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METHODOLOGY

PI‑Plat: a high‑resolution image‑based 3D 
reconstruction method to estimate growth 
dynamics of rice inflorescence traits
Jaspreet Sandhu1†, Feiyu Zhu2†, Puneet Paul1†, Tian Gao2†, Balpreet K. Dhatt1, Yufeng Ge3, Paul Staswick1, 
Hongfeng Yu2 and Harkamal Walia1* 

Abstract 

Background:  Recent advances in image-based plant phenotyping have improved our capability to study vegeta-
tive stage growth dynamics. However, more complex agronomic traits such as inflorescence architecture (IA), which 
predominantly contributes to grain crop yield are more challenging to quantify and hence are relatively less explored. 
Previous efforts to estimate inflorescence-related traits using image-based phenotyping have been limited to destruc-
tive end-point measurements. Development of non-destructive inflorescence phenotyping platforms could acceler-
ate the discovery of the phenotypic variation with respect to inflorescence dynamics and mapping of the underlying 
genes regulating critical yield components.

Results:  The major objective of this study is to evaluate post-fertilization development and growth dynamics of inflo-
rescence at high spatial and temporal resolution in rice. For this, we developed the Panicle Imaging Platform (PI-Plat) 
to comprehend multi-dimensional features of IA in a non-destructive manner. We used 11 rice genotypes to capture 
multi-view images of primary panicle on weekly basis after the fertilization. These images were used to reconstruct 
a 3D point cloud of the panicle, which enabled us to extract digital traits such as voxel count and color intensity. We 
found that the voxel count of developing panicles is positively correlated with seed number and weight at maturity. 
The voxel count from developing panicles projected overall volumes that increased during the grain filling phase, 
wherein quantification of color intensity estimated the rate of panicle maturation. Our 3D based phenotyping solu-
tion showed superior performance compared to conventional 2D based approaches.

Conclusions:  For harnessing the potential of the existing genetic resources, we need a comprehensive understanding 
of the genotype-to-phenotype relationship. Relatively low-cost sequencing platforms have facilitated high-throughput 
genotyping, while phenotyping, especially for complex traits, has posed major challenges for crop improvement. PI-Plat 
offers a low cost and high-resolution platform to phenotype inflorescence-related traits using 3D reconstruction-based 
approach. Further, the non-destructive nature of the platform facilitates analyses of the same panicle at multiple devel-
opmental time points, which can be utilized to explore the genetic variation for dynamic inflorescence traits in cereals.

Keywords:  Plant phenotyping, Rice, Inflorescence dynamics, 3D imaging, Panicle volume, Voxel count, Panicle 
maturation, Grain filling
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Background
With increasing world population, climatic variability 
and declining arable land resources, the need to increase 
global food production is paramount [1–3]. Two com-
ponents that are essential for achieving global food secu-
rity involve precise agronomic management and genetic 
improvement of major crops such as rice, wheat, and 
maize. Integral to both components is the development 
of data-driven tools that increase precision in imple-
mentation and enhance predictive capabilities. Moreo-
ver, strategic selection and adaptation of yield-related 
traits to maximize agricultural production holds the key 
to achieve sustainable food security [4–6]. Inflorescence 
architecture (IA) is an important phenotypic feature that 
ultimately contributes to most of the grain crop yield 
components such as grain number, size, and weight [7–
9]. However, the complexity of IA, especially in cereals, is 
a limiting factor for accurate determination of yield traits. 
Estimating the yield-related traits by conventional meth-
ods is subjective, laborious, and error-prone [10]. Also, 
the scope of the detectable yield-related traits is limited 
by manual measurements, which increases the chances of 
damaging the inflorescence.

Advances in automation of plant phenotyping technol-
ogies, mainly in reference to image-based phenotyping, 
have increased the depth and the scale of measuring veg-
etative traits [11–19]. However, only a few studies have 
used the phenotyping platform to screen IA [16, 20–22]. 
Some platforms have utilized machine-vision-based 
approaches to estimate inflorescence-related param-
eters [23–26]. In addition, two-dimensional (2D) imag-
ing platforms have been employed, for example, Tassel 
Image-based Phenotyping System (TIPS) quantifies mor-
phological traits from freshly harvested maize tassels, 
while PAnicle STructure Analyzer for Rice (PASTAR/
PASTA), Panicle TRA​it Phenotyping (P-TRAP), and 
PANorma analyze rice panicle length and branching 
[20, 21, 27, 28]. Both P-TRAP and PANorma have been 
used for genome-wide association studies (GWAS) with 
respect to rice panicle traits [27, 29–31]. Recently, Zhou 
et  al.[22] developed Toolkit for Inflorescence Measure-
ment (TIM) to estimate sorghum panicle volume derived 
from two planar imaging data. The derived panicle-
related traits of sorghum were used for GWAS to facili-
tate gene discovery.

Most of these 2D image-based IA approaches have dis-
cussed only the mature or end-point traits and do not 
capture the growth dynamics of developing inflorescence. 
Furthermore, biplanar images can only provide 2D pro-
jections of a 3D structure, thus accounting for substantial 
loss of spatial information [32]. 3D imaging has started to 
gain momentum to circumvent limitations of 2D imag-
ing [33]. Different 3D imaging methods, for example time 

of flight (ToF), laser scanning, stereovision among others, 
have been applied for remote sensing or field-based phe-
notyping platforms In addition, depth cameras are also 
widely used for capturing an entire plant or large plants 
parts [34]. Stereovision, which considers object images 
from different angles to reconstruct 3D surfaces, offers 
an inexpensive, accurate and efficient method for on-site 
3D plant imaging [32, 35, 36]. The recent introduction 
of freely available software—Multi-View Environment 
(MVE) offers an end-to-end 3D reconstruction solu-
tion [37]. MVE combines the multi-view stereo (MVS) 
and structure-from-motion (SfM) algorithms to gener-
ate dense point clouds for 3D object reconstruction [37]. 
The MVS-SfM approach has been used to reconstruct 3D 
meshes of leaves, canopy or whole plant [38–41]. How-
ever, this approach has not been used to characterize 
IA. Here, we present the results from characterizing rice 
panicles using the 3D reconstruction-based approach. 
The main objectives of our study were to (a) capture 
multi-dimensional, high-resolution images of ‘panicle 
on plant’ after the fertilization to reconstruct 3D plant 
cloud of inflorescence, (b) use 3D point clouds to derive 
inflorescence-related traits, and (c) use the derived traits 
to monitor growth dynamics of developing inflorescence 
and distinguish inherent genetic and morphological 
diversity in crop species.

However, it is challenging to perform 3D reconstruc-
tion of rice panicles to achieve our objectives. First, a rice 
panicle is often occluded by other plant components such 
as leaves and other panicles. Therefore, the existing solu-
tions by moving cameras [42] are not entirely suitable 
to generate un-occluded images for a panicle. Second, 
a panicle is non-rigid and typically is not located in the 
center of a plant, making it difficult to apply the exist-
ing solutions based on plant rotation [42]. Third, rather 
than destructive methods [22], non-destructive methods 
are needed to keep a panicle alive, as the growth dynam-
ics of a panicle is of interest in this study. Fourth, the size 
of a panicle is relatively marginal, and the depth-camera 
based solutions [34] may not provide sufficient resolu-
tions to capture the 3D details of a panicle.

To address these challenges, we developed an in-
house Panicle Imaging Platform (PI-Plat) to capture the 
dynamics of developing panicles in rice from a range of 
genetically diverse rice genotypes. A panicle is isolated to 
generate un-occluded images in a non-destructive man-
ner. In addition, a panicle stays still at the center in the 
PI-Plat and cameras rotate around it, thus minimizing 
the vibration and allowing generation of a more stable 3D 
point cloud. The resolution of the cameras is ensured 
to capture details of a panicle in 2D images, leading to 
high-resolution 3D reconstruction results. A total of 11 
genotypes, indica and japonica sub-populations were 
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selected. Post fertilization, primary panicles were imaged 
on a weekly basis (week 1, 2, and 3) by using the PI-
Plat. The captured images were used for 3D reconstruc-
tion to extract digital phenotypic attributes: voxel count 
and color intensity. We reported increased sensitivity in 
panicle trait prediction from 3D reconstruction when 
compared to direct end-point measurements of yield 
components. Although the PI-Plat is designed for rice 
panicles, it can be extended for other small plant compo-
nents such as new branches or leaves for cereals.

Material and methods
Plant material
Surface-sterilized seeds of 11 rice accessions were ger-
minated on half strength Murashige and Skoog media 
for 3 days in dark, followed by a day in light (list of the 
genotypes used in the study; Additional file  1). Initially, 
two uniformly germinated seedlings were transplanted 
to a 4-inch square shaped pot filled with pasteurized field 
soil. Throughout the growing season, the pots were main-
tained in standing water. After 10 days of transplanting, 
seedlings were thinned to retain one plant per pot per 
genotype.

Temperature treatment
Plants were grown under control conditions (16-h light 
and 8-hour dark at 28 ± 1 ℃ and 23 ± 1 ℃) till anthesis. 
One day after 50% of the primary panicle completely fer-
tilized, half of the plants from each genotype were trans-
ferred to greenhouse having high night-time temperature 
(HNT; 16-hour light and 8-hour dark at 28 ± 1 ℃ and 
28 ± 1 ℃). HNT treatment was maintained until matu-
rity. Two or three replicates per treatment per genotype 
from the current set were used to establish image-based 
phenotyping workflow (Fig. 1).

PI‑Plat: Panicle Imaging Platform
We constructed a low-cost Panicle Imaging Platform 
(PI-Plat) to capture the growth parameters of rice pani-
cles after flowering (Additional file  2). The PI-Plat is 
comprised of three main parts: (i) a customized wooden 
chamber with black interior, (ii) a rotating imaging sys-
tem, and (iii) color checkerboards.

Customized wooden chamber and rotating imaging system
To host the PI-Plat, a wooden chamber (height: 75-in., 
width: 52.5-in., length: 55-in.) was customized (Addi-
tional file  2). The interior of the chamber was painted 
black to reduce the light interference and increase the 
quality of image segmentation during the image process-
ing procedure. Inside the chamber, a circular wooden 
board (diameter: 37-in.) having an aperture at its center 
was fixed at a height of 52.5-in. The top surface of the 

circular wooden board was painted black as well. For 
imaging, plants were placed under the circular wooden 
board, and the panicle of interest (primary panicle) was 
gently passed through the aperture. To adjust for variable 
plant height, we used an electric scissor lift table (Addi-
tional file 2). A metal hook attached to the ceiling of the 
circular wooden chamber was adhered to top of the pani-
cle for stabilizing the panicle (Additional file 2).

Also, a rotary double-ring apparatus having an inner 
and an outer ring is fixed on top of the circular wooden 
board (Additional file 2). A 24-in. aluminum-based outer 
ring with snow-ball bearings is used to hold two Sony 
α6500 cameras for imaging and LED lights (ESDDI PLV-
380, 15 Watt, 5000 LM, 5600 K) for light source, which 
undergo a 360° rotation around the panicle. The rotation 
is controlled by an electric motor system. The rotary dou-
ble-ring apparatus has three major parts: (a) a toothed 
wheel connected to the electric motor, (b) a small smooth 
pulley and a cylindrical sleeve used to adjust tension in 
the belt, and (c) a rotatable ring apparatus that rotates the 
cameras where the outer ring is covered with a toothed 
belt. Our camera selection is based on high sensitivity and 
high stabilization to reduce image distortion during cam-
era motion. The camera also supports customized appli-
cations for remote-controlled imaging. We utilized the 

Fig. 1  Multi-view image analysis of developing panicle using PI-Plat. 
a Flowchart and b graphical representation of the multi-view image 
analysis using 3D reconstruction and 2D approach
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camera’s time-lapse feature to capture multiple images at 
the rate of one image per second. Sixty images were cap-
tured by each camera per minute, and in total 120 images 
were taken for each panicle for each time-point and treat-
ment. For labeling, we used quick response (QR) codes as 
plant identifiers (IDs), which were tagged to the primary 
panicle. Plant IDs were generated from the images dur-
ing the later imaging processing stage. The PI-Plat were 
constructed mostly using commercial off-the-shelf com-
ponents at a comparably low cost.

Color checkerboards
Since image features [37] played a critical role in the 
3D reconstruction process and the panicle itself cannot 
provide enough features due to its nearly uniform color 
and complex patterns, color checkerboards were used to 
provide additional features. These color checkerboards 
printed on white letter-size papers were pasted on all four 
sides of the wooden chamber and the top surface of the 
circular wooden board (Additional file 2). Each checker-
board included 20 × 20 squares (1  cm2) with colors that 
were randomly generated in the RGB color space. Com-
paring to the image features from the panicle, the fea-
tures from the color checkerboards were easily detected 
by SIFT [43] and SURF [44] on the edges and corners of 
each square due to its regular shape and random color. 
Then, these features were used to recover camera param-
eters, which included the intrinsic calibration (i.e., radial 
distortion of the lens and the focal length) and the extrin-
sic calibration (i.e., the position and orientation of the 
camera) in the 3D reconstruction process [37]. Unlike 
the traditional calibration tool (such as calibration app in 
MATLAB), calibration in our pipeline was achieved by 
matching features in different images [37]. Therefore, we 
did not have any requirements on the number of squares 
in the checkerboards.

Image acquisition
The supplementary video shows image acquisition pro-
cess using the PI-Plat (Additional file  3). To capture 
the growth dynamics of panicles, we performed non-
destructive imaging of primary panicle corresponding to 
control and HNT treated plants at one (W1), two (W2) 
and three-weeks (W3) post-fertilization.

Image processing
Pre‑processing and 3D point cloud reconstruction
First, we converted all the RGB (red, green, and blue) 
images into the HSV (hue saturation value) space. Then, 
the background in all images (i.e., the part correspond-
ing to the walls and the circular wooden board) was 
segmented [45] and removed using the same threshold. 
With the removal of the background, the number of 

features in the 3D reconstruction process, as well as the 
computation time, was reduced. Since all images were 
taken in the PI-Plat chamber with a constant light, the 
same threshold worked optimally for all the panicles. 
Multiple tests using the ‘colorthresholder’ application in 
MATLAB showed that the background can be effectively 
removed if hue, saturation, and value were controlled in 
the ranges of 0–1, 0–1, and 0.15–1, respectively. After 
background removal using color thresholds, denoising on 
the images was performed and the residues of the back-
ground (mostly isolated outliners from the black wooden 
board and interior of the chamber etc.), considered as 
noise, were removed. The average percentage of the 
removed points in the denoising step is less than 0.3% of 
the whole image. Moreover, based on our estimation, the 
upper bound of the percentage of the points that possibly 
belong to the panicle and are incorrectly removed is 0.1%. 
Therefore, the denoising step should have limited effects 
on point clouds of the panicles. These pre-processed 
images were used to reconstruct the 3D point clouds for 
each panicle at a given time-point. For 3D reconstruction 
methods, we preferred the MVE pipeline [37] over other 
traditional methods such as space carving [46] because 
of the lower computation cost and the superior recon-
struction quality of MVE for non-convex objects. For 
3D reconstruction, the corresponding features in images 
were detected and matched to form a sparse point cloud 
in an incremental SfM process. Then, depth maps were 
reconstructed for each view and merged into a dense 
point cloud.

Trait extraction using 3D point cloud
Once a point cloud at each time point was generated, 
we were able to extract traits of interest from the recon-
structed 3D structure of panicles from these time-vary-
ing point clouds. First, each point cloud was segmented 
into different components (such as a panicle, the color 
checkboards, and the rotary double-ring apparatus) by 
leveraging their distinct positions or colors. For exam-
ple, the color checkboards were approximately located 
on the boundaries (i.e., the locations of walls and the 
top surface of the circular wooden board) of a point 
cloud, and the metal hook was located at the top of 
the point cloud and has a gray color. Second, the point 
clouds need to be scaled and aligned, as different point 
clouds may have different scales and orientations after 
reconstruction. In this work, the geometries of the 
color checkboards and the rotary double-ring appara-
tus were constant during imaging acquisition. Thus, we 
scaled and aligned the color checkboards and the appa-
ratus across the point clouds. In this way, the rest of the 
point clouds were scaled and aligned as well, such that 
panicles in different point clouds can be compared at 
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the same scale [47]. Third, each point cloud was vox-
elized for volume quantification [48]. The same bound-
ing cube was employed to enclose each point cloud. 
The bounding cube was aligned across the point clouds 
with respect to the color checkboards and the appara-
tus. Then, an equivalent discrete voxel-based grid was 
generated. The grid size was obtained by dividing each 
edge of the bounding cube by 1000. Thus, a volume 
with a resolution of 1000 × 1000 × 1000 was generated 
to sample the 3D space. Finally, the points not belong-
ing to a panicle were removed. Therefore, some voxels 
were filled with a group of panicle points and the other 
voxels were empty. For each filled voxel, we computed 
the average color (i.e., RGB) intensity of the points con-
tained in the voxel. Subsequently, the following fea-
tures were extracted from a volume: (a) voxel count: the 
number of the filled voxels, and (b) color intensity: the 
sum of color intensities of all filled voxels.

2D pixel count extraction from multi‑view images 
of developing panicles
For a comparison purpose, conventional 2D based 
image analysis of panicles was also employed. Specifi-
cally, the total pixel count of a panicle was calculated 
from its corresponding 120 images captured from 
multiple views. The pre-processed images, same as 
the ones used for 3D reconstruction, where the black 
background and wooden board were removed, were 
utilized for 2D analysis. First, each pre-processed image 
was segmented using the ‘colorthresholder’ applica-
tion in MATLAB. It is notable that the checkerboards 
used in our experiment have green squares, which is 
close to the color of the panicle. Thus, color-based seg-
mented images can contain regions from the panicle 
as well as the checkerboard’s green squares. For future 
work, we will avoid the checkboards with colors simi-
lar to the plants while imaging. To remove these green 
squares, the regions corresponding to the squares were 
detected based on solidity and eccentricity evaluation. 
Here, solidity of the region is defined as the ratio of the 
region’s area to the region’s convex hull area, and eccen-
tricity of the region is the eccentricity of ellipse that 
has the same second-moments as that of the region. 
The solidity and eccentricity of each region was calcu-
lated using the ‘regionprops’ function in MATLAB. We 
excluded regions that had solidity values larger than 
0.7 and eccentricity values less than 0.95. In addition, 
given the relatively marginal size of a panicle, a region 
with an area less than certain pixels (1000 pixels in our 
study) was filtered out. Therefore, only the pixels that 
correspond to the panicle were retained, and the pixel 
count of the panicle in each image was calculated. We 

summed the pixel count obtained from each of the 120 
multi-view images of the panicle to obtain the total 
pixel count.

Scanning of mature panicles using flatbed scanner
Next, we analyzed mature primary panicle to gain 
ground truth and derive features, which were compared 
with the developing panicle. For this, the primary pani-
cles were harvested, and scanned images were obtained 
using an Epson Expression 12,000 XL scanner (600 dpi 
resolution). Branches on primary panicles were carefully 
spread out to avoid overlaps in the scanned images. These 
scanned images were used to extract the following traits: 
projected surface area of the primary panicle, projected 
seed count of the primary panicle, average of major (seed 
length) and minor (seed width) axis, and area of the indi-
vidual seed on the primary panicle. In this set of images, 
the panicles were placed over black background. We seg-
mented the panicles from the background using color 
thresholding and obtained the binary images. As a pani-
cle was mostly yellowish in color and the background was 
black, an image was transformed in the HSV color space 
to segment the panicle (setting for range: hue 0–0.3, satu-
ration 0.2–1, and value 0.5–1). In principle, a harvested 
mature panicle has all the seeds attached to the rachis. 
Therefore, we first used morphological opening [49] to 
process the images. As the branches were relatively thin 
and the seeds were relatively thick, most regions of the 
seeds were disconnected from each other after morpho-
logical opening by removing the branch pixels. As the 
seeds have an oval shape, the regions that were too thin 
were removed. The remaining regions corresponded to 
seeds. The length, width, and area of a seed was calcu-
lated from its region using the ‘regionprops’ function in 
Matlab.

Manual phenotyping of the mature panicle
Next, we manually measured the yield traits on mature 
primary panicle after harvesting. For this, we collected 
data for (a) total seed weight, (b) total seed number, (c) 
weight per seed, and (d) number of fertile and sterile 
seeds to calculate percentage fertility.

Correlation analysis
For pairwise correlation analysis, the 3D reconstruc-
tion-based features (voxel count and color intensity) 
and the total pixel count (2D) derived from the multi-
view images of developing panicle were compared with 
end-point measurements at maturity. For the end-point 
measurements, the traits derived from flatbed scanned 
images as well as manual measurements from the pri-
mary panicle at maturity were considered. These traits 
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were collected from 11 rice genotypes with two to three 
replicates per genotype and per treatment (control and 
HNT). A total of 55 observations were used for Pearson 
correlation analysis. The correlation analysis was per-
formed using R v. 3.4.3 [50] and RStudio v.1.1.419 [51]. 
Correlation matrices containing Pearson correlation 
coefficients and p values were obtained using the ‘rcorr’ 
function in “Hmisc” package [52]. Matrix displaying cor-
relation between selected traits was plotted using ‘chart.
Correlation’ in the “PerformanceAnalytics” package [53]. 
Both the raw data and the complete correlation matrix 
are provided (Additional files 4 and 5).

Data accessibility
The text-based raw data generated from 3D reconstruc-
tion-based approach, flatbed scanner, and manual meas-
urements for this work is provided as additional files 
with this submission (Additional file 4). Raw image data 
is large and hence only part of them is shared for user 
testing on a UNL Box repository (https​://unl.box.com/s/
g0bof​1mpfp​33hn6​6b2qa​brk9k​iwmhb​zv).

Results
Workflow of PI‑Plat
Evaluation of inflorescence-related parameters is limited 
by traditional phenotyping methods. Advances in plant 
phenotyping methodology have enhanced our under-
standing of vegetative organs and overall plant structures. 
However, we still need to capitalize on the technological 
advancement in optics, computer vision, and software 
design, to capture complex plant structures. In this study, 
we developed a Panicle Imaging Platform (PI-Plat) to 
understand yield-related parameters by reconstructing 
3D space to derive digital traits (Additional file 2).

For method validation, we used 11 rice genotypes, from 
the indica and japonica rice sub-populations (Additional 
file  1). Once 50% of primary panicle underwent flower-
ing, a subset of plants was maintained under control con-
ditions and the rest were moved to a greenhouse with 
high night temperature (HNT) condition. The motivation 
for HNT treatment is to explore the phenotypic variation 
in rice germplasm as rice grain development is known to 
be sensitive to HNT [54–56]. The primary panicles from 
each plant and treatment were imaged three times on 
a weekly basis (week 1, 2, and 3) using the PI-Plat. For 
imaging, two visible cameras, held at two different posi-
tions, were employed on a rotating imaging system. Sixty 
images per camera, corresponding to an image clicked 
every six degrees, aided in capturing multiple views 
covering 360° of the panicles (Additional file 3). In total, 
19,800 images were captured for the 11 genotypes. Each 
panicle image was segmented and used to reconstruct 
3D point clouds which were used to extract phenotypic 
traits such as (i) voxel count and (ii) color intensity (Fig. 1 
and Table  1). The average computation time required 
to reconstruct 3D point cloud for one panicle using 120 
images (Resolution, 6000 × 4000) was about 90  min. For 
this, we used a computing platform with an Intel Core 
i7-8700 K CPU @3.70 GHz and 16 GB RAM.

Correlation between traits derived from multi‑view images 
of developing panicle and yield related components 
at maturity
First, we aimed to determine if the traits derived from 3D 
reconstruction of the developing panicle correlate with 
the yield related components at maturity. For this, the 3D 
reconstruction-based point cloud features derived from 
multi-view images (voxel count, color intensity) were 

Table 1  Overview of the phenotyping methodology and trait derived from the corresponding methods in the study. R, 
Red; G, Green; B, Blue

Phenotyping Analysis method Traits extracted Description

Developing panicle (week 
1, 2 and 3 post-fertili-
zation)

Reconstruction of 3D point cloud from 
multi-view images

Voxel count Total number of points in 3D reconstructed 
point cloud, which can be used to estimate 
the overall volume

Color sum—R, G, B Sum of color intensities of signals from R, G, 
and B channels

Color intensity − ratio of R to G Ratio of intensity in red channel and the 
intensity in green channel

Multi-view 2D image analysis Pixel count Total pixel counts to estimate 2D surface area 
of the panicle

Mature panicle Single-view conventional 2D scanning Projected seed count Estimation of total number of seeds

Projected surface area Estimation of total surface area

Seed area Mean area of all seeds

Seed major and minor axis length Mean major and minor axis length of all seeds

Manual measurement Yield-related traits Total number of seeds, total seed weight, 
fertility and weight per seed

https://unl.box.com/s/g0bof1mpfp33hn66b2qabrk9kiwmhbzv
https://unl.box.com/s/g0bof1mpfp33hn66b2qabrk9kiwmhbzv
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compared to end-point measurements of the mature 
panicle (Additional file 5). The end-point measurements 
correspond to (i) flatbed scanned images (projected sur-
face area at the panicle level, projected seed count, and 
morphometric measurements at individual seed level; 
seed area, seed length, and width) and (ii) manual meas-
urements (total seed weight, seed number, weight per 
seed, and fertility) of the mature panicle. Among all the 
traits derived from 3D reconstruction, only voxel count 

of developing panicle exhibited significant positive cor-
relation with projected surface area (rw1, rw2, rw3; 0.64, 
0.55, 0.82), total seed weight (rw1, rw2, rw3; 0.48, 0.50, 0.74) 
and seed number (rw1, rw2, rw3; 0.67, 0.61, 0.70) at matu-
rity (Fig. 2, Additional file 5). The correlation of the voxel 
count with projected surface area (rW1 = 0.64) and total 
seed weight was relatively low at week 1 (rW1: 0.48) and 
increased with later weeks, week 2 and 3 (rW1 < rW2 < rW3; 
Fig.  2). On the other hand, the correlation between the 

Fig. 2  Correlation of traits derived from 3D reconstruction, 2D scanning and manual measurements of inflorescence-related traits. Using PI-Plat, 
developing panicles were imaged on weekly basis (week 1, 2, and 3). For a respective panicle, multi-view images were used for 3D reconstruction 
to extract voxel count. Also, 2D pixel count was estimated for developing panicle. Phenotypic traits from mature panicle were analyzed by flatbed 
scanner (projected surface area and seed count), and manual measurements (seed number and weight). Pearson correlation analysis for traits 
of primary interest is represented. Similar analysis for other extracted traits is listed in Additional file 5. Histograms and red line represent the 
distribution of each trait. p value for significant correlation is shown in red (***p < 0.001, **p < 0.01, *p < 0.1), n = 55
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voxel count of a developing panicle and the seed number 
at maturity remained stable (Fig.  2). Notably, the color 
intensity derived from 3D reconstruction did not exhibit 
meaningful correlation with any of the endpoint meas-
urements (Additional file 5).

Next, the multi-view images were also used to perform 
the conventional 2D image analysis to extract the total 
pixel count of a developing panicle for week 1, 2, and 3 
(Fig. 1). Then, the derived traits at each week were com-
pared with the end-point measurements (Additional 
file 5). Consequently, the total pixel count showed a posi-
tive correlation with all the traits derived from flatbed 
scanned images and manual measurements at maturity. 
The correlation between the total pixel count and the 
projected surface area as well as the total seed weight was 
unstable. Surprisingly, these correlations at week 3 were 
lower than the correlations at week 1 (Fig. 2).

Voxel count—an estimate for grain‑filling rate
Grain filling rate is the major determinant of mature crop 
yield. However, evaluating seed weight dynamics usu-
ally requires destructive phenotyping methods. In our 
study, we estimated voxel count from the 3D reconstruc-
tion of developing panicles, which represents the overall 
volume of a panicle, and thus accounts for grain-filling 
rate. In general, we observed a temporal trend of pro-
gressive increase in voxel count over three weeks dur-
ing the post-fertilization period (Fig. 3a). Under control 
conditions, voxel counts at W2 and W3 were significantly 
higher than the one at W1, while no significant differ-
ence was observed between W2 and W3 (Fig. 3a). These 
results indicate that substantial gain in overall seed vol-
ume occurs before W2. Interestingly, plants treated with 
HNT, possessed significantly higher voxel count at W1 
compared to control. These differences dissipated at W2 

Fig. 3  Estimation of voxel count. Voxel count derived from 3D point cloud represents overall volume of developing panicle. a Average voxel counts 
from all genotypes for a respective treatment (control and HNT) and time-point (week 1, 2, and 3) is shown. Box plot represents range, median 
and mean (red triangle) for the same. Means connected with similar letter are not significantly different from each other (Student’s t-test; p < 0.1). b 
Hierarchical clustering analysis of genotypes based on their voxel count in control conditions. c Voxel count for individual genotypes corresponding 
to cluster I–IV. Y-axis represent voxel count, x-axis indicate time-point (week 1, 2, and 3). C: control (blue line), HNT: high night temperature (red line). 
Box plot represents range, median and mean (red triangle) for the same. Means connected with similar letter are not significantly different from 
each other (Student’s t-test; p < 0.1)
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and W3, as no significant differences between control 
and HNT treated plants were observed (Fig. 3a).

Next, we evaluated the weekly voxel count for indi-
vidual genotypes grown under control and HNT stress 
conditions (Fig.  3b, c). We performed hierarchical clus-
tering based on voxel count for control condition pani-
cles (Fig.  3b). The analyses grouped 11 genotypes into 
four distinct clusters (Fig.  3b, d). Cluster I was com-
prised of 301341, 301052, and 301220, cluster II: 301183, 
301105, 301278, 301279, and 301221, cluster III: 301260 
and 301262, and, while cluster IV constituted only one 
genotype, 301261 (Fig.  3c). Interestingly, the 4/5 geno-
types in Cluster II (301183, 301105, 301221, 301279) 
showed a significant gain in voxel count between W1 and 
W2 (Fig. 3c). For genotypes in Clusters I, III, and IV, the 
voxel count trend did not show any significant difference 
between W1, W2 and W3 (Fig. 3c). This could be because 
these genotypes may have already gained their potential 
seed size by W1, and thereby only incremental changes 
occur afterwards.

Color intensity—an estimate for rate of maturation
Rate of panicle maturation is a well-studied trait that 
directly impacts final yield [57, 58]. Heat stress impacts 
rice seed development and hence alters the panicle matu-
ration rate [59, 60]. Therefore, evaluating the dynamic of 
panicle maturation could be potentially useful in deter-
mining the dynamic of stress response in rice. However, 
evaluation of the respective traits is done by conven-
tional phenotyping methods, which are inherently labo-
rious and subjective. To estimate the panicle maturation 
dynamics, we extracted intensity of the RGB channels 
from the 3D point cloud. Then, we used the ratio of 
intensity from R to G channels to estimate the yellow-
ness of developing panicle, which increases as the pani-
cles mature. We observed a temporal trend indicating an 
increase in the ratio of R to G from W1 to W3 (Fig. 4a). 
This observation is consistent with the progression of 
panicle maturation as its color changes from green to 
yellow. Interestingly, the R to G ratio was significantly 
higher for plants treated with HNT compared to con-
trol, suggesting that HNT accelerates the rate of panicle 
maturation. We next explored the genotypic differences 
for maturation rate (Fig.  4b). We observed consist-
ent increase in the R to G ratio from W1 to W3 under 
control and HNT (Fig.  4b). The R to G ratio for major-
ity of genotypes was significantly higher for HNT treated 
plants than control (Fig. 4b and Additional file 6).

Discussion
With the recent advances in automated plant image 
acquisition, accurate quantification of phenotypic traits 
has become the focal point for realizing the potential of 

plant phenomics. The primary focus of automated phe-
notyping platforms has been on the vegetative growth 
and development and to some extent on the root archi-
tectural traits [53–55 and references therein]. Only lim-
ited effort has been directed towards more complex yield 
related traits such as inflorescence architecture (IA) in 
greater detail [16, 20–22, 28, 61]. After flowering, inflo-
rescence undergoes dynamic changes, such as grain fill-
ing and maturation, which significantly contributes 
towards the final yield in cereals. Previous attempts to 
capture inflorescence-related traits have been limited to 
end-point measurements. Further, automated Lemnat-
ech phenotyping system, which is mainly used for whole 
plant imaging, is not suitable to extract high-resolution 

Fig. 4  Estimation of color intensity. Color intensity represents sum 
of color intensities of signals from red (R), green (G), and blue (B) 
channels. a Average ratio of R to G intensities from all genotypes for a 
respective treatment (control or HNT) and time-point (week 1, 2, and 
3) is shown. Box plot represents range, media and mean (red triangle) 
of the R to G ratio. Means connected with same letter are not 
significantly different from each other (Student’s t-test; p < 0.1). b Heat 
map of R to G ratio for different genotypes under control and HNT
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data from the inflorescence. Hence, the major goal of 
this study was to capture the growth and developmental 
dynamics of IA at high-resolution in rice. To this end, 
we have developed a low-cost effective system ‘PI-Plat’ 
to comprehend multi-dimensional features of IA (Fig. 1). 
One of the main novelties of the PI-Plat is that it is 
designed to reconstruct 3D models of smaller plant parts, 
in this study ‘panicle’, with a very high resolution. Also, 
compared to the widely used turntable imaging system 
where object rotates [62], the panicle is fixed at the center 
of the PI-Plat and cameras rotate. Therefore, the vibra-
tion is avoided, and the 3D point clouds have less noise. 
This imaging system can be used to image the panicles 
in a non-destructive manner, which provides an opportu-
nity to perform temporal phenotyping of the same pani-
cle at consequent developmental stages. On similar basis, 
rice developing panicles were imaged on weekly basis 
after fertilization to capture growth dynamics. The multi-
view images of developing rice panicle were used for 3D 
reconstruction, which enabled us to capture digital traits, 
such as voxel count and color intensity.

We found that the 3D reconstruction-based feature—
voxel count has a positive correlation with seed number 
and total weight at maturity. Panicle development after 
fertilization involves change in seed weight and vol-
ume, but seed number remains constant. Consequently, 
we observed the temporal trend for correlation of voxel 
count with final seed weight but not with seed number 
(Fig.  2). Our correlation analysis signifies that image-
based phenotyping of developing panicles can be used to 
estimate the final yield outcome. This information can 
be valuable for elucidating the physiological and genetic 
basis of yield components in rice. Various yield compo-
nents are determined by numerous genes and pathways, 
which likely influence the yield traits at different develop-
mental phases during panicle development. By using the 
3D reconstruction-based voxel count during the panicle 
development, researchers can identify phenotypic vari-
ation over time for divergent genotypes, hence increase 
the mapping resolution for linking genotypes-to-pheno-
type. Furthermore, relatively stable correlation between 
voxel count and seed number at maturity suggest that 
image-based phenotyping after fertilization can be used 
to estimate final seed number. In contrast, the 2D based 
total pixel count of developing panicle showed relatively 
lower and unstable correlation with seed number and 
total seed weight at maturity (Fig.  2). Interestingly at 
W3, 2D based pixel counts had lower correlation with 
endpoint measurements than voxel counts. For instance, 
the correlation of voxel count with projected surface 
area and total seed weight was 0.82 and 0.74, respec-
tively, while the correlation of 2D pixel count with pro-
jected surface area and total seed weight was 0.58 and 

0.47, respectively. This could be due to the limitation of 
using conventional 2D-based phenotyping to completely 
capture the growth and color dynamics of developing 
rice seed. Since voxel count positively correlates with 
final weight, it can be used to capture the weight or vol-
ume dynamics. We observed an increase in voxel count 
from W1 to W3, which is directly related to the increase 
in size and volume of developing seeds. In context of 
panicle development, it accounts for rate of grain-fill-
ing. Significant gain in the voxel count was achieved by 
W2 suggesting that substantial seed volume is attained 
by week 2 (Fig.  3). This observation holds true for 4/11 
genotypes, while the other seven genotypes do not show 
such any significant difference between W1, W2, and 
W3. One possible explanation could be that these geno-
types might have accelerated increase in panicle volume 
and/or seed weight by W1; thus, exhibiting incremental 
changes during the subsequent two weeks. We observed 
higher voxel count for HNT treated plants compared to 
control plants at W1 (Fig. 3a). Surprisingly, these differ-
ences dissipated at W2 and W3, and no significant dif-
ference was observed at maturity. These results highlight 
the importance of temporal phenotyping relative to sin-
gle time point measurements. Thus, an end-point meas-
urement approach is not practical to identify and hence 
map traits that are not persistent at maturity. Since, rice 
and most other grain crops such as wheat and maize are 
generally more sensitive to environmental stresses, such 
as heat and drought, the approach of capturing dynamic 
reproductive traits in a non-destructive manner will be 
valuable for research aimed at improving yield resilience 
to environmental stresses. Early detection of transitory 
phenotypes/traits is also valuable for molecular studies. 
Measurement of color intensities from 3D point cloud 
aided us in understanding the dynamics of panicle matu-
ration for diverse genotypes. Notably, panicles from HNT 
treated plants showed significantly higher R: G indicating 
that HNT plants undergo faster maturation. These traits 
derived from 3D reconstruction of multi-view images 
provided a close approximation of structural features of 
the developing rice panicle.

To harness the full potential of the existing genetic 
resources, we need to bridge the gap between genotype 
and phenotype. In this context, high throughput geno-
typing has been facilitated by development of low-cost 
sequencing platforms. However, accurate and efficient 
phenotyping of large-scale populations is a major bot-
tleneck for crop improvement [63–65]. The emergence 
of phenotyping platforms specifically targeting inflores-
cence-related traits promise close approximation of the 
yield-related parameters. PI-Plat provides an important 
first step towards achieving higher spatial and tempo-
ral resolution in IA phenotyping without destructive 
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sampling. The next step towards achieving high-through-
put phenotyping of IA traits is the automation for ena-
bling researchers to develop genotype-to-phenotype 
linkages. Although, the 3D derived voxel count, and 
color intensity developed as part of PI-Plat can be used 
to screen large populations elucidating phenotypic vari-
ability in inflorescence-related traits, it is still a labo-
rious task given the lack of automation. In summary, 
PI-Plat-derived 3D traits fills a significant gap in the plant 
phenotyping toolbox by providing greater spatial and 
temporal sensitivity of capturing dynamic inflorescence 
traits, especially for studying abiotic stress responses 
during reproductive development.
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