University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Nebraska Beef Cattle Reports

Animal Science Department

2020

Comparing March and May Calving Systems in the Nebraska Sandhills

McKay R. Erickson

Devin L. Broadhead

J. A. Musgrave

Rick N. Funston

Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr

Part of the Large or Food Animal and Equine Medicine Commons, Meat Science Commons, and the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Comparing March and May Calving Systems in the Nebraska Sandhills

McKay R. Erickson Devin L. Broadhead Jacki A. Musgrave Rick N. Funston

Summary with Implications

Three production years for March and May calving, Red Angus-based cows and their offspring from the Gudmundsen Sandhills Laboratory (GSL), Whitman, NE, were evaluated. Steer progeny were evaluated through harvest and carcass data collected. Calf birth body weight (BW) and breeding BW were greater for May calves vs. March; however, adjusted weaning BW was greater for March calves. Pregnancy rates, weaning rates, calving interval, calving difficulty, and calf vigor were similar between calving systems. Udder score was greater for March cows. Compared with March calf-fed steers, May calf-fed steers had greater hot carcass weight (HCW), longissimus muscle area (LMA), marbling, and backfat. May yearlings had greater HCW, LMA, marbling, and backfat compared with March calf-feds. In the Sandhills, a May calving system can increase production while reducing total herd inputs when compared to a March calving system.

Introduction

Selecting a calving season can be one of the most influential factors for a successful beef production system. Weather, available labor and feed resources, market potential for calves and open cows, and breeding season impact the profitability of a calving season. In addition, location and producer goals will affect the decision about when to calve. When comparing March and June calving in the Nebraska Sandhills, a June calving system reduced labor and the amount of hay fed, but increased protein supplement needed for June cows (2001 Nebraska Beef Cattle Report, pp. 8–9).

Table 1. Comparison of calf performance between March and May calving systems

					P-value	
	March	SEM	May	SEM	System ¹	Cow Age ²
n						
Birth wt, lb	77.34	0.46	78.06	0.64	0.02	0.01
Breeding wt, lb	173.0	1.56	213.83	1.97	0.01	0.01
Weaning wt, lb	533.62	2.89	441.43	3.62	0.01	0.01
Adj weaning wt³, lb	499.18	2.45	426.33	4.44	0.01	0.01
Calving difficulty ⁴	1.04	0.01	1.00	0.01	0.05	0.27
Calf vigor ⁵	1.04	0.01	1.00	0.01	0.16	0.29
Calf sex ⁶	0.54	0.02	0.49	0.03	0.10	0.80

¹P-value significance of calving system

Weaning rates were similar between both systems, but the March-born calves had approximately 70 lb increased weaning weights over June-born calves of similar age. June was selected in this region to best match cow nutrient needs with nutrients in grazed forages. The current study was conducted to provide information on a May calving system as May was selected to balance the differences/downfalls between the March and June systems.

Procedure

Data from 3 production years from 2 calving herds in the Nebraska Sandhills were analyzed. Red Angus-based cows from the Gudmundsen Sandhills Laboratory, Whitman, NE, calved either in March or May. All cows analyzed were at least 3 yr of age or older. The numbers varied each year for March (n = 194, n = 160, and n = 149 for yr 1, 2, and 3 respectively) and May (n = 105, n = 106, and n = 90 for yr 1, 2, and 3 respectively) calving herds. Average calving date was March 24 for the March herd and June 5 for the May herd. March cows calved in a drylot and May cows calved on native range.

All steer calves from the March herd entered the feedlot after a 14 d weaning period as calf-feds. May-born steer calves were backgrounded for approximately 136 d. After backgrounding, half of the steers entered the feedlot as calf-feds and the remainder grazed native upland range for approximately 129 d before entering the feedlot as yearling-feds. All steers were harvested when visually assessed to have approximately 0.5 in backfat depth and carcass quality data was collected.

Results

In the March calving system, 82% of the calves were born in the first 21 d; while 85% of the May calves were born within the first 21 d. Calf birth BW and calf BW at breeding were (P < 0.01) greater for May calves vs. March (78 ± 0.6 lb vs. 77 ± 0.5 lb and 214 ± 2 lb vs. 173 ± 1.6 lb respectively); however, adjusted weaning BW was greater (P < 0.01) for March calves (500 ± 2.5 lb vs. 426 ± 4.4 lb, March vs. May, respectively; Table 1). Pregnancy rates (89% vs. 91%), weaning rates (96% vs. 94%), calving interval, calving difficulty, and calf vigor were similar (P > 0.10) between systems. Udder

[©] The Board Regents of the University of Nebraska. All rights reserved.

²P-value significance of age of cow

³Adjusted 205 d weaning weight

⁴Calving difficulty score on scale of 1 to 5: 1 = unassisted, 2 = easy pull, 3 = hard pull, 4 = surgical removal, 5 = abnormal presentation

⁵Vigor of the calf shortly after birth on scale of 1 (nursed immediately, strong) to 5 (dead on arrival)

 $^{^6}$ Average sex of calf born in herd (0 = female, 1 = male)

Table 2. Comparison of cow performance between March and May calving systems

	March	SEM	May	SEM	P-value	
					System ⁸	Cow Age9
n	503		301			
Cow Age ¹	5.83	0.08	4.70	0.08	-	-
Calving wt, lb	1,107.84	6.30	1,012.78	6.50	0.01	0.01
Calving BCS ²	5.18	0.03	4.87	0.03	0.01	0.13
Breeding wt, lb	1,033.77	5.64	1,079.10	7.37	0.01	0.01
Breeding BCS	4.90	0.03	5.74	0.03	0.01	0.01
Wean wt, lb	1,101.27	5.53	972.96	7.55	0.01	0.01
Wean BCS	5.37	0.03	4.70	0.04	0.01	0.01
Preg ³	0.91	0.01	0.89	0.02	0.74	0.16
Calving Rate ⁴	0.98	0.01	1.00	0.00	0.05	0.46
Wean Rate ⁵	0.94	0.01	0.96	0.01	0.64	0.17
Julian DOB ⁶	82.60	0.56	145.37	0.59	-	-
Udder Score ⁷	3.32	0.03	3.01	0.05	0.01	0.06

¹Average age of cows in the herd

score was greater (P < 0.01) for March cows (3.32 \pm 0.03 vs. 3.01 \pm 0.05, March vs. May, respectively; Table 2).

Compared with March calf-fed steers, May calf-fed steers had greater (P < 0.01) HCW (898 ± 12 lb vs. 830 ± 5 lb), LMA (15 ± 0.2 in² vs. 14 ± 0.1 in²), marbling (494 ± 12 vs. 477 ± 5.9), and backfat (0.65 ± 0.02 in vs. 0.57 ± 0.01 in). May yearling steers had greater (P < 0.01) HCW (961 ± 13.2 lb vs. 830 ± 4.7 lb), LMA (15 ± 0.2 in² vs. 14 ± 0.1 in²), marbling (566 ± 15 vs. 477 ± 5.9), and backfat (0.66 ± 0.03 in vs. 0.57 ± 0.01 in) compared with March calf-feds. May steers likely finished with increased HCW and carcass traits due to increased backgrounding period compared to March steers.

Conclusion

Selection of calving season is best assessed by each producer at his/her own location. Management decisions for steers and replacement heifers will vary between systems as this study illustrated briefly the flexibility post weaning depending on forage availability and time of year. Peak forage nutrients vary as well as complementary forages and access to stockpiled feeds. By synchronizing peak nutrient requirement of the cow with peak forage quality, a producer can mitigate cost and amount of forage used per cow and increase potential for profitability. In the Sandhills, a May calving system can increase production while reducing total herd inputs when compared to a March calving system.

McKay R. Erickson, graduate student
Devin L. Broadhead, graduate student
Jacki A. Musgrave, research technician
Rick N. Funston, professor Animal Science,
University of Nebraska–Lincoln West
Central Research and Extension Center,
North Platte, NE

²Body condition score based on scale of 1 (emaciated) to 9 (extremely obese)

³Percentage of cows pregnant that were given opportunity to breed

⁴Percentage of cows that gave birth to a calf that were diagnosed as pregnant

⁵Percentage of cows that weaned a calf of those who gave birth to a calf

⁶Average calving date of herd based on Julian calendar

⁷Average udder score of cow at calving on scale of 1 (poor) to 5 (exceptional)

⁸P-value of calving system

⁹P-value of age of cow