal net discharge via river cells. The resulting calibrated groundwa-
ter discharge to streams is 4.22 × 106m3/d. This value is remarkably 
close (0.8% greater) to the estimate of 4.185 × 106m3/d for observa-
tion-based baseflow obtained from independent USGS streamflow gauge 
data, auxiliary evidence that the hydrogeologic system has been ade-
quately represented. 

Table 1 Volumetric water budget for the entire study area 

Water budget component/  Inflow   Outflow   
Inflow–Outflow 

 
boundary condition type 
 106m3/d  Percent  106m3/d  Percent  106m3/d 

Recharge/discharge (GRn)  6.24  80.5  0.57  7.4  5.67 
Constant heads  1.20  15.4  2.64  34.0  −1.44 
Rivers  0.32  4.1  1.08  13.9  −0.76 
Drains  0  0  3.46  44.7  −3.46 
Total  7.75  100  7.75  100  0 
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From the 1,900 grid cells containing natural lakes and wetlands larger 
than 10 ha (out of the 7,937 selected head target grid cells), a total of 
0.18 × 106m3/d of water discharges from the model (2.3% of outflows), 
based on the remote sensing-based estimates (ET > P). This represents 
only about 32% of all the net discharge via ET from the land surface 
where ET exceeds P, including natural lakes and wetlands (in uplands 
and in river valleys), engineered reservoirs, groundwater irrigated ar-
eas (especially Box Butte County), and afforested areas. 

Lake and wetland characteristics inferred from models of the wa-
ter table 

The spatial distribution of lakes and wetlands inferred from the simu-
lated hydraulic heads and the GIS mapping analysis (section “Lakes and 
wetlands”) are shown on Fig. 9, and have an area of 2,083 km2, equal-
ing 6.48% of the 32,122-km2 portion of the study area assessed for lake–
wetland characteristics. The ability of a data set to match the observed 

Fig. 9. Simulated spatial distribution of lakes and wetlands in the study area and 
Sand Hills region based on the calibrated hydraulic heads and water table (WT) depth 
classification.     
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position in the landscape of numerous closely spaced, but widely distrib-
uted lakes and wetlands is an indication of the model fidelity. 

Further quantitative evaluation of the calibration included a compar-
ison between areas and numbers of lakes and wetlands from the three 
data sets depicted in Fig. 5, as well as the area of lakes from the 1979–
1980 Landsat survey detailed by Rundquist (1983), and the NHD high-
resolution data set, surveyed between October 2004 and April 2008 
(Table 2). Simulation of combined lake–wetland areas from hydraulic 
heads are remarkably similar to the estimates inferred from the 1995 
regional water-table map (1.0% underestimate), but are much less sim-
ilar to those from the 2005 Landsat land cover survey (10.9% overesti-
mate). Similarly, the numbers of lakes, and lakes or wetlands, from the 
simulated hydraulic heads are remarkably similar to those from the 1995 

Table 2 Total areas (km2) and numbers of lakes and wetlands obtained using simu-
lation results and observational data sets.a,b,c 

  Areas [km2]    No. of lakes  
  (% of total area assessed)   (No. of lakes  
     or wetlands) 
 Lakes and wetlands  Wetlands  Lakes  Other  
Data set  combined 

Simulated hydraulic heads  2,083  1,364  719  30,038  3,348 
 (6.48)  (4.25)  (2.24)   (93.51)  (7,331) 

1995 regional water-table  2,104  1,551  553  30,018 3,685 
 (6.55)  (4.83)  (1.72)   (93.45)   (8,777) 

1995 regional water-table  2,147  2,147  0 29,975 0 
     (DEM-adjusted)  (6.68)  (6.68)   (0)   (93.32)   (8792) 

2005 Landsat survey  1,879  1,625  254  30,242 4,699 
     (Dappen et al. 2007)  (5.85)  (5.06)  (0.79)   (94.15)   (44,213) 

1979–1980 Landsat survey  –  –  331  – – 
     (Rundquist 1983)    (1.03)   

2004–2008 National  –  –  302   –  – 
     Hydrography Dataset     (0.94)

a. Area included for assessment of lake and wetland areas, and numbers, includes only the NSH 
portion of the study area and excludes major river valleys; it amounts to an area of 32,122 km2 

b. DEM-adjustment of the 1995 regional water-table map led to there not being any mapped 
water-table elevations greater than the land surface, resulting in there being no lakes in the 
GIS classification 

c. Areas of lakes from the 1979–1980 Landsat survey presented in Rundquist (1983), and the 
NHD, were multiplied by 0.728—the fraction of (1) the area of lakes over the portion of the 
study area assessed (32,122 km2 ) to (2) area of lakes in the entire NSH proper (see Figs. 1 
and 2) as surveyed in the 2005 Landsat survey (0.728 = 254 km2 ÷ 349 km2 )
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regional water table map (9.1% underestimate for lake numbers, and 
16.5% underestimate for lake or wetland numbers), but are less similar 
than the 2005 Landsat survey (21.6% underestimate for lake numbers, 
and 83.4% underestimate for lake or wetland numbers). Additionally, 
the resulting areas of lakes from the simulated heads and the regional 
water-table map are much larger than areas obtained from the other 
two surveys (Table 2). Further assessment of the areas of mismatch be-
tween simulated and observed (2005 Landsat survey) locations and ar-
eas of lakes and wetlands are presented in Table S4 and Fig. S5 of the 
Supplementary Materials, along with a short discussion of ways in which 
the mismatch could be improved. 

Discussion 

Discrepancies between the simulated and observed lake areas and wet-
land areas, separately, are noteworthy, as well as those between simu-
lated and observed numbers of lakes, and lakes or wetlands. However, 
the resulting mismatch among the combined lake–wetland areas is much 
smaller. This is a reasonable result for the approach and important when 
considering the degree of variability between areas of lakes from the 
three observational data sets (2005 and 1979–1980 Landsat surveys, 
and NHD): the coefficient of variation is 13%, with an even larger range, 
compared with a simulated 11% overestimate of combined lake-wetland 
areas. The results are encouraging, despite recognizing the drawbacks, 
and suggest room for future improvements that could be implemented 
(Section S4 of the Supplementary Materials). 

The mismatch for individual lake and wetland areas and numbers is 
largely attributed to deficiencies in the calibration data set (hydraulic 
heads supplemented with DEM elevations), as well as the fact that the 
topographic variation (dune landscape) does not necessarily match that 
of the available data (regional); here, the regional (15.24-m interval) con-
tour map to generate head targets for 1-km resolution MODFLOW grid 
cells was used. In addition, interpolation of the simulated heads down 
to a resolution of the DEM(30 m) was performed before conducting the 
GIS terrain analysis to infer the position of lakes and wetlands. Another 
factor affects the model performance— selection of a 3-m water-table 
depth used to classify wetlands from lakes. This value was obtained by 
comparing to other depth cutoffs. Finally, classification of shallow lakes 
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has inherent difficulties due to seasonal transitions into wetlands; and 
accuracy of observations of model inputs, water level targets, DEM, and 
Landsat survey data has not been fully quantified, thereby making it dif-
ficult to identify and reduce uncertainties related to calibration and sim-
ulation of lake-wetland characteristics. 

In this example, the calibration data set only included hydraulic head 
estimates, yet the results provide a very good match to baseflow data 
(+0.8%) that were obtained independently. In some cases, there are 
physical reasons for errors in the simulation of lake-wetland character-
istics—for example, aquifer heads can be above the land surface near 
springs, as have been observed in the field in southwestern parts of the 
NSH (Befus et al. 2012). Importantly, the discrepancies of simulated and 
observed total lake and wetland areas do not preclude the use of the 
model for predicting the overall system dynamics at regional ground-
water management scales due to changing stresses. 

The principle of parsimony was applied during model construction: 
relatively coarse grid spacing, honoring available GRn, and using one 
model layer without explicit consideration of groundwater exchange 
with lakes or wetlands. Such an approach avoided 3-D discretization 
that demands extensive, and rarely available, high-resolution data sets 
of vertical variations of aquifer and lakebed layering/geometry and 
properties, and inclusion of vadose zone dynamics. Such detailed data 
on the scale of this study area (~40,000 km2) are largely unavailable 
today in the NSH and elsewhere in the world. Study of the large area 
with heterogeneity and topographic variation was facilitated by the 
automatic calibration technique, granted the problem was reduced in 
complexity by constraining the inverse problem with long-term esti-
mates of GRn

 from remote sensing (MODIS-based; Szilagyi and Jozsa 
2013). Another approach representing individual lakes through the 
use of high-K cells (Anderson et al. 2015) is not appropriate in this 
case, because most lakes in the NSH are very shallow—less than ~1 m 
on average (McCarraher 1977), and many of the lakebeds have lower 
K than the surrounding aquifer (Ahlbrandt and Fryberger 1980; Ong 
and Zlotnik 2011). Application of the approach to other areas would 
require similar GRn

 estimates, which inherently include net evapora-
tion (E) from lakes (E–P). Since the lakes were shallow, no correction of 
DEM elevations was required (subtracting lake depth from the DEM), 
but in places with deeper lakes, bathymetry should be obtained to com-
plete the GIS terrain analysis. 
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Accuracy of the existing water-table map is a leading factor control-
ling accuracy of the proposed approach. This hand-drawn map utilized 
primary information (water levels) sampled by 339 measurement points 
(i.e. less than one well per 100 km2) and secondary information (land 
surface topography, hydrographic stream network, and shallow lake el-
evations). Higher weights were applied to head targets during calibra-
tion in areas of both primary and secondary information. Data indicate 
excellent stability of water levels over the development period (over 50 
years!; McGuire 2014). This map has a long and successful history of use 
in Nebraska state water resources projects. Various studies explored the 
role of mapping techniques recently (e.g. Fasbender et al. 2008; Wood-
row et al. 2016). Typically, they require much higher density of sampling 
points (about one per 10 km2) and remain in the research stage. (The 
current water-table map also undergoes revisions by the UNL–CSD with 
aid of GIS and geostatistics). 

The groundwater model simulates the interpreted regional water-ta-
ble position and overall baseflow after applying a combination of man-
ual adjustment of GRn

 and automatic adjustment of K. Improved fit with 
observational land cover data sets might be achieved by utilizing the 
spatial information as part of the regularization in PEST (see other sug-
gestions in section S4 of the Supplementary Materials). The use of spa-
tially distributed GRn

 has been carried out previously in groundwater 
model calibration (e.g. Hendricks Franssen et al. 2008; Li et al. 2009). 
The manual adjustments of GRn

 performed in this study had subjective 
elements (127 zones) and the resulting rates from the calibration are 
not guaranteed to provide the best model fit (i.e. non-unique). Realisti-
cally, the level of uncertainty inherent in the K parameter, and the corre-
lation between GRn

 and K, would not have made a meaningful difference 
if GRn

 had been adjusted simultaneously with PEST (Knowling and Wer-
ner 2016). On the contrary, simultaneous adjustments may have caused 
numerical longer computation time and numerical convergence issues. 
Instead, the externally calculated GRn

 rates, constrained by remote sens-
ing data, were emphasized. Resulting manual adjustments were lower 
than the expected error for the NSH. The relatively small changes to GRn

 

indicate the high level of reliability of the original GRn
 estimates of Szil-

agyi and Jozsa (2013). 
An unexpected result from this work, relating to the final K map, de-

serves some discussion—despite a good model calibration at the large 
area with a shallow water-table and at the water-table saddle in the 
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west-central part of the domain (defined by tracing the 1,180 m contour 
shown on Figs. 3 and 6), the area has not previously been reported to 
harbor anomalously high K (see Fig. 8a). The water-table gradient is rel-
atively small (~0.0005–0.001) around this saddle, and the manual cal-
ibration to heads in this area (step 1) was unsatisfactory. Explanations 
for the existence of the high-K area are presented as follows: 

1. The anomaly is real but not apparent because of sparse borehole 
data—only six boreholes are located in this part of the study area 
(Fig. 8a). There is evidence of paleovalleys filled with deposits of 
young, relatively high-K material, deposited before being blocked by 
wind-blown dune dams during the Holocene (cf. Loope et al. 1995); 

2. The fixed structure of the model domain underestimates aquifer 
thickness (related to borehole density). If the thickness of the aqui-
fer in this area were larger, K values would need to be decreased, 
potentially removing the anomaly. 

3. Groundwater discharge is underestimated (i.e. ET is too low—
which has been suggested of the MODIS-based ET estimation 
method for open water by about 10% (Szilagyi et al. 2011b). How-
ever, the ET was effectively increased over initial estimates dur-
ing calibration in this area by a similar magnitude through ad-
justments made to GRn

 (shown on Fig. S4 of the Supplementary 
Materials). 

Since these factors could all contribute to the high-K anomaly ob-
tained, this issue persists, and the possible explanations provided here 
should be considered as hypotheses for future hydrogeologic study. The 
proposed approach requires a regional water-table map, remote sens-
ing estimates of GRn, basic data on aquifer hydrogeology, and a DEM of 
land surface elevation. Such information is often available in semiarid re-
gions where there is interest in the fate of extensive shallow groundwa-
ter lake systems, and associated biodiversity. Examples can be found in 
Kazakhstan (Saryarka World Heritage site; UNESCO 2017), Inner Mon-
golia (e.g. Ordos Desert; Tao et al. 2015), and Australia (Western Austra-
lia; Turner and Townley 2006). Naturally, in regions with less permeable 
substrate (Prairie Pothole Region, Canada) and regions where playas ex-
ist perched far above the water table (Central and Southern High Plains 
aquifer), with little connection between groundwater and surface water, 
this approach will be invalid (Liu and Schwartz 2011, 2014). 
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Conclusions 

The presented approach, designed for process-based modeling of hydro-
geologic systems with thousands of shallow groundwater-fed lakes and 
wetlands, was applied in the Nebraska Sand Hills (NSH). The approach 
addresses the need to simulate future changes to large lake and wet-
land environments, as recent climate change and human demands have 
stressed existing water resources. Typically, systems with just a few lakes 
have been simulated, with the focus on local groundwater/surface-water 
exchange rates and water budgets of individual lakes. Simulating thou-
sands of lakes and wetlands at the regional groundwater management 
scale is typically thwarted by data availability, regional heterogeneity, 
and process complexity. Therefore, traditional numerical groundwater 
modeling and GIS terrain analysis techniques were utilized, along with 
the idea that, in moderately to highly permeable soils and strata, ground-
water discharge is focused in depressions where the regional potentio-
metric surface is high. The variable topography and hydraulic connec-
tion between the interdunal depressions and their lakes and wetlands 
with the underlying saturated units of the High Plains aquifer make it an 
ideal setting for evaluating the feasibility of the approach. 

In the process of constructing a groundwater model, a better under-
standing of the NSH system properties and functioning has been at-
tained. The long-term average hydrology of the NSH lake-aquifer system 
is controlled by net groundwater recharge (GRn), the land surface topog-
raphy, aquifer transmissivity, and the drainage network of regional and 
headwater streams. After completing the groundwater modeling, auxil-
iary evaluation of the model results was made by comparing the overall 
water budget with total baseflow to interior streams and the spatial dis-
tribution, and areas and numbers of lakes and wetlands. With this ap-
proach, major system traits are captured at the regional groundwater 
management scale unlike in modeling studies of single lakes. 

The principle of parsimony was applied. The approach presented 
here strives to use the simplest possible model, with the utmost reli-
ance on available data. The application focuses on the interpreted (and 
interpolated) water-table distribution, comparing regional water-table 
elevations with land surface elevations from a DEM, completed by in-
ference of locations of thousands of lakes and wetlands with a specified 
water-table depth classification criteria. With use of GIS, the approach 
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reveals areas covered by lakes and wetlands, and when combined with 
image analysis software (MATLAB cluster analysis script in this case), 
also their numbers. With respect to model parameterization and cali-
bration, this study uses a practical example to suggest that methods that 
start with simple models and use computationally frugal model analysis 
methods remain valuable in model development methods (cf. La Vigna 
et al. 2016). In this case, a relatively coarse grid spacing was used, just 
one model layer, and no explicit coupling between small lakes or wet-
lands (average depth of ~1 m) and the large (~40,000 km2) groundwa-
ter system. The approach lays the background for research of climate 
and land-use changes on regional lake and wetland characteristics, in 
both the NSH and elsewhere. This is because the observed bias in to-
tal lake and wetland areas and numbers does not preclude the use of 
the model as a tool to evaluate consequences to ecologically important 
streamflow, and groundwater-fed lakes and wetlands, resulting from 
global and regional climate change and other human-induced environ-
mental stresses. 
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This supplement provides additional information on the Nebraska Sand Hills groundwater modeling 
application and analysis reported in the main article. Information provided here follows the order 
presented in the main article, and includes: 1) Descriptions of data used in construction, calibration, 
and assessment of the performance of the groundwater model; 2) Description and table (Table S1) of 
the analysis methods used to determine estimates of stream baseflows; 3) Flowchart of processing 
steps taken to obtain areas and numbers of lakes and wetlands (Fig. S1); 4) Further details, and key 
steps (Table S2), of the model calibration; 5) Initial hydraulic conductivity zones with average values 
(Fig. S2); 6) Figures applying to the calibration process, including pilot points and model cells 
containing head targets (Fig. S3), and adjustments made to the initial estimates of groundwater 
recharge rates (Fig. S4); 7) Compilation of hydraulic conductivity values from previous groundwater 
modeling studies covering parts of the NSH (Table S3); and 8) Evaluation of areas of mismatch 
between simulated and remotely sensed lake and wetland locations (Table S4 and Fig. S5). 

 

 

S1.   Description of data 

Previously published digital hydrogeologic, hydrologic, topographic, and geographic 
data sets were used to aid with construction, calibration, and assessing the 
performance of the NSH groundwater flow model described in this paper. Detailed 
description of these data sets and their sources are provided in the following listing:  
 

Data Set Source and Description 

Regional 
water-table 
contour map 

Source: University of Nebraska-Lincoln Conservation and Survey Division 

(http://snr.unl.edu/data/geographygis/index.aspx) 
Description: Detailed digital contour map of the regional water table for the entire state of 

Nebraska representative of spring 1995 conditions. Contours have an interval of 50 feet 
(15.24 m). Considered the current best estimate of regional water-table elevations for the 
modern period (A. Young, University of Nebraska Lincoln Conservation and Survey Division, 
personal communication, 2014; Szilagyi et al. 2013). This map was made using water-table 
depth readings from observation wells and surface elevation records, and also topographic 
characteristics of the land surface and elevations of surface water features from 7.5-minute 
U.S. Geological Survey (USGS) topographic maps (Summerside et al. 2001). Contours 
were drawn on 7.5-minute maps and then transferred to 1:250,000 (1 x 2-degree) scale 
work maps. However, in areas of extremely sparse observation wells, water-level elevation 
points and contouring were plotted directly on the 1 x 2-degree maps (Summerside et al. 
2001). Accuracy of the contouring does not exist, but it is certainly less than 3-m, as a 3-m 
contouring was possible in the Platte River Valley, and it is probably ~1 m or less (Szilagyi 
et al. 2013).  

http://snr.unl.edu/data/geographygis/index.aspx
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Data Set Source and Description 

Digital 
elevation 
model (DEM) 
of land surface 
elevations 

Source: U.S. Geological Survey National Elevation Dataset (https://lta.cr.usgs.gov/NED) 
Description: The National Elevation Dataset (NED) is a seamless data set with the best 

available raster elevation data of the conterminous United States. All NED data are public 
domain. NED data utilized had a resolution of 1/3 arc-second (about 10 m). The NED is 
derived from diverse source data that are processed to a common coordinate system and 
unit of vertical measure. All elevation values are in meters and are referenced to the North 
American Vertical Datum of 1988 (NAVD 88) in the conterminous United States. 

Base of 
principle 
aquifer 
contour map 

Source: University of Nebraska-Lincoln Conservation and Survey Division 

(http://snr.unl.edu/data/geographygis/water.aspx) 
Description: Digital contour map of the base of the principle aquifer for the entire state of 

Nebraska. Originally published in 1979. Contours have an interval of 30.48 m (100 ft). This 
map was made based on geologist interpreted lithology information from boreholes. 

Hydraulic 
conductivity 

Source: U.S. Geological Survey (http://pubs.usgs.gov/ds/777/)  
Description: Hydraulic properties database developed and synthesized for the High Plains 

aquifer as part of the High Plains Groundwater Availability Study. Data are thickness-
weighted average estimates of hydraulic conductivity based on borehole lithology 
interpretations. See the USGS report by Houston et al. (2013) for further information. 

Net 
groundwater 
recharge 

Source: Szilagyi and Jozsa (2013)   
Description: Spatially distributed high resolution (1.1-km) average net groundwater 

recharge rates (GRn) spanning 2000 to 2009 for the entire state of Nebraska. Rates are 
based on the difference between gridded precipitation (P) data (PRISM Climate Group 
2012), and actual evapotranspiration (ET) data derived from MODerate-resolution Imaging 
Spectroradiometer (MODIS) satellite temperature measurements and ancillary climate data 
(maximum/minimum air temperature, dew-point temperature, and global radiation) (Szilagyi 
et al. 2011a). Where ET consistently exceeds P, negative values are obtained, and when 
averaged over 10 years, these areas generally coincide with groundwater discharge zones 
(i.e. lakes/wetlands) and irrigated or afforested areas. Because of the long-term average 
(10-yr), these estimates are representative of quasi-steady-state conditions in the vadose 
zone above the zero upward flux plane (cf. Brunner et al. 2004; Munch et al. 2013). The 
basin-integrated recharge rates compare well in the NSH region with groundwater basin 
runoff estimates and groundwater chloride mass balance at sites where land cover is 
relatively homogeneous (Szilagyi et al. 2011b). In addition to having unprecedented spatial 
resolution, this data set provides complete coverage and both positive and negative net 
groundwater recharge fluxes, required for regional-scale groundwater modeling. 

Land cover 
survey map 

Source: University of Nebraska-Lincoln Center for Advanced Land Management 

Information Technologies (CALMIT; http://snr.unl.edu/data/geographygis/land.aspx) 
Description: Digital map of 2005 land cover for the entire state of Nebraska. Original 

imagery was obtained from multiple Landsat 5 Thematic Mapper scenes covering the full 
extent of Nebraska (see Dappen et al. 2007). Lakes, classified in the CALMIT Landsat land 
cover data set as open water, are reported to have had the highest overall accuracy out of 
the 25 land cover classes. Wetlands are described as follows (Dappen et al. 2007): 
"Emergent wetlands, lands where saturation with water is the dominant factor determining 
the nature of soil." Wetland training images used during supervised classification came from 
the National Wetlands Inventory, which identified wetlands as permanently flooded, 
intermittently exposed, or semi-permanently flooded. However, in most cases unsupervised 
classification using only the spring date (May) of Landsat imagery proved most effective in 
identifying wetland areas (Dappen et al. 2007).  

Streamflow 
gauge records 
and baseflow 
estimates 

Source: U.S. Geological Survey (http://waterdata.usgs.gov/nwis) and Nebraska Department 

of Natural Resources (C. Lesmeister, NDNR, written communication, 2014)  
Description: Daily streamflow records from six USGS and Nebraska Department of Natural 

Resources (NDNR) gauges on streams located within the model domain were utilized 
(Table S1 lists gauge information and baseflow estimates, and Fig. 4a in the main article 
shows the locations of gauges). The methods used to estimate baseflow on the interior 
streams are described in the following section. 

 
 
 
 

https://lta.cr.usgs.gov/NED
http://snr.unl.edu/data/geographygis/water.aspx
http://pubs.usgs.gov/ds/777/
http://snr.unl.edu/data/geographygis/land.aspx
http://waterdata.usgs.gov/nwis
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S2.   Baseflow estimation 

Daily streamflow records from six USGS (http://waterdata.usgs.gov/nwis) and Nebraska 
Department of Natural Resources (NDNR) gauges (C. Lesmeister, NDNR, written 
communication, 2014) on the six major streams flowing out of the model domain were 
used (ESM Table S1, and Fig. 4a in the main article provide gauge information and 
locations). Estimates of daily baseflows were made from streamflow measurements 
through the application of an automated method described as a one-parameter digital 
filter (Lyne and Hollick 1979). An alpha parameter of 0.925 was used as it has been 
shown to provide realistic results when compared to manual hydrograph separation 
methods (Nathan and McMahon 1990). Bradley et al. (2013) provide details of the 
method. 
 
Streamflow and baseflow averages for the period from 1 October 2000 to 30 September 
2010 (overlapping with GRn estimates) were calculated using data from four of the six 
gauges. From the other two gauges, data for this period were unavailable, so average 
daily values were analyzed from the most recent 10-year period, 1 October 1985 to 30 
September 1995, for the Dismal River at Dunning, and 1 October 1971 to 30 September 
1981 for the Snake River above Merritt Reservoir (Table S1). The discharge of each 
stream is dominated by baseflow, as expected for this region (Bleed and Flowerday 
1998; Chen et al. 2003), the cause of the nearly constant discharge and high baseflow 
index values of these streams (84% to 95%). 
 
Estimates of average daily canal diversions were added to the streamflow gauge data to 
create diversion adjusted streamflow records. Adjusted baseflow values were then 
calculated by multiplying the adjusted streamflow records by the baseflow index of each 
stream. Estimates were based on surface-water rights data obtained from the online 
NDNR water rights archive (http://www.dnr.ne.gov/surface-water-rights). It was 
assumed that diversion rates equal the surface-water right amount applied over 20% of 
the year. This adjustment was considered to be reasonable since it brought the long-
term average in line with the average streamflows during parts of the year not affected 
by canal diversions. Gauges affected by this adjustment include Blue Creek, Birdwood 
Creek, and the North Loup River (Fig. 1 and Fig. 4a in the main article show stream and 
gauge locations, respectively). Information and data on adjusted baseflow, and 
baseflow index (BFI), are presented in ESM Table S1. 
 
 
 

http://www.dnr.ne.gov/surface-water-rights
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Table S1  Stream gauge information and estimates of baseflow and baseflow index (BFI) for 
streams exiting the Nebraska Sand Hills groundwater model domain 

Station 
Station 
number 

Beginning 
year for 

baseflow 
calculations 

Ending    
year for 

baseflow 
calculations 

Average 
annual 

baseflow 
(10

6
 m

3
 d

-1
) 

Ratio of 
baseflow to total 
streamflow (BFI) 

Blue Creek near 
Lewellen 

06687000 2000 2010 0.187
a
 0.88 

Blue Creek near 
Hershey 

06692000 2000 2010 0.369
b
 0.95 

Dismal River at 
Dunning 

06776500 1985 1995 0.814 0.95 

Middle Loup River at 
Dunning 

06775500 2000 2010 1.085 0.95 

North Loup River at 
Taylor 

06786000 2000 2010 1.268
c
 0.84 

Snake River above 
Merritt Reservoir 

06459200 1971 1981 0.462 0.94 

Total baseflow: 4.185  

a Values of baseflow have been increased by 27.2% to account for surface water 
diversions 
b Values of baseflow have been increased by 6.1% to account for surface water 
diversions  
c Values of baseflow have been increased by 13.2% to account for surface water 
diversions 
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Fig. S1  Flowchart of processing steps taken to create maps and calculate areas and 
numbers of lakes and wetlands 

 
 
 

S3.   Further details of model calibration 

Calibration of the Nebraska Sand Hills groundwater model consisted of manual trial-
and-error, and automatic adjustment of parameters to improve agreement between 
observed (or estimated) and simulated values from a set of quantitative calibration 
targets, and qualitative targets. Table S2 lists the order of the six key calibration steps 
involved in calibration. These steps are detailed further as follows: 
 
1. Prior to automatic calibration, manual adjustments were made to K within 29 zones 

having initial values from the means calculated based on borehole lithology (Fig. S2; 
USGS hydrogeologic data from the High Plains aquifer [Houston et al. 2013; 
Peterson et al. 2008]). After the model run, the match with the regional water-table 
contours was deemed unsatisfactory.  

 
2. The pilot point method (Doherty et al. 2010) was used to perform PEST optimization 

of K, while maintaining original GRn. 1571 pilot points were used, with uniform 5-km 
spacing across the model domain (Fig. S3a). Initial K at pilot points were the same 
as those presented in Step 1 (zone averages). Grid cells with head targets were 
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assigned elevations from the DEM-adjusted interpolation of the water-table map, for 
7937 targets (20% of active cells) (Fig. S3b). 

 
3. Linear leakance parameter of Drains and Rivers from USGS modeling studies by 

Peterson et al. (2008) and Stanton et al. (2010) was adjusted manually and 
ultimately increased by a factor of two—slightly affecting heads near streams. 
Calibrated values of the leakance parameter ranged from 0.06 to 19.2 m2 d-1 m-1.  

 
4. Drain elevations were reduced by as much as 2 m along some streams, and 

Constant Head elevations along the North Platte River were decreased by 1 m in 
order to lower hydraulic heads locally. These changes were substantially less 
influential to the simulation than the PEST adjustments of K. The adjustments to 
leakance and stage were negligible relative to the changes made to K with PEST 
(Step 2).  

 
5. Manual adjustments to GRn were performed. This was necessary because initial 

automatic parameter estimation yielded a number of grid cells with K falling outside 
the established limits—range from 1 to 36 m d-1 reflected by regional geology, 
previous regional groundwater modeling, and K estimates from borehole lithology 
(Table S3). Values of GRn were adjusted by adding or subtracting as much as 20 
mm yr-1 to/from the initial estimates from remote sensing (Fig. 4a of the main article) 
uniformly within 127 20x20-km zones (Fig. S4). The zones were developed on a 
uniform grid, and the choice to use 127 zones was both a pragmatic one, allowing a 
somewhat limited number of zones, and largely preserving the GRn spatial 
distribution originally determined with a 1-km resolution (from MODIS); a similar 
calibration approach was used by Feinstein et al. (2010).  
 

6. The final PEST run on K was performed using a Tikhonov-regularization process to 
constrain the inversion (Tikhonov and Arsenin 1977) and the lower and upper limits 
to K of 1 m d-1 and 36 m d-1 were applied, as well as the adjusted GRn values. Initial 
K values were those assigned as means to 29 zones based on borehole lithology. 
Same as the first PEST run, 1571 pilot points were used, with 7937 head targets. 
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Table S2  Key steps involved in model calibration 

Calibrati
on step 

Parameter 
updated 

Description 

1 
Hydraulic 

conductivity   
(K) 

Hydraulic conductivity map produced and manual 
adjustments made—29 irregular zones; initial values 
based on mean estimates from 261 boreholes; original 
GRn maintained 

2 
Hydraulic 

conductivity   
(K) 

Hydraulic conductivity adjusted using PEST—1571 pilot 
points (5x5-km), and 7937 head targets; no regularization 
or upper and lower limits applied; original GRn 
maintained 

3 
Linear 

leakance 

Linear leakance (conductance divided by length of 
stream) of portions of select interior streams increased 
by a factor of two 

4 
Stream/river 

stage 
elevation 

Drain elevations of portions of select interior streams 
reduced by as much as 2 m, and Constant Head 
elevations along a portion of the North Platte River 
(southern boundary) reduced by 1 m 

5 

Net 
groundwater 

recharge   
(GRn) 

Net groundwater recharge adjusted manually—127 
uniform zones (20x20-km) on the basis of constraining K 
to within pre-defined range from 1 to 36 m d-1; adjusted 
up or down by 0 to 20 mm yr-1 

6 
Hydraulic 

conductivity   
(K) 

Hydraulic conductivity adjusted using PEST with 
regularization and limits—1571 pilot points (5x5-km), and 
7937 head targets; Tikhonov regularization of K with 
initial values from Step 1 (29 zones, 261 boreholes); 
limits of 1 and 36 m d-1 applied; adjusted GRn applied 
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Fig. S2  Zones and average values of initial thickness-weighted average hydraulic 
conductivity, based on borehole lithology, including borehole locations, lakes, wetlands, 

and major streams 
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Fig. S3  Pilot points spaced uniformly at 5-km (a); and grid cells with head targets used 
during automatic (PEST) model calibration 
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Fig. S4  Adjustments made to net groundwater recharge rates during calibration; 
positive values are an increase in net recharge, and negative values are a decrease in 

net recharge 
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S4.   Areas of mismatch between observed and simulated lakes and wetlands 
 
Observed lakes and wetlands were compared with those resulting from the GIS terrain 
analysis described in Section ‘Groundwater flow modeling: Lakes and wetlands’ of the 
main article. While the calibration of modeled heads to estimated groundwater levels 
was very accurate (RMSE = 2.8 m), and much of the domain displays a satisfactory 
agreement between observed and simulated lakes and wetlands, there are some 
notable parts of the domain in which this is not the case (i.e. spatial bias); the areas are 
identified on Fig. S5. The overall difference between combined areas of lakes and 
wetlands in these areas of mismatch were calculated in GIS using the Zonal Statistics 
tool to understand how much these areas contribute to the total discrepancy between 
combined lake and wetland areas. The differences between observed and simulated 
lake and wetland areas are listed in Table S4 corresponding with areas shown on Fig. 
S5. Generally, these areas of mismatch contribute relatively small amounts to the 
overall discrepancy between total observed and simulated combined lake and wetland 
areas (10.9% overestimate). However, one area of concern is portions of the far 
northeastern part of the domain, in which a difference of 94 km2 of combined lake and 
wetland areas were not simulated with the calibrated model.  
 
Ways in which the overall match between observed and simulated lakes and wetlands 
may be improved in the future are associated with carrying out a more robust calibration 
effort, which could include: 1) considering structural uncertainty (i.e. a multi-model 
approach with various aquifer thicknesses or boundary condition types); 2) allowing 
more parameters to be varied with PEST, such as head-dependent boundary 
parameters and groundwater recharge, and perhaps adding a censored target type that 
penalizes the objective function if hydraulic heads exceed land surface elevation in 
locations where there are not any observed lakes or wetlands; and 3) increasing the 
density of pilot points in areas of the model with high-density head target coverage, and 
perhaps utilizing different pilot-point placement for varying different parameters (such as 
Drain conductance). 
 
Table S4  Areas of mismatch between observed and simulated lake and wetland areas 
and their relative contribution as compared to the total area observed in the NSH 
(excluding a 1-km buffer around major streams)a,b 

Area of 
mismatch 

Observed 
(2005 Landsat 

survey) 
(km2) 

Simulated 
(km2) 

Difference 
(km2) 

Percent of 
observed lake 
and wetland 

areas (%) 

1 4.90 12.54 -7.64 -0.4  

2 6.38 45.31 -38.93 -2.1  

3 24.80 0.47 24.33 1.3  

4 44.59 5.53 39.06 2.1  

5 97.23 2.87 94.36 5.0  
a Areas are numbered according to Fig. S5 
b Observed lakes and wetlands from CALMIT 2005 Landsat survey (Dappen et al. 2007)  
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Fig. S5  Areas of mismatch identified between observed and simulated lakes and 
wetlands 
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