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 Extracellular signaling is a dynamic process responsible for coordinating large 

scale biological processes. As such, understanding extracellular signaling is important to 

our determination of normal function and pathophysiological development. High 

resolution spatial and temporal information are critical to completely understanding these 

processes. Unfortunately, current methods of detection are lacking in either spatial or 

temporal resolution of extracellular products, limiting researchers’ ability to understand 

complex biological processes. A new group of sensors based on fluorescent single walled 

carbon nanotubes (SWNT) have shown the potential to provide both high quality spatial 

and temporal resolution for the sensing of analytes. However, while SWNT has already 

been used extensively as an intracellular probe, it has seldom been used for intercellular 

monitoring. In the few instances that SWNT has been used to form extracellular sensor 

arrays the deposition method has relied on electrostatic or non-specific interactions and is 

not well characterized. Herein a new method of SWNT deposition based on the avidin-

biotin bond was developed, where biotin activity was imparted to SWNT via coupling to 

its DNA wrapping and avidin was covalently immobilized on the surface of a glass slide. 

The method of SWNT immobilization produced a twofold enhancement in SWNT 

deposition over the current standard without negatively impacting SWNT spectral 



 
 

  
 

properties, distribution, response time, or degradation rates. These results indicate the 

effectiveness of this method for increasing SWNT deposition and provide a simple 

pathway for enhancing the deposition of DNA-SWNT complexes.  
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CHAPTER 1 

Thesis Introduction, Background, Objectives 

1.1 Introduction 

Fluorescent single walled carbon nanotubes (SWNT) are seamless roles of graphene 

that have demonstrated great diagnostic potential within the biomedical field [1-7]. 

Although the use of SWNT to detect biological molecules has many advantages, there are 

still impediments that must be overcome to make these sensors more useful for analyte 

detection. Currently, one of SWNT’s greatest advantages, the ability to form a high-

density sensor array for high definition spatio-temporal visualization of extracellular 

analytes, lacks proper characterization and relies almost entirely on electrostatic or non-

specific interactions [8-10]. Electrostatic and non-specific interactions are plagued by 

their instability and inconsistent loading [11]. For SWNT to be a viable reporter of 

extracellular analytes, further characterization of current deposition approaches 

and the development of new methods for the immobilization of SWNT which 

employ greater specificity must be developed. One mechanism which could be used to 

increase SWNT loading and specificity is the avidin-biotin interaction. The avidin-biotin 

interaction is the strongest known non-covalent bond and also enjoys high specificity 

[12]. Moreover, biotin can be easily coupled to DNA, which is one of the most common 

and versatile wrappings for SWNT sensor complexes [13, 14]. Additionally, avidin can 

be covalently bound to glass substrates, through simple silane chemistry [15]. Increases 

in SWNT loading due to the application of the avidin-biotin bond could have an 

immediate impact on critical elements related to SWNT sensors including: cost savings 
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due to increases in SWNT loading efficiency, decreased intensity of laser emissions 

necessary for sensor functioning, which may extend the life of the laser and decrease its 

effects on the sample, and decreased exposure time, allowing for increased data 

collection and less time for cell cultures to spend outside of the incubator. A proof of 

concept using the avidin-biotin interaction with a representative and relevant DNA-

SWNT complex would be of great benefit to the field. The nitric oxide (NO) sensing 

SWNT sensor is an ideal candidate for proof of concept work. The NO sensing SWNT 

sensor possesses a simple DNA wrapping that is representative of other DNA-SWNT 

sensors while its target analyte, NO, is a highly versatile signaling molecule with a role in 

numerous biological systems including the vasculature, nervous, and immune systems 

[16-18]. NO has also been implicated in a multitude of pathophysiological states, where 

its effects appear to be highly dependent upon its local concentration and duration of 

aberrant expression, including the development of cardiovascular diseases, 

neurodegenerative diseases, inflammatory diseases, and carcinogenesis [19-44]. 

Unfortunately, a lack of adequate sensors for the detection of extracellular NO signaling 

has hindered the study of these disease states. Due to the promising properties of SWNT, 

the need to develop improved surfaces for SWNT deposition, and its immediate 

application to the field of NO research, the objectives of this thesis are to 1) Evaluate the 

ability of DNA-SWNT complexes to bear a biotin moiety without damaging SWNT 

spectral properties, 2) Develop and characterize a new method of SWNT deposition 

which utilizes the avidin-biotin interaction, and 3) Determine if enhanced SWNT 

deposition could be realized using the avidin-biotin process without damaging 

SWNT’s previously held properties. To introduce these objectives, Chapter 1 will 
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cover detailed background information on SWNT as optical biosensors, current DNA-

SWNT complex deposition methods, and NO’s role in biomedical systems. 

 

1.2 Single Walled Carbon Nanotubes 

 

SWNT are hollow cylinders of carbon atoms occupying a distinctive honeycomb 

lattice, which are 0.5-2 nm in diameter, and range in length from 50 nm to several 

centimeters depending upon the method of preparation [45-48]. Since the discovery of 

SWNT in 1993 by Iijima and Ichihashi, considerable attention has been paid to SWNT’s 

unique and often extraordinary tensile and compressive properties, thermal and electrical 

conductivity, and optical phenomena [49-58]. For example, SWNT is one of the strongest 

known materials when normalized to its diameter, with a Young’s modulus of 

approximately 1 tera pascal (TPa) compared to steel’s 190 to 215 GPa [59, 60]. 

Moreover, the theoretical thermal conductivity of SWNT is 6000 W/mK which greatly 

exceeds that of diamonds (~1000 W/mK)[61, 62]. 

In addition to SWNT’s many applications in mechanical and electrical systems, 

SWNT has also been recognized for its potential usefulness in biological and biomedical 

applications including cell tracking, optic labeling, delivery of biologically relevant 

signaling molecules, and matrix enhancement [63-68]. Of particular interest are SWNT’s 

inherent near infrared fluorescent properties, ability to be wrapped by surfactants, 

polymers, and single stranded DNA (ssDNA), and when properly prepared, their ability 

to detect biologically relevant molecules. To date SWNT has been used to fluorescently 
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detect genetic material, proteins, signaling molecules, lipids, genotoxic elements, 

antibodies, and several other biologically relevant molecules [1-4, 7-10, 69-84]. Of 

distinct note are those sensors capable of detecting the reactive oxygen and nitrogen 

(ROS/RNS) species NO and hydrogen peroxide (H2O2), which have suffered from a lack 

of appropriate real time in vitro/in vivo sensor platforms due to their short half-lives 

(H2O2 < 50 ms, NO < 1.8 ms) and high reactivity [85-89]. The ability of SWNT to sense 

these molecules in close proximity to their sources could allow for a more accurate real 

time understanding of cellular signaling dynamics. 

 

1.2.1 Generating Single Walled Carbon Nanotubes 

 

Before SWNT can be used as an optical reporter it must be produced. A number 

of techniques have been developed for the production of single walled carbon nanotubes 

including electric arc discharge, laser ablation, chemical vapor deposition, and high-

pressure carbon monoxide deposition methods. 

The electric arc technique is one of the oldest techniques for producing relatively 

large quantities of SWNT [90]. Originally used by Smalley and Haufler to generate C60 

Buckminsterfullerenes (Bucky balls), the technique was later co-opted to generate SWNT 

[91]. Usually performed under helium, this method employs an arc discharge designed to 

strike a combination of metallic catalysts and graphite powder, where the graphite 

powder serves as a carbon source. Metallic catalysts used include, but are not limited to, 

Ni-Co, Co-Y, and Ni-Y at various atomic percentages [92]. The discharge is generated by 
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sustaining (~2 min) a large current (100 A) between the graphite cathode and the anode, 

which produces a voltage drop of 30V between the electrodes [90]. The discharge 

repeatedly vaporizes the carbon/metallic composite which allows the metallic catalysts to 

serve as a nucleation site for the production of SWNT [93]. Following discharge, a web-

like soot that contains SWNT is produced [94]. The product is typically composed of 

many different diameters of SWNT, but it is possible to vary the characteristics of the 

carbon nanotubes by varying the current, pressure, and nature of the catalyst within the 

chamber [95]. The careful control of the chamber parameters and subsequent purification 

can produce SWNT yields as high as 80% [90, 96, 97]. 

Laser ablation is another method for the production of SWNT. Rather than using 

an arc discharge, laser ablation’s goal is to vaporize graphene/metal catalyst complexes 

using a high intensity laser and allow for the formation of SWNT upon condensation [98-

100]. There are currently two methods for generating SWNT via laser ablation, which are 

classified by the method of laser operation: (1) a pulsing laser option and (2) a continuous 

laser option [99-101]. When a pulsing laser is used it is common to keep the reaction 

chamber that is housing the graphite/metal complex at ~1200 °C, which is close to the 

graphite vaporization zone [100, 102]. Upon exposure to the pulsed laser light the 

graphite/SWNT complex achieves enough energy to become vaporized, with the metal 

serving as a nucleation site [98]. However, when a constant laser source is used there is 

no need to keep the camber at a high temperature, instead a powerful (250 W) laser is 

directed at rods of the graphene/metal complex, allowing them to reach vaporization 

temperatures without the aid of an oven [99]. In both cases argon gas is generally flowed 

through the system to transport the vaporized substrate to a holding chamber where it can 
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condense into SWNT and be more readily collected (Figure 1-1) [99, 100]. Using this 

method, as much as 20% of the mass from the original graphene/metal can be recouped in 

the final product, while the final product itself has a purity of ~ 80% SWNT [99, 100]. 

Although this method generally produces SWNT of many diameters, the diameter 

distribution can be controlled by varying the metallic catalyst, temperature, and gas flow 

velocity [103]. 

 

Figure 1-1: Generation of SWNT via laser ablation. The laser beam (A) is maneuvered into the evaporation 
chamber and focused onto the graphite/metal composite target cylinder (B). Inert gas is run through a 
nozzle (C). Products are collected on the Cu-wire scaffold inside a quartz tube (D) leading to the filter and 
pumping unit. Reprinted from Maser et al. with permission from Chemical Physical Letters [99]. 
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Chemical vapor deposition (CVD) utilizes a thin catalyst/support material to 

generate SWNT under high temperatures. Catalyst materials that have been frequently 

used include Fe, Ni, Co, and Mo with a support layer of Al, SiO2, or Mg [104-107]. 

Support material can either be impregnated with the metal catalyst and used as a fine 

powder (e.g. Fe2O3/Al) [108], or the two can be kept sperate by forming a support and 

catalytic layer (e.g. Al/Ni support/catalytic layer) [109]. When it is desired that the two 

layers be kept separate, deposition of the catalytic layer and support layer are generally 

produced through beam sputtering or electron beam evaporation [109, 110]. The 

support/catalyst is then placed in a chamber that is subsequently purged and filled with an 

inert gas (e.g. H2). The reaction chamber is subsequently heated to high temperatures 

(800 -1200 °C) which causes the formation of oxidized support clusters (e.g. Al2O3), 

which in turn provide support for the formation of metallic nanoparticles. Any number of 

carbon containing gases are then flowed through the chamber including CO, CH4, C2H4, 

C2H2, or benzene at ~ 100 torr for 60 min [104-109, 111-118]. The metallic nanoparticles 

again act as nucleation sites for the formation of SWNT while the carbon containing gas 

serves as the carbon source for the growth of SWNT. Many techniques have been 

developed to augment the CVD process and decrease the prohibitively high working 

temperatures, including plasma enhanced CVD (PE-CVD), which achieves lower 

reaction temperatures by ionizing the reaction gases causing increased reactivity at the 

catalytic surface [110]. Using the CVD method purities as high as 90% can be achieved 

[119]. 

The high-pressure carbon monoxide (HiPco) process represents the culmination 

of a series of methods focused on pyrolysis of SWNT precursors [118, 120]. In the HiPco 
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process, SWNT is generated by passing carbon monoxide (CO) and a small amount of 

iron pentacarbonyl (Fe(CO)5) through a high pressure (30 atm), high temperature 

(1050°C) reactor (Figure 1-2). Upon reaching temperature, Fe(CO)5 undergoes thermal 

decomposition and forms iron clusters in the in the gas phase. The iron clusters can then 

act as nucleation sites for the SWNT to grow via a CO disproportionation reaction [114]. 

The nucleated iron clusters are then carried out of the reaction chamber to a 

cooling/collection area where the SWNT can continue developing. The HiPco process is 

the only gas phase continuous process, which allows it to excel at high production rates 

(450 mg/h) and high purity (97 mol%) [114]. 

 

 

Figure 1-2: Production of SWNT via a HiPco reactor, with the reaction region shown enlarged. Room 
temperature CO and Fe(CO)5 are fed into the reactor at the left. Meanwhile, a separate CO source is rapidly 
heated to ~ 1050 °C. The hot CO is then delivered to the room temperature CO and Fe(CO)5 via a shower 
head, rapidly heating the Fe(CO)5  and encouraging its decomposition. Upon decomposition, Fe(CO)n 
serves as a nucleation site for SWNT growth. The nucleated particles are shuttled out of the reactor where 
they can finish growing and be collected. Reprinted from Bronikowski et al. with permission form the 
Journal of Vacuum Science and Technology A [114]. 
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1.2.2 Fluorescent Theory 

 

SWNT show heterogenous optical and electrical properties upon production that 

are highly dependent upon their chiral angle [121, 122]. Often denoted with the n,m 

notation, chiral angle describes the orientation of a graphene sheet should it be rolled into 

a nanotube (Figure 1-3). Depending upon the chiral angle, SWNT can present as either a 

semi-conductor or metallic material [123]. The properties of the SWNT (semi-conductor 

or metallic) can be predicted from the following equation: when |𝑛 − 𝑚| = 3𝑞, where q 

is an integer, the nanotube is metallic and in all other cases the SWNT is considered 

semi-conducting [124]. Unfortunately, as prepared SWNT are generally a mixture of 

many different SWNT chirality’s which are grouped together axially in bundles via van 

der Waals binding [125, 126]. The dispersion of aggregated SWNT bundles is a 

challenge for those who want to utilize their individual properties. Not only does 

aggregation of SWNT perturb the electronic structure of individual nanotubes, but it also 

prevents the individual study of species based on their chiral angle. It was in pursuit of 

dispersion that fluorescent single walled carbon nanotubes were discovered. In 2002, 

O’Connell et al. demonstrated that not only could individual SWNT be easily dispersed 

by sonication with sodium dodecyl sulfate (SDS) micelles, but upon excitation by a 532 

nm laser the dispersed semi-conducting varieties of SWNT produced a bright 

fluorescence in the near infrared range [122].  
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Figure 1-3: Visualizing SWNT chirality’s. SWNT can be thought of as a rolled sheet of Graphene. The 
angle at which the tube is rolled defines the properties of the SWNT (semiconductor or metallic) The n,m 
notation system is used to define chiral angle of the tube formed by rolling the graphene sheet. when |n-
m|=3q, where q is an integer, the nanotube is metallic and was thus not included in this figure. Figure 
created from work in [121] 

 

Due to their demonstrated ability to undergo band-gap fluorescence, semi-

conducting SWNT form the framework for all fluorescent SWNT sensor applications 

[122]. Fluorescence is generated as a result of the quasi-quantum confinement of 

electrons along the axis of the nanotube [79]. The electron confinement generates a series 

of Van Hove peaks which account for SWNT fluorescence [121, 127] (Figure 1-4a). The 

chirality (and thus the diameter) of the single walled carbon nanotube directly influences 

the absorption and fluorescence spectra by altering the electron density of states, with 

peak excitation values ranging from approximately 550-800 nm and corresponding 

maximum fluorescence ranging from 900-1600 nm [121, 128] (Figure 1-4b). The 

presence of fluorescent peaks in the infrared is well suited to biological applications. 
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Infrared signals are known for their ability to penetrate tissue and cell culture beyond that 

of visible wavelengths while avoiding autofluorescence from typical biological materials 

such as tissue, blood, and cell culture reagents [129-131]. Unfortunately, unmodified or 

raw SWNT is not well suited to fluorescent applications.  Raw SWNT is hydrophobic 

and forms dense aggregates in aqueous solution, which prevents the SWNT from 

fluorescing by altering its electronic structure and prevents the study of individual SWNT 

species. Furthermore, raw SWNT lacks specificity in its interaction with analytes/ligands 

preventing its usefulness as a sensor [132, 133]. Covalent modifications to increase 

solubility were considered and applied, but these methods result in loss or serious damage 

to the near infrared optical properties of SWNT by necessarily disrupting its quasi-one-

dimensional state [124, 134]. Consequentially, a number of non-covalent modifications 

have been developed to increase hydrophilicity and, in some cases, impart ligand/analyte 

binding sensitivity. Non-covalent modifications which have been successfully employed 

include surfactants (SDS micelles), polymers wrappings (Dextran, collagen, etc.), and 

DNA wrappings [8, 9, 70, 71, 73, 135-137]. Despite initial success with surfactants, more 

recent single walled carbon nanotube probes have relied heavily on polymers and DNA 

wrappings which are easily imparted through sonication [136].  DNA wrapping in 

particular is considered to be a highly ordered process due to hydrophobic interactions 

and pi stacking between the single walled carbon nanotube and aromatic rings in the 

wrapping [136]. DNA and polymer wrappings impart several important features to 

SWNT: 1) The SWNT system becomes hydrophilic, allowing for dispersion in biological 

systems, 2) The optical properties of the SWNT are preserved because no covalent bonds, 

which would alter their quasi-one-dimensional state, and 3) Ligand/Analyte specificity is 
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imparted as a result of wrapping. DNA wrapping can impart ligand specificity for small 

molecules like NO via steric hinderance, nonradiative energy loss, and redox selectivity 

[9]. For large molecules like proteins or genetic material DNA can serve as an attachment 

site for molecules that will interact with the analyte of interest, such as aptamers or 

microRNA [3, 8, 84]. Binding of the analyte of interest affects the dielectric environment 

of SWNT and results in a modulation of the fluorescence. For example, the NO specific 

sensor indicates NO binding with a decrease in fluorescent intensity, while the Ras-

associated protein-1 (RAP-1) sensor demonstrates protein binding as an increase in 

fluorescence, and the recently developed microRNA sensor identifies binding as a blue 

shift [6, 8, 9]. DNA wrapped SWNT also stand in marked contrast to other infrared 

probes (Quantum dots, IR dyes) in that they have shown no indication of photobleaching 

and have remained stable for more than 300 days in vivo [5, 138] 
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 Figure 1-4: Fluorescent properties of SWNT. (a) Representational density of electronic states for a single 
nanotube complex. Solid arrows represent the optical excitation and emission transitions responsible for the 
fluorescence of interest; dashed arrows describe nonradiative relaxation of the electron in the conduction 
band and valence band prior to emission. Reprinted with permission from Science [8, 121]. (b) Optical 
Emission and excitation wavelengths of various SWNT chirality’s. Reprinted with permission from Blum 
et al. [139]. Copyright (2011) American Chemical Society 

(a) 

(b) 
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1.3 Sensor Applications of Fluorescent Single Walled Carbon Nanotubes 

1.3.1 Ex Vivo Applications 

 

 In many cases it is convenient to detect analytes of interest from biological 

samples, such as blood or cell culture supernatant. Fluorescent SWNT has been used 

extensively to detect a variety of analytes in this manner including genetic material, 

proteins, hormones, and key components of cell culture (Table 1-1).  

Genetic materials that have been detected include hybridized DNA, single 

nucleotide polymorphisms (SNPs), and miRNA [2-4, 6]. The detection of DNA and 

miRNA hybridization using SWNT could be used for the detection of genetic material 

from pathogenic organisms in both humans and plants [140-142]. In fact, a SWNT sensor 

which detects human immunodeficiency virus (HIV) RNA has already been developed, 

which could help medical personnel rapidly identify HIV carriers before symptoms are 

detectable [3]. Meanwhile, SNPs, which are detected through incomplete hybridization 

events, have been linked to the formation of genetic disorders [2, 143], a proclivity to the 

development of disease [144], and a disparity in patient reaction to certain treatments 

[145]. Rapid SNP detection at the clinical level could help tailor treatment on a patient by 

patient basis. SWNT has also been extensively used to detect proteins like, avidin, the 

HIV-1 integrase protein, the RAP-1 protein and cardiac troponin through the use of 

binding domains which include aptamers, antibodies, and biotin [7, 8, 75, 76]. The 

detection of proteins in biological media can have prompt, low risk clinical applications, 

such as the rapid confirmation of acute myocardial infarction with the cardiac troponin 
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sensor [7].  SWNT sensors have also been employed to detect key hormones such as 

insulin, L-Thyroxine, and estradiol [77, 78]. The use of SWNT to detect hormones could 

have direct and immediate implications. For instance, the insulin sensor could be applied 

for rapid diabetic assessments, the L-throxine sensor could prove useful for monitoring 

hypothyroidism treatment, and estradiol detection could be used to monitor the treatment 

of certain breast and prostate cancers [146, 147].  

Table 1-1: Published ex vivo applications of SWNT 

Analyte Detected Detection Medium Wrapping Employed 

HIV RNA [3] Serum (GT)15-(T)15 

miRNA Hybridization [6] Serum, Urine (GT)15-miRX 

Single nucleotide polymorphisms 
[2] 

Water 5'–TAGCTATGGAATTCCTCGTAGGCA 
– 3' 

DNA hybridization [4] Water 5‘-TAG CTA TGG AAT TCC TCG TAG 
GCA-3‘ 

Avidin [75] Water Dye ligand conjugates doped SDS micelles 

human IgG, mouse IgM, rat 
IgG2a, and human IgD [74] 

PBS Chitosan/immunoglobulin-binding protein 
complex 

Troponin T [7] Serum Chitosan/anti-troponin antibody complex 

Insulin [77] PBS, Serum PEGylated lipid heteropolymer 

L-Thyroxine [78] PBS Fmoc-Phe-PPEG8 

Estradiol [78] PBS RITC-PEG-RITC 

Riboflavin [78] PBS BA-PhO-Dex 

Nitric Oxide [9] PBS d(AT)15 

Hydrogen Peroxide[133] Saline d(GT)15
 

HIV1 integrase protein [8] PBS (AT)11-HIV-1 aptamer 

RAP-1 Protein [8] PBS, Crude cell 
lysates 

(AT)11-RAP1 aptamer complex 

Catecholamines (DA and NE) 
[84] 

PBS, Striatal Brain 
tissue 

(GT)6 

Β-D-glucose [148] TRIS buffer Glucose oxidase 

pH [149] Water SDBS micelle 

Ag+ and cysteine [150] HEPES buffer FAM labeled 5’-CTC TCT CTC TCT CTC 
TCT CTC-FAM-3’ 

Co2+  Ca2+  Mg2+ [72] PBS d(GT)15 

Hg2+ [72] PBS, Whole rooster 
blood, Chicken 
tissue 

d(GT)15 

Doxorubicin [151] Saline-sodium citrate 
buffer 

(GT)15 
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1.3.2 In Vitro Applications 

 

As sensors, SWNT have been used for the detection of a wide range of 

intracellular molecules and analytes in various cell lines (Table 1-2). One of the more 

prominent examples of in vitro detection includes the detection of NO in A375, HUVEC 

and Raw 264.7 cells [69, 79], where it was demonstrated for the first time that the A375 

melanoma cell line possess at least 1 source of NO production and 2 sinks [69]. SWNT 

have also been used to detect endosomal lipid accumulation in RAW 264.7 cells [1]. The 

ability to detect endosomal lipid flux could be critical to increasing our understanding of 

various diseases where an accumulation of lipids within the endosome has been observed, 

including liver disease, neurological disorders, and cancer [152-154]. SWNT have also 

been used for the detection of the HER2/neu receptor in BT-474 cells [155] and the 

detection of riboflavin in Raw 264.7 macrophage cells [78]. The detection of cell surface 

receptors like HER2/neu in conjunction with proteins like Riboflavin are important in the 

detection and study of breast cancer where the HER2/neu is often over expressed in 

conjunction with elevated levels of Riboflavin absorption [156, 157]. It is generally 

accepted that SWNT enter cells via an energy-dependent endocytic route where they are 

incorporated into the endosomal lumen of cytoplasmic vesicles [1, 138, 158, 159].  
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Table 1-2: Published intracellular in vivo applications 

Analyte Detected Cell lines used Wrapping Employed 

NO [69] A375, HUVEC d(AT)15  

NO [79] Raw 264.7 DAP-DEX 

H2O2 [133] Murine NIH/3T3 d(GT)15 

Riboflavin [78] Raw 264.7 BA-PhO-Dex 

Lipids [1] RAW 264.7, U2OS-SRA, 
primary monocytes, patient 
derived fibroblasts 

(GT)6 

CD20 cell surface receptor [155] Raji PEG-Rituxan 

HER2/neu [155] BT-474, and MCF-7 PEG- Herceptin 

ATP [81] HeLa PLPEG - luciferase 

Hg2+ [72] 3T3 Fibroblasts d(GT)15 

6 genotoxic elements [133]  Murine 3T3  d(GT)15 

Doxorubicin [151] RAW 264.7 murine 
macrophage 

(GT)15 

 

 In some instances, it is more appropriate or desirable for the researcher to monitor 

extracellularly excreted proteins and cell signaling molecules while remaining in the in 

vitro environment (Table 1-3). SWNT has been used on several occasions to provide 

information about the extracellular secretions of cells. On one such occasion SWNT was 

used for the high resolution spatio-temporal detection of dopamine efflux from PC-12 

cells [73]. The detection of neurotransmitters like dopamine have implications for 

advancing our understanding of neuronal function and the pathophysiology of its 

dysregulation. This method of detection has already been used to discover that dopamine 

efflux is greatest from the negative curvature regions of cellular protrusions rather than 

the commonly held belief that efflux is greatest at the tips of protrusions [73]. Moreover, 

SWNT has been shown capable of detecting RAP-1 protein secretions from E. coli and 
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the HIV-1 integrase protein excretion by HEK and yeast cells [8]. The detection of 

proteins from individual cells provides valuable information about transcription and 

translation rates. Using this method of detection, the authors were able to determine that 

non-dividing E. coli had a smaller protein secretion footprint and were slower to produce 

protein after induction. They were also able to detect RAP-1 protein released after cell 

lysis in E. Coli infected with T7 bacteriophages carrying the RAP1 gene, thus allowing 

for the visualization of individual cell lysing events and easy fluorescent tracking [8]. 

Additionally, SWNT has been used for the detection of H2O2 signaling from A431 and 

HUVEC cells [10, 71]. The detection of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) signaling molecules has remained difficult due to their high 

reactivity and short lifetimes. The ability to form a sensor array in close proximity to the 

cell promises an understanding of real time signaling dynamics which was not previously 

possible. Unfortunately, while monitoring extracellular secretions is often desirable, the 

current methods of SWNT deposition are not well characterized or well suited to 

vigorous cell culture applications, relying almost entirely on non-specific interactions, 

matrix immobilization, or electrostatic deposition. Matrix immobilization methods suffer 

from poor response times [10], while non-specific and electrostatic methods are subject 

to interference from other biomolecules [160, 161]. A more robust and well characterized 

method of SWNT deposition is necessary for continued research on extracellular 

signaling. 
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Table 1-3: Published intercellular in vivo applications 

Analyte Detected Cell line  Wrapping 

Dopamine [73] PC-12 (GA)15 

RAP-1 protein [8] E. Coli (AT)11-RAP1 aptamer complex 

HIV-1 Integrase protein [8] Yeast, HEK293 (AT)11-HIV-1 aptamer complex 

H2O2 [10, 71] A431, HUVEC Collagen 

 

 

1.3.3 In Vivo Applications 

 

SWNT have also been used in vivo, although these instances are less frequent 

(Table 1-4).  One such sensor that has been successfully employed in vivo is the NO 

sensing SWNT in SJL mice. This sensor was successfully employed to detect local levels 

of NO increase due to inflammation [5]. Another SWNT sensor that has been used in 

animal models is an LDL cholesterol sensor, which was used in C57BL/6 mice [80]. This 

sensor has already been used to demonstrate the prolonged negative effects of poor diet 

on mice suffering from nonalcoholic fatty liver disease even after returning to a healthy 

lifestyle.  
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Table 1-4: Published in vivo applications  

Analyte Detected  Animal Model  Wrapping employed 

NO [5] SJL mice PEG-(AAAT)7 

LDL Cholesterol [80] C57BL/6 mice 5’-CTTC3TTC-3’ 

Doxorubicin [151] NU/J (nude) mice (GT)15 

Dopamine [162] Drosophila embryos GFP Binding Protein/d(GT)20 
conjugate 

Riboflavin [163] Nine species of bony fish, 
sharks, eels, and turtles 

(AC)15 

 

1.3.4 Single Walled Carbon Nanotube Biocompatibility 

 

As a result of SWNT’s potential application to the biomedical field, considerable 

effort has been spent determining the consequences of SWNT introduction on cell health. 

A number of studies have indicated that raw SWNT may negatively impact cell viability 

[164-166]. However, these results have been called into question by numerous additional 

publications specifically due to the interference of raw SWNT with common assays used 

to determine cell health [167-169]. To date raw SWNT has been shown to interact with 

many popular assays for measuring cell health, including MTT, WST-1, Alamar Blue, 

Neutral Red, and Commassie Blue, providing false indications of cell distress [167-169]. 

The interaction between SWNT and these reagents is not fully understood, but it is 

believed that hydrophobic regions of crucial signaling dyes and probes often aggregate 

around the raw single walled carbon nanotubes causing disruptions in their ability to 

accurately relay information about cell health. Studies which use indicator dyes and 

fluorophores in conjunction with raw SWNT should be taken with much skepticism. 

Studies which rely on morphological assessments of raw SWNT toxicity have found that 
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the addition of raw SWNT at low concentrations (25 mg/L) to cell culture media can 

cause changes indicative of apoptosis in HEK 293 cells including: an increase in 

membrane vesicles, nucleus condensation, fragmentation, and cell rounding [170]. At 

higher concentrations (400 mg/L) morphological characteristics of increased apoptosis 

continue in A549 cells, but necrosis also begins to take place [171].  

However, the toxicity of raw SWNT has a limited impact when considering 

sensor applications since raw SWNT are unlikely to be used as fluorescent sensors for 

biologically relevant molecules, instead they are solubilized with wrappings (polymer or 

DNA) as previously discussed. Unfortunately, the issue of wrapped SWNT toxicity in 

cell culture becomes increasingly uncertain due to a lack of literature regarding the 

effects of wrapped SWNT on common assays of cell health. It is not understood if, like 

its unwrapped counterpart, hydrophobic interactions skew results of cell viability assays 

or if the presence of DNA/polymers is sufficient to prevent adsorption of indicators. 

Despite this fact, some assays have been performed which indicated that wrapped SWNT 

does not have an impact on the viability of HeLa and SiHa cells at concentrations of 0.1-

2 mg/L after a 24 hour incubation period [172]. Wrapped SWNT was also found to not 

impact the viability of IMR 90 cells at concentrations of 20 mg/L or less after a 16 hour 

incubation period [173]. Finally, wrapped SWNT was found to have no effect on the 

proliferation and viability of RAW 264.7 macrophage cells when incubated at a 

concentration of 0.2 mg/L for 24 hours [1]. Moreover, shorter carbon nanotubes (< 500 

nm), like those used in the preparation of SWNT sensors, are considered to be safer for 

use in cell culture [174]. Although the in vitro effects of wrapped SWNT remain 

ambiguous and controversial, fluorescent SWNT has been consistently shown to have 
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minimal or no impact on animal well-being and are generally expected to be expelled 

from the body via the biliary and renal pathways [175-179]. In a more recent study, DNA 

wrapped SWNT were implanted into mouse models for nearly one year with no signs of 

toxicity or SWNT degradation [5].  

 

1.4 SWNT Complex Deposition 

 

Carbon nanotube deposition to cell culture surfaces is critical for many SWNT 

applications including the high spatio-temporal imaging of cellular signaling and 

excretions [8, 10, 71, 73, 180], high-throughput screenings of biomolecules [74, 180], 

and comparative dynamic studies [181]. Unfortunately, current methods of SWNT 

deposition are often poorly described and documented. Keeping this in mind, the methods 

of SWNT deposition fall broadly into two categories: (1) matrix immobilization or (2) 

surface decoration through the use of electrostatic or non-specific interactions.  

 

1.4.1 Matrix Immobilization 

 

One popular method of SWNT immobilization is the use of thin films. Thin 

collagen and chitosan films have been used to immobilize a variety of polymer -SWNT 

sensor complexes including those responsible for sensing H2O2, human IgG, mouse IgM, 

rat IgG2a, human IgD SWNT, and a variety of proteins [10, 71, 74, 180]. This method of 
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immobilization has benefited from both its simplicity and its potential for extensive 

secondary modification. Initial deposition of SWNT is generally a simple process 

whereby SWNT is suspended and wrapped in the matrix material via sonication. The 

SWNT/matrix composite may then be applied to the surface of a substrate (generally 

glass) and cross linked to form a stable SWNT sensor array. The addition of the matrix 

network allows for subsequent derivatization of the network, which may improve, or be 

necessary for, sensor performance. In some cases, the matrix is used to limit the diffusion 

of shorter-lived analytes emanating from cells and thus increase specificity for longer-

lived analytes of interest [71].  Unfortunately, this method of deposition necessarily slows 

the diffusion of analytes to the SWNT sensor as proteins and other signaling molecules 

must navigate the matrix network to reach SWNT, negatively impacting the sensors 

temporal resolution. This can lead to lengthy sensor acquisition times such as a recently 

developed SWNT-collagen array designed to detect H2O2 which required 14 minutes to 

sense 1 uM H2O2 [10]. Moreover, although subcellular spatial resolution can be achieved 

using this method, it still lags behind other methods of SWNT deposition. As a result of 

these limitations, matrix immobilized SWNT are generally used for the detection of 

biologically relevant molecules in less time sensitive situations such as protein 

microarrays or they have been replaced by surface decoration methods [180]. 
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1.4.2 Surface Decoration 

 

In cases where high spatial and temporal resolution are required, such as the 

detection of cellular signaling molecules, surface decoration methods have been used 

with success to detect signaling molecules and proteins like NO, the RAP-1 protein, the 

HIV-1 integrase protein, dopamine, norepinephrine, and serotonin [8, 9, 73, 83, 84]. The 

most popular method of surface deposition is to use the electrostatic interactions between 

3-aminopropyltriethoxysilane (APTES) and DNA-SWNT complexes [8, 9, 73, 84, 181]. 

In this case APTES solution, generally consisting of APTES (1%) in an anhydrous liquid 

(Ethanol), is applied to a glass surface where it forms a covalent bond with the surface 

via a condensation reaction [182]. The positively charged aminopropyl head can then 

undergo an electrostatic interaction with the negatively charged DNA backbone of a 

DNA-SWNT complex, thus immobilizing SWNT on the surface. In at least one case, 

neutravidin was used to form a non-specific bond with DNA-SWNT complexes to elicit 

SWNT deposition. In this case a mixture of PEG: Biotin-PEG was allowed to non-

specifically adhere to a glass substrate followed by addition of neutravidin, which bound 

to the Biotin-PEG. SWNT was then added and deposition achieved by the non-specific 

interaction of SWNT with neutravidin [8]. Another approach to SWNT deposition 

utilizes the deposition of biotinylated BSA followed by neutravidin, and then biotinylated 

SWNT to generate a SWNT functionalized surface [133]. Unfortunately, this method was 

not well characterized and still relied upon the non-specific adsorption of biotinylated 

BSA to a glass surface to allow for neutravidin binding. Recently, a new method of 

SWNT deposition was attempted based on a covalent linkage of a chitosan wrapped 
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SWNT to a glass substrate derivatized with N-hydroxysuccinimide esters (NHS) [74]. 

The amine groups from the chitosan wrapping reacted with the NHS groups to form a 

covalent linkage. Unfortunately, this new method was not characterized due to a 

perceived decrease in the quality of the fluorescent distribution compared with 

electrostatic mechanisms [74]. 

 

1.5 Nitric Oxide 

 

Until the late 1980’s NO was best known for its formation in the exhaust of 

combustion engines and its subsequent participation in the formation of acid rain [183].  

It came as no small surprise to the scientific community when, in 1987 it was discovered 

that NO was synonymous with endothelium-derived relaxing factor (EDRF), a factor 

which is critical to cardiovascular health. The discovery not only garnered, Robert F. 

Furchgott, Ferid Murad, and Louis J. Ignarro the Nobel Prize for Medicine or Physiology 

in 1998, but also prompted a new wave of NO study from a biological perspective, which 

has continued throughout the turn of the century [184]. After more than 30 years of 

research into NO’s role in physiology, NO has been found to serve many functions which 

extend well beyond the cardiovascular system. As with most areas of physiology, 

following the discovery of NO’s role in a biological system are subsequent findings about 

the role of NO’s dysregulation in pathophysiological developments.  
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1.5.1 Nitric Oxide in Physiology 

 

Although NO became famous for its role as the signaling molecule responsible for 

endothelial relaxation [185], it has since been discovered the NO plays an important role 

in many biological systems including the gastrointestinal tract, central nervous system, 

immune system, and renal system. In the gastrointestinal track, NO contributes to 

mucosal integrity through the inhibition of gastric acid release and the stimulation of 

mucosal and bicarbonate secretions [186-190].  In the central nervous system, NO acts as 

a neurotransmitter and plays a role in processing feelings of pain, appetite, and the sleep-

wake cycle [17, 191-194].  NO may also act as a neuroprotective or degradative agent 

depending on its concentration in tissue [17, 195-198]. Within the immune system NO 

has been shown to have significant anti-microbial properties [199-201]. NO also serves 

additional functions within the cardiovascular system where it acts to mediate platelet 

aggregation and leukocyte adhesion (Figure 1-5). 
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Figure 1-5: Roles of NO in physiology. NO plays a diverse role in numerous systems including the 
gastrointestinal tract, the nervous system, the cardiovascular system, and the immune system.  

 

NO is generated by three isoforms of nitric oxide synthase (NOS): endothelial 

NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). Both eNOS and nNOS 

were named for the locations in which they were discovered and both isoforms are 

constitutively expressed, leading some researchers to refer to eNOS and nNOS 

collectively as constitutive NOS (cNOS). As the name suggests iNOS was named not for 

the location in which it was discovered, but for its presence in mammalian cells only after 

an immunological or stress stimuli occurs [202]. Functioning as a dimer, all three 

isoforms convert L-arginine, molecular oxygen, and NADPH into NO, NADP, and L-

citrulline [203, 204] (Figure 1-3). Additional co-factors necessary for proper enzymatic 

function in the reductase domain include flavin-mononucleotide (FMN) and flavin 

adenine dinucleotide (FAD). Co-factors necessary for proper function in the oxygenase 



28 
 

  
 

domain include heme, zinc, tetrahydrobiopterin (BH4) and calmodulin (CaM) [203]. 

While eNOS and nNOS are dependent upon intracellular calcium for proper CaM 

binding, iNOS, instead, produces NO continuously, and at much higher concentrations, 

when all cofactors are present [203].  

In addition to its roles in normal cellular function, NO dysregulation has also been 

implicated in a host of pathophysiology’s including cardiovascular diseases like 

hypercholesterolemia, atherosclerosis, diabetic angiopathy, hypertension, and 

cerebrovascular strokes[36-44] ; neurological disorders such as Alzheimer’s and 

Parkinson’s disease [32-35]; and inflammatory diseases like arthritis, Crohn’s disease, 

and asthma [25-30]. Of particular interest is NO’s role in carcinogenesis, where it has 

been found to have both pro and anti-tumor effects that appear to be highly dependent 

upon the spatio-temporal distribution of NO [19-24]. 

 

Figure 1-6: Production of  NO from NOS. This schematic demonstrates the flow of electrons from NAPH 
through the NOS enzyme to the Heme of the oxygenase domain where L-Arg and O2 are used as substrates 
to form L-Cit and NO. Note that the NOS enzyme shown here is displayed as a monomer for simplicity 
when NOS normally functions as a dimer. Created from material presented in Zhou et al. [205]. 
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1.5.2 NO Measurement Techniques 

 

The detection of NO has remained difficult due to its reportedly short half-life of 

less than 1 second in biological media [85-88, 206, 207]. Despite this fact, several assays 

are commonly used to determine NO concentration in biological systems besides SWNT. 

These methods will be discussed briefly below. 

 

-------------Griess Assay------------- 

The Griess assay is one of the most popular methods of approximating NO 

concentration in biological media. NO is rapidly converted into the relatively stable 

molecules of nitrite and nitrate in the presence of oxyhemoglobin and oxygen 

respectively, making them attractive targets for approximating NO concentration in 

biological settings [208, 209].  The Griess assay makes use of favorable interactions that 

can occur between a sulfanilamide and N-1-napthylethylenediamine dihydrochloride 

(NED). The addition of nitrite to these compounds causes their linkage and subsequent 

formation of an azo compound, which produces an observable absorbance shift. The 

concentration of nitrite is calculated using the absorbance shift and used as an indicator 

for NO concentration. The Griess assay benefits from its simplicity and commercially 

available kits, but suffers from indirect quantification of NO, a lack of spatial and 

temporal resolution, and inaccuracies from animal intake of nitrites/nitrates in food [210]. 
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-------------NOS Activity------------- 

While the Griess assay is concerned with measuring the downstream products of 

NO degradation, it is also possible to measure upstream components of NO production 

such as NOS activity. As explained previously, NOS requires L-arginine, NADPH, and 

oxygen as substrates to generate NO, NADP, and L-citrulline.  In order to determine 

NOS activity, it is common to use radio labeled 3H L-arginine and measure its conversion 

into 3H L-citrulline. The remaining 3H L-arginine can then be removed using a resin and 

the radioactivity of the 3H L-citrulline sample measured using liquid scintillation 

counting. The radioactivity is considered proportional to NOS activity [211, 212]. Like 

the Griess assay this method of NO detection suffers from a lack of spatial and temporal 

resolution and requires the use of radiolabels, which many labs are not equipped to 

handle. Moreover, the use of this assay in vivo is generally not practical as it requires 

careful control of L-Arginine supplies [213]. 

 

-------------Fluorescent Detection------------- 

 One class of sensors which have shown the potential to detect spatial distributions 

of NO are fluorescent probes. Many fluorescent detection methods rely on o-diamino 

aromatic molecules, like the popular 4,5-diaminofluorescein (DAF-2). DAF-2 remains 

non-fluorescent until exposure to NO’s autooxidation product N2O3 where it forms a 

fluorescent DAF-2 triazole (DAF-2T) [214]. Drawbacks of this assay include indirect 

measurement of NO, false identification of NO upon interaction with dehydroascorbic 
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acid (DHA) and ascorbic acid (AA), which often co-localize with NO, and sensitivity to 

pH [215-217].  

Another commonly used class of fluorescent probes are those based on transition 

metal binding. It has long been known that NO can bind to transition metal complexes 

and in many cases, this is how NO signal transduction actually takes place[218]. 

Transition metal fluorescent probes aim to take advantage of this binding by using metal 

complexes containing cobalt (II), iron (II), ruthenium (II), dirhodium (II), or copper (II) 

which are bound to a fluorescent molecule [219]. When bound, the fluorescent molecule 

shows little or no fluorescence. After NO binding, the fluorescent molecule is displaced 

and fluorescence increases [220, 221]. Unfortunately, while these probes have the 

potential to provide high spatial and temporal resolution, many probes based on transition 

metals suffer from water insolubility, limiting their applications to biological systems 

[222].. 

Quantum dots (QDs) have also shown promise in the detection of NO. To date 

both fluorescent turn “on” and turn “off” sensors have been developed using quantum dot 

cores [223, 224]. The turn off variety of QD sensors relies on a triethanolamine – CdSe – 

QD complex for the detection of NO. Normally, this complex’s fluorescence is increased 

in the presence of oxygen due to its ability to passivate surface defects [225, 226]. 

Because NO readily reacts with oxygen, it decreases the amount of oxygen present at the 

QD core and decreases fluorescent intensity. Additional evidence suggests that the 

adsorption of NO to the triethanolamine – CdSe – QD complex may also decrease 

fluorescence intensity [224]. This particular QD sensor suffers from a lack of specificity, 

a requirement of O2 to function, and a mechanism that is not fully understood [227]. The 
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turn on variant of QD NO sensors relies on a tris(N-(dithiocarboxy)sarcosine)iron(III) 

([Fe(DTCS)3]3-) complex being grafted to a CdSe-ZnS QD core. This QD sensor 

normally displays very little fluorescence due to charge transfer from the QD core to 

[Fe(DTCS)3]3- complexes. However, upon exposure to NO, some or all of the DTCS is 

removed and replaced by NO, allowing for fluorescence to increase [223]. This QD 

sensor has excellent specificity and its mechanism is much better understood. 

Unfortunately, QDs continue to suffer from the fact that they are single use probes and 

thus lack the high temporal resolution desired by many researchers [227]. 

 

-------------Electron Paramagnetic Resonance Spectroscopy -------------   

Electron paramagnetic resonance spectroscopy (EPR) is a technique used to detect 

only paramagnetic molecules, that is molecules with one or more unpaired electrons, such 

as NO. Electrons can be thought of as spinning charges and as a result, they generate their 

own magnetic fields (dipole). Because electrons generate their own magnetic fields, they 

can be aligned by subjecting them to an external magnetic field. As a result of their 

quantum behavior, electrons can be considered to occupy only two states within the 

external magnetic field, aligned or not-aligned. Conceivably, a certain amount of energy 

could be imparted to the electrons via an X-ray source which would cause them to “flip” 

to a non-aligned position. At this point the electrons in the sample will be absorbing the 

energy provided by the X-ray in order to maintain their unfavorable position. If we record 

this position, we can generate an absorbance spectrum (or EPR spectrum). In reality it is 

the X-ray that is held constant while the magnetic field intensity is swept from high to 

low. The process is governed by the following equation [228]: 
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ℎ𝑣 = 𝑔𝛽𝐵 

ℎ = 𝑝𝑙𝑎𝑛𝑘 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
𝑣 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑋 − 𝑟𝑎𝑦  
𝑔 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐ℎ𝑎𝑟𝑎𝑐ℎ𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒  
𝛽 = 𝐵𝑜ℎ𝑟 𝑀𝑎𝑔𝑛𝑎𝑡𝑟𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
𝐵 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑  
 

When the equation is equal the sample absorbs energy and a peak is generated 

[229]. In its simplest form, a single electron, only a single peak would be generated, 

however the absorbance spectrum is also influenced by the presence of paramagnetic 

molecules close to the electron of interest (e.g. protons or nitrogen) which leads to an 

increase in the number, and complexity of, the generated peaks. The EPR spectra can be 

used to fingerprint molecules that contain unpaired electrons. NO has been observed in its 

gaseous phase using this technique [230], but is considered extremely difficult to detect 

in the liquid phase [229]. Thus, NO must be “spin trapped” or incorporated into another 

more stable and easily detectable molecule for observation via EPR. Common spin traps 

include nitroxides, cheletropics, nitronyl nitroxides, and the iron centers of heme-proteins 

[211, 231-238]. Unfortunately, the spin traps listed suffer from low sensitivity, a lack of 

specificity, and instability, making EPR difficult to perform in vitro or in vivo [211, 234, 

235, 239]. 

 

-------------Chemiluminescent Probes------------- 

An additional class of NO detectors takes advantage of the reaction between NO 

and soluble guanylyl cyclase (sGC), its natural target [240]. Upon NO binding, sGC 
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activity is increased nearly 100-fold, resulting in the rapid conversion of GTP to cGMP 

and pyrophosphate (PPi). PPi is then converted to ATP by ATP sulfurylase, which causes 

light emission from a luciferase-luciferin complex [241, 242]. Advantages of this method 

of NO detection include a large (200X) increase in fluorescence intensity following 

activation and the ability to detect NO at low concentrations [241, 242]. However, in 

order for this system to reach maximum sensitivity all NO should be bound to sGC 

meaning that additional sGC needs to be added to cell culture to achieve, which may 

prove cost prohibitive to researchers [242]. Furthermore, because this system requires 

ATP, NO cannot be accurately determined in cells which effuse ATP [242]. 

Unfortunately, current methods of NO detection suffer in one form or another 

from poor spatial or temporal resolution, poor specificity, indirect quantification, or poor 

outlooks for in vitro and in vivo biocompatibility. As previously mentioned, a new group 

of NO sensors based on DNA-SWNT complexes have shown the potential to overcome 

these problems by providing high quality spatial and temporal information about NO in 

vitro and in vivo by detecting NO directly with a high degree of specificity [5, 9, 69].  

 

1.6 Thesis Objectives 

 

Fluorescent DNA-SWNT complexes have a range of advantageous properties as 

sensors, but many potential applications are reliant on the efficient deposition of SWNT 

for the detection of extracellular analytes.  Currently available SWNT deposition 

procedures are poorly characterized and rely almost entirely on electrostatic or non-
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specific strategies. The use of the avidin-biotin bond to enhance SWNT deposition shows 

the potential to overcome the shortcomings of the previous methods of SWNT 

deposition. The goals of this thesis were to develop an improved deposition method by: 

(1) determining if biotin activity can be imparted to SWNT via biotinylation of the DNA 

wrapping, (2) determining if biotinylation damages SWNT’s spectral properties, (3) fully 

characterizing a new method for depositing SWNT to a glass surface using an avidin-

biotin bond where avidin is covalently bound to the glass substrate, (4) fully 

characterizing the current standard for SWNT deposition which relies on electrostatic 

interactions for SWNT deposition and serves as the current standard, (5) determining if 

the avidin-biotin bond can enhance deposition rates without harming some of those 

properties which are already enjoyed by previous methods of SWNT deposition. Chapter 

two will detail the results of this investigation demonstrating the significant increase in 

DNA-SWNT complex deposition using the avidin-biotin bond. Chapter three will then 

outline future studies for the continuation of SWNT deposition enhancement. 
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CHAPTER 2 

Improving SWNT Deposition Efficiency 

 

2.1 Introduction 

The detection and study of extracellular products has been under intensive study 

for the past several decades due to the fundamental role signaling molecules play in 

coordinated biological processes [243-246]. There are currently many methods which 

allow for the temporal study of extracellular products, but very few which allow for the 

simultaneous study of their spatial distribution [247-252]. Recently, a new group of 

sensors based on DNA wrapped fluorescent single walled carbon nanotubes (SWNT) 

have shown the potential to provide high quality spatial and temporal information 

regarding a wide range of cellular signaling molecules, proteins, and analytes including 

nitric oxide (NO), hydrogen peroxide (H2O2), glucose, dopamine, norepinephrine, 

serotonin, lipids, oligonucleotides, and the RAP-1/HIV-1 integrase proteins [1, 6, 8, 9, 

70, 71, 73, 80, 83, 84]. In addition to their ability to sense key signaling molecules, 

SWNT offer several advantages over other sensors including a fluorescent signal in the 

near infrared tissue transparency window, no blinking or photobleaching, and, as a result 

of its small size, the potential to create high density sensor arrays [121, 122, 131, 148, 

253-257].  

Depositing SWNT on cell culture substrates is a critical step in the formation of 

sensor arrays, however current methods for the deposition of DNA-SWNT complexes are 

limited almost entirely to matrix immobilization techniques, electrostatic interactions, 



37 
 

  
 

and non-specific interactions which are subject to one or more shortcomings [8-10, 73, 

83, 84]. The most straightforward method of SWNT deposition is matrix immobilization. 

In this case the SWNT is suspended in a polymer (e.g. collagen) and cross-linked to form 

a cell culture surface [10, 71]. Unfortunately, this method of SWNT preparation suffers 

from a long acquisition time (14 minutes to detect 1 uM H2O2) [71]. Throughout the 

acquisition time a laser or other light source must be used excite the SWNT within the 

matrix [71]. Prolonged exposure of cell cultures to laser light in conjunction with their 

removal from the incubator can have unintended effects on cell culture [258-260]. 

Moreover, because analytes must navigate the matrix of thin films to reach SWNT, only 

the most stable analytes can be detected, excluding the applicability of this platform to 

shorter lived analytes such as NO [71]. 

In light of the shortcomings of matrix immobilization techniques several surface 

decoration methods have been developed with the goal of decreasing acquisition time and 

improving sensor responsiveness to all analytes. The most common and current standard 

method of SWNT decoration relies on the use of an aminopropyl silane which is bound to 

a glass substrate [8, 9, 73, 261]. The partially negative DNA strand that wraps the SWNT 

sensor (i.e. the DNA backbone) is allowed to interact with the partially positive 

aminopropyl derivatized surface, generating a SWNT functionalized surface through 

electrostatic interactions. A less common method which has been employed relies upon 

non-specific interactions between SWNT and avidin isoforms (neutravidin and 

streptavidin), however this method has yet to employ a covalently bound avidin molecule 

and instead relies upon non-specific interactions between the glass surface and the avidin 

protein [8, 261]. A final approach to SWNT deposition utilizes biotinylated BSA 
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followed by neutravidin, followed by biotinylated SWNT to generate a SWNT 

functionalized surface [133]. Unfortunately, in this paper the activity of biotin following 

its addition to SWNT was not confirmed and relied upon non-specific interactions 

between BSA and the underlying glass substrate [133]. All of the surface decoration 

methods listed here rely upon non-specific or electrostatic interactions at some level of 

their design. Non-specific and electrostatic interactions are notoriously unstable, lack 

reproducibility, and are subject to interference from other biomolecules, making them 

undesirable for long term cell culture applications [161, 262]. These methods have also 

suffered from low quantities of SWNT at the surface requiring the use of high power 

magnification (50X or greater) and high laser power (450 mW at the source)[8, 9]. The 

use of high power magnification is problematic for the study of large scale signaling 

events in vitro, while the high laser power may have unintended effects on the cells of 

interest [258-260]. 

A logical next step for the development of SWNT functionalized surfaces would 

be to eliminate electrostatic and non-specific deposition methods from surface 

functionalization schemes and instead rely completely on covalent bonds or bioaffinity 

interactions. Depositing SWNT in this manner eliminates reliance on unstable deposition 

methods, while maintaining the high reactivity of current decoration methods. Moreover, 

this process has the potential to increase the quantity of SWNT at the surface, thus 

increasing the fluorescence and allowing lower power objectives to be used at a lower 

microscope power. One way to achieve a high concentration of SWNT deposition would 

be to covalently bind avidin to the cell culture surface and enhance SWNT attachment 

through the use of well-characterized biotinylated-SWNT. 



39 
 

  
 

Herein we utilize a new method for the deposition of SWNT sensors based upon 

the avidin – biotin interaction. We take advantage of the simple addition of biotin to 

DNA oligo tails and utilize an epoxy silane linker to bind avidin covalently to the 

underlying glass substrate. We compare this new method of SWNT deposition with the 

current standard (APTES). Our results demonstrate the successful addition of biotin to 

SWNT sensors without altering function, the covalent linkage of avidin to a glass 

substrate, and an increase in the quantity of SWNT at the surface without damaging 

SWNT distribution or response time. We chose to use the 6,5 d(AT)15 NO sensing SWNT 

as a proof of concept sensor for this platform due to its relative simplicity compared to 

some of the more complex DNA-SWNT sensors [6, 8] and its widespread application 

possibilities, including analysis of vasodilation, immune function, and neurological 

signaling, which are dependent upon NO spatial concentrations [263-270].  

 

2.1.1 Fabrication of SWNT Derivatized Substrates 

 

Figure 2-1a shows the fabrication process for the production of SWNT 

derivatized surfaces utilizing an avidin substrate. Slides were derivatized with SWNT via 

a 4-step process: (1) Slides were immersed in piranha solution to generate hydroxyl 

groups. (2) Slides were transferred to a 3-glycidoxypropyltrimethoxysilane (3-GPTMS) 

solution followed by oven curing to generate a 3-GPTMS network on the surface. (3) 

Avidin was applied to the surface and the primary amines allowed to interact with the 

epoxide rings of 3-GPTMS generating a covalent bond between 3-GPTMS and avidin. 
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(4) Non-biotinylated-SWNT (NB-SWNT) is applied to the surface where the negatively 

charged DNA backbone interacts with the positively charged avidin protein OR 

biotinylated – SWNT (B-SWNT) is applied to the surface where avidin-biotin binding 

may take place in conjunction with any non-specific interactions. Figure 2-1b shows the 

fabrication process for the production of SWNT derivatized surfaces utilizing a 3-

aminopropyltriethoxysilane (APTES) substrate. Slides were derivatized via a 3-step 

process: (1) Slides were immersed in piranha solution to generate hydroxyl groups. (2) 

Slides were transferred to an APTES solution followed by oven curing to generate an 

APTES network on the surface. (3) SWNT is applied to the surface where the partially 

negatively charged DNA backbone interacts electrostatically with the aminopropyl head 

of APTES. 
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Figure 2-1: Fabrication of SWNT derivatized substrates. a) Derivatization of the glass surface with avidin 
follows a three step process: (1) glass slides are treated with piranha solution to generate hydroxyl groups at 
the surface (2) 3-GPTMS is allowed to react with the exposed hydroxyl groups and bind to the surface (3) 
exposed amine groups on avidin react with the epoxide rings of GPTMS, tethering avidin to the surface. 
SWNT may be deposited on avidin via non-specific interactions such as electrostatic interaction between 
the DNA backbone and the positively charged avidin, or biotinylated SWNT may be used to enhance 
binding through the specific avidin-biotin interaction. (b)  APTES is functionalized similarly to 3-GPTMS: 
(1) slides are treated with piranha solution (2) slides are allowed to react with APTES forming a covalent 
bond. SWNT can then be applied and allowed to interact electrostatically. 

 

2.2 Methods 

2.2.1 Dispersion of 6,5 SWNT via DNA Oligos 

 

SWNT was dispersed via DNA oligos similar to methods previously described [9, 

136]. Briefly, CoMoCat 6,5 SWNT (Sigma) were wrapped with either d(AT)15 ssDNA 

alone or a 1:1 volumetric ratio of 5’-biotinylated d(AT)15 to d(AT)15 ssDNA (Integrated 

a) 

b) 
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DNA Technologies). Wrapping procedures were identical regardless of the presence or 

absence of biotinylated DNA. SWNT and ssDNA were combined in a 2:1 mass ratio in 

nanopure water. The SWNT, DNA, and water mixture was then bath sonicated for 10 

minutes followed by ultrasonic tip sonication (QSonica Q125 Sonicator) with a 3mm 

probe tip in two 20 min intervals at approximately 4 watts, the SWNT suspension was 

then centrifuged for two 90 min sessions at 16100 RCF (Beckman Coulter Microfuge 

16). The top 80% of the SWNT supernatant was retrieved after each centrifugation and 

the pellet was discarded to remove unwrapped SWNT bundles. SWNT concentration was 

obtained via UV-Vis spectroscopy (Beckman Coulter, DU 730) and diluted to appropriate 

concentrations [9]. SWNT was stored at 4 C for up to 1 month. 

 

2.2.2 Generation of Avidin – Biotin – SWNT Derivatized Surfaces 

 

Avidin derivatized slides were generated as previously described with minor 

alterations [15, 271]. Briefly, low-iron soda lime glass microscope slides (Corning) were 

treated with a 70% sulfuric acid (Sigma)/30% hydrogen peroxide solution (Fisher) for 16 

hours. Slides were then washed with copious amounts of nanopure water, rinsed 3 times 

in ethanol and dried under an argon stream before being transferred to a solution 

consisting of 95% ethanol, 16mM acetic acid (Honeywell), and 1% (3-

Glycidopropyl)trimethoxysilane (Sigma) for 24 hours. Slides were then rinsed with 

ethanol 3 times and cured in a 150 C oven for 3 hours. Slides were allowed to return to 

room temperature, rinsed with ethanol 3 times, and allowed to dry. 60 uL of 1 mg/mL 
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avidin (Sigma) in 10mM NaHCO3 was then added to the surface of the slide, covered 

with a plastic coverslip (22 mm x 22 mm), and allowed to incubate overnight at 37 C. 

Coverslips were removed and slides rinsed with copious amounts of nanopure water. 

Slides were then blown dry under an argon stream. 60 uL of a 2mM aspartic acid in 0.5M 

NaHCO3 buffer was added to the surface and covered with a coverslip for 30 minutes to 

quench any remaining epoxide groups. Coverslips were removed and slides washed with 

copious amounts of nanopure water. Slides were blown dry with an argon stream. 60 uL 

biotinylated or non-biotinylated SWNT was then added to the surface at the desired 

concentration and allowed to incubate for 24 hours at 37 C. Coverslips were removed and 

slides were washed with copious amounts of nanopure water. Slides were stored in 

individual holders and used after a 2-hour equilibrium period. 

 

2.2.3 Generating ATPES Derivatized Surfaces 

 

APTES slides were generated similarly to avidin derivatized slides. Briefly, low 

iron soda lime glass microscope slides were treated with a 70% sulfuric acid/30% 

hydrogen peroxide solution for 16 hours. Slides where washed with copious amounts of 

nanopure water, rinsed 3 times in ethanol and dried under argon before being transferred 

to a solution consisting of 95% ethanol, 16mM acetic acid, and 1% (3-

Aminopropyl)triethoxysilane for 24 hours. Slides were then rinsed with ethanol 3 times 

and cured at 150 C for 3 hours. Following cooling, slides were rinsed 3 times with 

ethanol and allowed to dry. 60 uL of SWNT at the desired concentration was then added 
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and covered by a coverslip. Slides were allowed to incubate with SWNT for 24 hours at 

37 C. Following incubation, slides were washed with copious amounts of nanopure water 

and stored in individual holders. Slides were used after a 2-hour equilibrium period. 

 

2.2.3 X-ray Photoelectron Spectroscopy Measurements 

 

X-ray photoelectron spectroscopy (XPS) measurements were taken using the K-

alpha+ XPS/UPS system (Thermo) with an AI Kα micro-focused monochromator X-ray 

source. Backgrounds were removed, atomic percent calculated, and peaks identified 

using Avantage software.  

 

2.2.4 Contact Angle Measurements 

 

Static contact angle images were captured using an Attension Theta Optical 

Tensiometer (Biolin Scientific) and analyzed using the OneAttension Software. ddH2O 

drops were used. A 1 uL drop size was used in all cases. Droplets were analyzed for 5 

seconds and the contact angle achieved at 3 seconds used to allow for settling effects.  
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2.2.5 HABA Assay 

 

Biotinylation of DNA oligos was determined with a 4´-hydroxyazobenzene-2-

carboxylic acid (HABA) assay (Thermo) using the protocol provided by Thermo 

Scientific. Briefly, HABA dye binds to avidin and produces an absorbance spike at 500 

nm. Once biotin is introduced it displaces HABA from avidins active sites and reduces 

the absorbance at 500 nm. The change in absorbance can be used to calculate the 

concentration of active biotin within the sample of interest. Furthermore, when the 

molecular weight of the sample is known, as is this case ( AT15 MW = 9199.1 ), it is 

possible to calculate the average number of active biotin per DNA [272]  All 

measurements were recorded using the cuvette format on a UV-Vis spectrometer 

(Beckman Coulter DU 730). 

 

2.2.6 Horseradish Peroxidase Assay 

 

NO concentration of deoxygenated ddH2O was quantified using a Horseradish 

peroxidase (HRP) assay as previously described [273]. Briefly, NO was added to HRP 

(Thermo) for a final concentration of 1.36 uM HRP. The absorbance was collected from 

300 – 650 nm using a UV-Vis spectrometer (Beckman Coulter DU 730) and the 

underlying HRP spectra removed. The second order derivative was determined using 

MATLAB. Derivative spectra were smoothed using a Savitsky-Golay algorithm (order = 
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3, frame length = 51).  The NO concentration was then calculated using the difference 

between the peak at 210 nm and the valley at 240 nm. 

 

2.2.7 Fluorescent Measurements and Microscopy 

 

Measurements of SWNT fluorescence intensity and spectrum were determined 

with a custom built near infrared (nIR) microscope (Photon). The setup is similar to one 

previously published [274]. Briefly, SWNT samples were excited by a 561 nm laser, the 

resulting emission was then passed through a volume Bragg grating (VBG) twice to 

reduce bandwidth and specify wavelength. Sample intensity was recorded across 

wavelengths to generate a hyperspectral cube. The cube was processed with PHySpec 

(Photon) software to generate images at the desired wavelengths. Pixel-by-pixel intensity 

information was captured using an InGaAs camera (Xenics, Xeva-1.7-320 TE3). 

When only 990 nm fluorescent intensity was desired a 990 nm band pass filter 

(Thor Labs) was used rather than the VBG system. 
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2.3 Results and Discussion 

2.3.1 Generating Biotinylated SWNT 

 

Raw 6,5 SWNT was wrapped with a 1:1 volumetric ratio of biotinylated- d(AT)15 

DNA to d(AT)15 by sonication. Following sonication, remaining raw SWNT was 

removed via centrifugation. In order to ensure biotinylated -d(AT)15 was not only present 

on the SWNT, but also that the biotin was available for avidin biding, a 4'-

hydroxyazobenzene-2-carboxylic acid (HABA) assay was conducted. Using the HABA 

assay we tested the availability of biotin from the following conditions: (a) stock DNA 

(b) sonicated DNA (c) sonicated and centrifuged DNA and (d) sonicated and centrifuged 

DNA with SWNT (Table 2-1). Intermediate DNA stages without SWNT were included 

to determine if any losses in biotin activity could be attributed to sonication or 

centrifugation alone (without SWNT). The intermediate DNA samples showed no 

substantial decrease in biotin activity, indicating that sonication or centrifugation in the 

manner necessary for SWNT production are not inherently damaging to biotinylated 

DNA. Wrapped SWNT maintained biotin availability (0.2025 biotin/DNA), with a slight, 

decrease in biotin availability compared to stock DNA samples (0.3623 biotin/DNA). 

Loss of biotin activity could be a result of non-specific interactions between the biotin 

molecule and the SWNT or due to physical disturbances only achieved when SWNT is 

present, such as increased temperature during sonication or centrifugation. Changes to 

SWNT wrapping procedures may be able to alleviate some of these issues. The remaining 

active biotin can be used to calculate an average number of available biotin per SWNT. 

Using the approximation that SWNT prepared in this manner are ~ 100 nm long and the 
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number of DNA wrappings per 600 nm is ~ 187.5 we can determine that there are 31.25 

DNA strands per SWNT [122, 275, 276]. Multiplying the number of strands per SWNT 

by the number of biotin per DNA yields an average of ~6 biotin per SWNT.  

  

Figure 2-2: Behavioral properties of biotinylated SWNT (A) Fluorescence emission spectra for 10 mg/L B-
SWNT (dashed) and NB-SWNT (solid) at 10 mg/L. (B) Isolated 990 intensity values for B-SWNT and NB-
SWNT demonstrate negligible differences (C) Normalized fluorescent spectra demonstrate identical full 
width half max values (FWHM) (D) Fluorescence quenching curves in response to identical concentrations 
of NO demonstrate that biotinylation has a negligible effect on SWNT quenching response. 

Table 2-1: HABA assay results. The concentration of available biotin (mmol biotin/ mL) reaction mixture 
for stock DNA, sonicated DNA, sonicated and centrifuged DNA, and DNA wrapped SWNT was calculated 
using the Δ absorbance at 500 nm and the HABA assay. Using the molecular weight of the biotinylated 
molecule, in this case (AT)15 DNA (9199.1 g/mol), the number of biotin/DNA was calculated. DNA 
Wrapped SWNT maintained biotin availability following sonication (0.2025 biotin/DNA). Using an 
average number of 31.25 (AT) 15 DNA strands per SWNT the number of available biotin/SWNT was 
calculated to be ~ 6.  

 

Addition of NO 
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Following wrapping, measurements were conducted to ensure that the sensors 

maintained their characteristic peak and intensity structure. B-SWNT and NB-SWNT 

were diluted to a concentration of 10 mg/L and intensity spectrums collected using 

hyperspectral microscopy (n=4) (Figure 2-2a). Isolation of the 990 nm fluorescence 

demonstrated a negligible difference between intensity values of B-SWNT and NB-

SWNT (Figure 2-2b). Comparison of the normalized intensity spectra indicated that 

biotinylation had no effect on the FWHM of the SWNT emission peak (Figure 2-2c).  

Next, the quenching capacity of B-SWNT was tested and compared with that of 

NB-SWNT. B-SWNT and NB-SWNT were diluted to a final concentration of 10 mg/L. 

NO solution was generated by bubbling 100% NO gas through deoxygenated PBS using 

a method similar to one previously described [9]. NO concentration was calculated 

through the use of a UV-Vis second order derivative spectroscopy technique using HRP 

as the active component which has been previously reported [273]. NO was added to 

SWNT samples at a final concentration of 60 uM and quenching was recorded with an 

exposure time of 200 ms. Aggregate curves were constructed (n=3) and displayed (Figure 

2-2d). Inspection of quenching rates indicates that biotinylation had little effect on 

quenching capacity with B-SWNT and NB-SWNT samples reaching an average of 90% 

quenching, following the addition of NO, after 25 and 24 seconds respectively.  
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2.3.2 Generating Avidin and APTES Derivatized Surfaces 

 

Contact angle measurements were taken stepwise during surface development 

(Figure 2-3a,b,c). Piranha treated slides, 3-GPTMS functionalized, and avidin 

functionalized slides provided contact angle measurements of <5°, 58.4°, and 29.6° 

respectively (n=5, ± 4°). Piranha treatment, which is responsible for the formation of 

hydroxyl groups showed an extremely low contact angle which is consistent with 

literature values [277, 278].  3-GPTMS functionalization induced a characteristic increase 

in contact angle [279]. Finally, the addition of avidin lowered the contact angle due to its 

hydrophilicity compared to 3-GPTMS [271]. All contact angles indicated proper 

functionalization during each step of the fabrication process.  

In order to further confirm functionalization, XPS was employed to observe key 

atomic spectra, specifically the C1s, N1s, O1s and Si2p chemical peaks (Figure 2-3). 

Upon piranha treatment, a small C1s peak is observed which is indicative of background 

adventitious carbon levels, no nitrogen peak is observed, and strong Si2p and O1s peaks 

are observed from the underlying SiO2 substrate. Following 3-GPTMS functionalization 

an increase in carbon content is observed at ~284.1 eV which may be attributed to the C-

C bonds in the arm of the silane and at a shoulder peak of  ~285.8 eV which corresponds 

with the C-O bonds of the silanes epoxide ring, no nitrogen peak is observed, and the 

Si2p/O1s peaks show a reduction from piranha treatment which can be attributed to 

presence of the silane (XPS is a highly depth dependent technique). Finally, when avidin 

is derivatized on the surface the existing C-C and C-O peaks increase greatly since, like 

most proteins, avidin is carbon dense, while an additional peak at ~ 287.7 appears which 
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is attributed to the C=O bonds of avidins peptides. A nitrogen peak also appears at ~ 

399.5 eV which can be contributed to the C-NH2 groups found in the amino acids of 

avidin, and the Si2p/O1s peaks are even more diminished due to the protein’s presence 

on the surface. Atomic percentage values were also calculated using Avantage software 

and are in good accordance with atomic spectra (Table 2-2).  

APTES surfaces were generated similarly to the way that 3-GPTMS surfaces 

were built. Contact angle measurements obtained APTES functionalized surfaces (n=5, ± 

4°) provided a contact angle of 51.8° demonstrating its successful deposition on the glass 

surface (Figure 4a) [280]. The C1s spectra from APTES indicates an increase in carbon 

following APTES deposition via a peak at ~284.4 eV, attributable to the C-C bonds 

found in the silane arm. Following APTES functionalization a nitrogen peak is generated 

at ~ 399.3 eV which may be attributed to the aminopropyl head of APTES. The O1s and 

Si2p peak both show decreases in intensity indicative of APTES derivatization. Atomic 

percentages were also calculated and are in good accordance with XPS spectra (Table 2-

3). 
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Figure 2-3: Generating avidin derivatized substrates (a) Piranha treated slides, demonstrated a contact angle 
of <5° which is consistent with glass substrates treated in this manner. (b) GPTMS treated slides, center, 
show a characteristic increase in contact angle of 58.4°. (c) Avidin treated slides showed a reduction in 
contact angle to 29.6° which can be attributed to avidin’s hydrophilicity. (XPS peaks) The C1s clearly 
demonstrates an increase in the total carbon after GPTMS and avidin functionalization indicating their 
presence on the surface. The N1s peak showed no substantial peaks until avidin functionalization indicating 
avidins presence on the surface. Both the O1s and Si2p peaks demonstrate shielding effects as the addition 
of silane and later avidin reduce the signal intensity from the underlying SiO2 framework. 

Table 2-2: Atomic percentages for avidin derivatization. Atomic percentages of the C1s, N1s, Si2p, and 
O1s chemical states for each step in the avidin derivatization process. Percentages are in good accordance 
with spectral observations showing increases in carbon and nitrogen upon avidin treatment and decreases in 
silicon and oxygen indicating shielding 

Derivatization Step 
Atomic Percent 

C1s N1s Si2p O1s 
 Piranha 8.95 0.68 26.91 63.46 
Epoxy Silane 16.75 0.67 57.07 25.5 
 Avidin 54.14 12.93 26.27 6.66 

(a) (b) (c) 
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Figure 2-4: Generating APTES derivatized substrates (a) Piranha treated slides, demonstrated a contact 
angle of <5° which is consistent with glass substrates treated in this manner. (b) APTES treated slides, 
show a characteristic increase in contact angle of 51.8°. (XPS peaks) The C1s peak clearly demonstrates an 
increase in the total carbon content after APTES functionalization, which can be attributed to the arm of the 
silane. The N1s peak showed no substantial peaks until APTES functionalization which can be attributed to 
the aminopropyl head of ATPES. Both the O1s and Si2p peaks demonstrate shielding effects as the 
addition of the silane reduces the signal intensity from the underlying SiO2 framework. 

Table 2-3: Atomic percentages for APTES derivatization. Atomic percentages of the C1s, N1s, Si2p, and 
O1s chemical states for each step in the APTES derivatization process. Percentages are in good accordance 
with spectral observations showing increases in carbon and nitrogen upon APTES treatment and decreases 
in silicon and oxygen indicating shielding. 

Derivatization Step 
Atomic Percent 

C1s N1s Si2p O1s 

Piranha 8.95 0.68 26.91 63.46 

APTES 15.77 2.98 25.74 55.51 

 

(a) (b) 
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2.3.3 Demonstrating Surface Functionality 

 

We next sought to test the functionality of the platform. In order to accomplish 

this goal 30 mg/L B-SWNT and NB-SWNT were applied to intermediate substrates 

(Untreated, Piranha Treated, and 3-GPTMS Derivatized) used during the derivatization 

process and completed substrates (APTES/Avidin) for a period of 24 hours. Fluorescent 

readings were collected at 5 locations across the surface of the treated area (Figure 2-5) 

and three slides were sampled per condition in order to determine an average 

fluorescence per condition (n = 3, s = 5). Significance was determined using a one-way 

ANOVA with Tukey’s multiple comparison test (prism software).  

The Intermediate substrates showed little fluorescence, often attaining values just 

above background indicating that they do not contribute significantly to the long-term 

retention of SWNT on the surface.   

Avidin and APTES derivatized surfaces showed a significant increase in 

fluorescence compared to intermediates for both B-SWNT and NB-SWNT (p ≤ 0.0005). 

No significant difference in fluorescence intensity could be determined between B-

SWNT + APTES, NB-SWNT + APTES, and Avidin + NB-SWNT. These results indicate 

that (1) biotinylation does not affect the electrostatic properties of SWNT and (2) the use 

of avidin for the electrostatic/non-specific deposition of NB-SWNT produces results 

similar to that of APTES when considering fluorescence intensity. 

In addition to outperforming intermediate layers, Avidin + B-SWNT showed a 

significant increase in fluorescence intensity compared to all of the electrostatic/non-
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specific tests (p ≤ 0.0001) more than doubling the next highest fluorescence intensity 

indicating that the avidin-biotin interaction produces enhanced SWNT deposition.  

 

Despite Avidin + B-SWNT having a much higher concentration of SWNT 

attachment, we continued to study those combinations which produced significantly more 

fluorescence than background (APTES + NB-SWNT, APTES + B-SWNT, Avidin + NB-

SWNT, and Avidin + B-SWNT).  

 
Figure 2-5: Fluorescent imaging locations. A 22 X 22 mm section of glass slide was treated with Avidin 
and SWNT by placing the solution under a coverslip and incubating for 24 hours. The figure above 
demonstrates the locations imaged in the treated area where circles are the locations imaged. 5 subsamples 
per slide were always taken. Samples were moved in slightly from the edges to prevent edge effects from 
skewing results
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Figure 2-6: Demonstrating surface specificity. 30 mg/L NB-SWNT and B-SWNT was applied to substrates 
required as intermediates in the derivatization processes and completely derivatized surfaces. Intermediate 
surfaces showed little to no retention of SWNT while APTES and avidin showed a significant increase in 
SWNT retention. The SWNT/substrate combinations of APTES + NB-SWNT, APTES + B-SWNT, and 
Avidin + NB-SWNT showed no significant differences, while the Avidin + B-SWNT condition showed 
over a significant increase in fluorescence compared to all electrostatic and non-specific conditions 
indicating that the addition of biotin does enhance SWNT retention. 
 

 

2.3.4 SWNT Loading Performance  

 

We next chose to explore the relationship between SWNT concentration and 

loading performance using our isolated SWNT/substrate conditions. SWNT 

concentrations of 10, 20, 30, 40, and 50 mg/L were applied to their respective surfaces. 

Fluorescent intensity values were collected as previously stated and average fluorescence 

values calculated (n=5, s=5). Samples were grouped based on the SWNT concentration 

they occupied, and an ordinary one-way ANOVA analysis conducted using Prism. 
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Multiple comparison tests were conducted using the Tukey method and indicated that at 

30, 40, and 50 mg/L SWNT the Avidin + B-SWNT combination produced significantly 

more florescence than any of the other 3 combinations (p<0.02, p<0.01, p<0.005) (Figure 

2-3a). Moreover, the remaining three conditions showed a stagnation of intensity across 

concentration indicating that they may already be saturated at concentrations as low as 10 

mg/L. This indicates that the avidin-biotin bond can be used to increase the quantity of 

SWNT at the surface, which would allow researchers to decrease laser intensity levels 

while achieving the same levels of fluorescence provided by the current standards. 

We next sough to explore the effects of the avidin-biotin bond on SWNT 

distribution to ensure that the gains in SWNT quantity at the surface did not harm the 

high quality distribution already enjoyed by electrostatic deposition methods [8, 73]. In 

order to accomplish this goal images were analyzed via two methods. In the first method 

images were normalized with respect to their maximum intensity forming a matrix (CO) 

in which values ranged from 0 (no fluorescence) to 1 (maximum fluorescence). Next a 

single-level 2-D wavelet decomposition was applied to the images using the Harr 

wavelet. This provided a matrix of detail coefficients in the horizontal (CH), vertical 

(CV), and diagonal (CD) directions for each SWNT image. We then used the percent 

energy of the pixels being partitioned into the diagonal wavelet component as the index 

to assess randomness. Samples were groups based in the concentration they occupied, 

and a one-way ANOVA analysis performed as previously described. Using this method, 

no significant differences in overall smoothness could be determined for all 

SWNT/substrate combinations (Figure 2-7b). These results indicate that the increased 

SWNT quantity at the surface as a result of the avidin biotin bonding mechanism did not 
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harm the distribution of SWNT compared to electrostatic and non-specific mechanisms. 

In the second method we used the arithmetical mean deviation (Ra) model. Images were 

again normalized to their maximum intensity values. Ra was calculated by subtracting 

each pixel’s intensity (𝑦 ) in an image from the average intensity of the whole image (𝑦) 

and finding the absolute value. The resulting deviations from the average intensity were 

summed and divided by the total number of pixels. One-way ANOVA analysis was then 

applied as previously described. Results again showed no significant differences in 

distribution quality for any SWNT/substrate combinations (Figure 2-7c). Sample images 

show similar distributions across all combinations (Figure 2-7d,e,f,g). These results 

further confirm that the increased SWNT quantity at the surface did not harm the quality 

of the distribution already experienced by electrostatic and non-specific binding 

mechanisms. 

𝑰𝒏𝒅𝒆𝒙𝒊𝒏𝒈 𝒗𝒂𝒍𝒖𝒆 =  
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Figure 2-7: SWNT loading and distribution properties (a) SWNT loading was determined from 10 – 50 
mg/L for all SWNT/substrate combinations. Concentrations of 30 mg/L and greater produced significant 
increases in loading capacity for the Avidin + B-SWNT combination when compared with all other 
combinations. (b) One measure of SWNT distribution was determined via the percent of total energy in the 
diagonal wavelet (Indexing value). (c) A second measure of SWNT distribution was determined via the 
arithmetic average roughness (Ra). Indexing and Ra values showed no significant changes between all 
substrate/SWNT combinations indicating a smooth loading of SWNT across all SWNT concentrations. 
(d,e,f,g) Representative images of Avidin + B-SWNT, Avidin + NB-SWNT, APTES + B-SWNT, APTES + 
NB-SWNT respectively. 
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2.3.5 Immobilized SWNT Spectral Properties, Longevity and Sensor Response 

 

When SWNT deposition is used, it is frequently in an attempt to determine the 

relative concentration of cellular signaling molecules or proteins. As a result, the SWNT 

adhered to the surface is often under stresses typical to cell culture such as changing 

media. The method of SWNT adherence must therefore be robust enough to withstand 

these conditions over long periods of time. We examined the ability of any SWNT 

functionalized surface to withstand long culturing periods.  

 

In order to simulate the physical stresses of cell culture, slides were prepared 

using 10 mg/L SWNT and placed in individual slide holders with 4 mL of nanopure 

water so that the surface was completely covered. Every day the supernatant was 

completely removed and replaced with fresh nanopure water. We tracked the loss of 

SWNT from the surface of the various platforms over the course of 10 days. Fluorescent 

readings were collected as previously described and the percent of initial fluorescence 

was calculated (n=5, s=5). Samples were grouped based on the day they were collected, 

and an ordinary one-way ANOVA conducted in conjunction with Tukey’s multiple 

comparison test. No sample could be found which consistently maintained more SWNT 

on the surface over the course of 10 days although those conditions which used avidin 

substrates did maintain the highest average SWNT fluorescence at the end of the study 

(Figure 2-8a). These results indicate that the avidin-biotin bind does not negatively 

impact the platform’s ability to resist physical disturbances typical in cell culture when 

compared to the currently available electrostatic and non-specific deposition mechanisms. 
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An important aspect in the development of the platform is SWNT’s sensing 

capabilities following immobilization. Existing surface decoration methods of SWNT 

deposition show short response times compared to matrix immobilization methods. It is 

important that the avidin biotin interaction not interfere with the response time of the 

sensor and that it continues to perform similarly to existing surface decoration methods 

that are based on electrostatic and non-specific deposition, therefore the response of each 

platform to NO was tested. Fluorescence intensity was monitored (500 ms exposure time) 

for each sample before and after the addition of 60 uM NO (n =5). Quenching curves 

were collected, aggregated, normalized, and smoothed using a Savitzky-Golay smoothing 

function (order = 3, frame length = 21). Avidin + B-SWNT, Avidin + NB-SWNT, 

APTES + B-SWNT, and APTES + NB-SWNT all showed remarkably similar quenching 

patterns with each platform reaching 90% quenching, following the addition of NO, after 

18, 17, 18, and 18 seconds respectively (Figure 2-8b). This indicates that the avidin biotin 

bond is not hindering sensor responsiveness and the platform continues to respond similar 

to the current surface decoration methods. 
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Figure 2-8: SWNT longevity and analyte responsiveness. (a) 10 mg/L B-SWNT and NB-SWNT was 
applied to APTES and avidin substrates. Slides were stored in individual slide holders with 4 mL of 
nanopure water which was replaced every day. Fluorescence intensity values were tracked over the course 
of 10 days. No sample could be found which consistently outperformed all others in terms of SWNT 
retention, indicating that all samples degraded similarly. (b) 10 mg/L B-SWNT and NB-SWNT was applied 
to APTES and avidin surfaces and quenched by 60uM NO (final concentration). All samples showed 
similar quenching results indicating that the method of deposition had little impact on sensor performance. 
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2.4 Conclusions 

 

This work highlights the first use of a covalently tethered avidin molecule for the 

deposition of non-biotinylated and biotinylated DNA-SWNT on a glass surface. We 

demonstrated that biotinylation of SWNT using biotinylated DNA was not only possible, 

but also did not affect the behavior of the SWNT sensors. A scheme for the derivatization 

of surfaces with a covalently linked avidin molecule was determined and proved using a 

combination of contact angle and XPS analysis. Compared with a traditional method of 

SWNT deposition (APTES) the use of an avidin-biotin bond produced significant 

increases in SWNT retention at 30, 40, and 50 mg/L SWNT without damaging the spatial 

distribution, longevity, or quenching capacity. Improved loading capacity could have 

immediate benefits for the study of ex vivo and in vitro samples including decreased laser 

intensity resulting in fewer effects on the sample and the ability to decrease the exposure 

time resulting in increased sample sizes. This method may also be able to enhance the 

binding efficacy of similar DNA-SWNT sensors allowing for the production of multi-

sensor arrays which are spatially localized.  Future applications should test these 

hypotheses using live cell samples. 

 

 

 

 



64 
 

  
 

CHAPTER 3 

Conclusions and Future Directions 

3.1 Thesis Conclusions 

  

 In this thesis, the quantity of SWNT deposited on a glass slide was dramatically 

increased using a highly characterized avidin-biotin bonding mechanism without 

damaging the positive aspects of previous deposition mechanisms, including distribution 

and response time. The enhancement requires the biotinylation of DNA oligos prior to 

their wrapping of raw SWNT to form biotin-DNA-SWNT complexes, and the covalent 

linkage of avidin to a glass surface through an epoxy-silane intermediate. This thesis 

focused on improving the quantity of SWNT deposited on a glass surface using the NO 

sensing DNA-SWNT complex as a proof of concept due to its simplicity and immediate 

application, and because many other SWNT sensors also employ DNA wrappings 

meaning this method could easily be extended to enhance their deposition as well. These 

findings demonstrate the potential for avidin-biotin based deposition techniques to 

supersede traditional methods of deposition, which employ electrostatic or non-specific 

interactions, and provides researches with an easy to follow protocol for the deposition of 

their own DNA-SWNT sensor complexes. 

 The enhancement of DNA-SWNT deposition efficiency and total mass loading 

will have an immediate impact on the research community, making avidin-biotin 

deposition superior to electrostatic and non-specific deposition methods. More 

specifically, an increase in deposition efficiency will reduce costs for labs since less 

SWNT will be required to achieve similar results to previous methods. The increase in 
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total SWNT loading will also decrease laser intensity requirements to excite SWNT 

sensors for imaging purposes in vitro, which could decrease the potentially negative 

effects associated with sample heating and cellular photo-stimulation [281]. As an 

alternative to decreasing the laser intensity, researchers could also reduce the exposure 

time needed to capture data, thus decreasing the duration of cell exposure to laser light 

and time spent out of the incubator. Decreasing exposure time can also increase sample 

collection rates allowing for higher temporal resolution. Moreover, the increased 

fluorescence from the surface compared to current electrostatic and non-specific 

deposition strategies could allow for lower microscope magnifications to be used, 

increasing the viewing area and permitting the visualization of large scale intercellular 

signaling events. 

 In addition to its in vitro applications this method of SWNT deposition may have 

ex vivo applications as well. There is currently much interest in the detection of 

biologically relevant molecules from biological fluids (urine, blood, plasma, and saliva) 

as it is minimally invasive, low cost, generally accepted by patients, and easily repeated 

[282]. Molecules such as lipids, proteins, genetic materials, and ROS/RNS species can 

provide clinicians with information vital to the detection and progression of many disease 

states including: cardiovascular disease, pregnancy complications, viral and bacterial 

infections, cancer, and inflammatory disease [283-288]. Current methods for the 

detection of molecules of interest rely on a range of techniques including immunological 

analytical methods, quantitative PCR, chromatographic techniques, and colorimetric 

indicators [289-292]. Many of these procedures are time intensive or require extensive 

purification procedures, even more importantly, they require multiple reagents and 
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expensive equipment. DNA-SWNT complexes are capable of detecting all of the 

molecules listed above and require a single imaging modality. Unfortunately, many 

SWNT sensors cannot be mixed with one another and still provide valuable information 

to the researcher since the SWNT occupy similar excitation and emission wavelengths. 

However, the method of SWNT deposition outlined in this thesis could be used to 

synthesize microarrays which would keep SWNT sensors separate. SWNT microarrays 

could provide rapid, direct detection of analytes of interest from a single sample, thus 

saving the healthcare provider money and decreasing the volume of sample taken from 

the patient. 

 While the findings of this thesis provide researchers with a method to 

dramatically increase SWNT deposition efficiency on glass substrates, the protocol 

should be further optimized. Moreover, there are additional questions which still require 

investigation, including the effects of expanding this method to additional DNA-SWNT 

sensor complexes, the effects of a SWNT sensor substrate on cellular health, behavior, 

and performance, and the optimal SWNT surface concentration for performing 

extracellular signaling studies. Recommended studies for the continuation of SWNT 

deposition enhancement are described in detail below. 
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3.2 Future Studies: Additional Optimization of Avidin-Biotin Based SWNT 

Deposition 

 

 While the protocol developed in this thesis was successful in imparting active 

biotin to functional SWNT sensors for the purpose of immobilization, covalently 

immobilized avidin, and successfully improved SWNT loading over previous methods 

several facets of the process require additional study and optimization. Areas of this 

process which still require study include determination of the optimal degree of 

biotinylation, the use of avidin isoforms, increasing surface area to further enhance 

SWNT loading, and derivatization reaction times. 

 

3.2.1 Degree of Biotinylation 

 

The degree of biotinylation (i.e. the number of biotin per SWNT) could drastically 

alter the amount of SWNT present on the platform surface and the stability of the final 

product. The biotinylation scheme used in this thesis resulted in approximately 6 biotins 

per SWNT, while avidin proteins have 4 available binding sites. If all biotin moieties 

bind to an avidin, there is an average of 0.67 SWNT/avidin. In theory, increasing the 

degree of biotinylation could allow a single SWNT to bind additional avidin molecules 

and increase its stability on the surface as its anchoring mechanism becomes further 

distributed. Assuming an increase in stability is desired and all 31.25 DNA locations are 

biotinylated, this would result in an average of 0.128 SWNT/avidin and an 80% loss of 
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SWNT present on the surface. Thus, by enhancing its stability, increased biotinylation 

would also limit the improved deposition efficiency detailed in this thesis. The converse 

is also true, decreasing biotinylation could allow for increased deposition by allowing, at 

a maximum, 4 SWNT per avidin molecule and an increase in efficiency gains. However, 

the increased reliance on a single anchoring site would likely lead to decreased long-term 

SWNT stability. The ideal properties of any surface are often dependent upon the 

researchers needs and, in some instances, researchers might be willing to sacrifice 

stability for increased deposition efficiency or vice versa. The behavior of the sensor 

should be catalogued at various degrees of biotinylation and a model developed which 

would allow researchers to select their desired properties ahead of time. 

 

3.2.2 Exploring Avidin Isoforms 

 

 The use of avidin isoforms (streptavidin and neutravidin) should be explored. 

Avidin, which is produced from egg whites, was used in this thesis because it has been 

highly characterized, is readily available, and is relatively inexpensive. However, avidin 

is known to encourage some non-specific adsorption due to its high isoelectric point (pI 

~10) and oligosaccharide component [293, 294]. In fact, we attribute the presence of 

some SWNT retention in this thesis to the electrostatic interactions between the cationic 

avidin and the negatively charged backbone of DNA. Although it may be beneficial 

under certain circumstances to enhance SWNT binding with the addition of an 

electrostatic component, the cationic nature of avidin could lead to unintended 
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interactions between avidin and negatively charged molecules common to cell culture, 

such as cell membranes [293, 295]. Streptavidin is a non-glycosylated form of avidin 

produced by the bacterium Streptomyces avidinii which has a similar binding site for 

biotin and a pI  of ~5-6 [293, 294]. Neutravidin is a protein that has been chemically 

deglycosylated and has a pI of 6.3 [295]. The removal of the sugar groups and lowering 

of the pI could result in less non-specific adsorption, which may provide better results for 

cell culture work. As a result, preliminary data was collected to determine if NeutrAvidin 

could be covalently bound to glass substrates using the same epoxysilane intermediate 

method which was utilized for the deposition of avidin in chapter 2. XPS spectra were 

collected across the C1s, N1s, O1s, and Si2p peaks for each step in the procedure (Figure 

3-1). Following piranha treatment, a small free carbon peak can be observed, which is 

considered background carbon, no nitrogen peak is observed, and O1s and Si2p peaks are 

strong due to the SiO2 glass substrate. Following 3-GPTMS derivatization, an increase in 

carbon content is observed, which is attributable to the carbon in the arm of the silane, no 

N1s peak is observed, and both the O1s and Si2p peaks show a decrease in intensity since 

the silane shields the SiO2 surface. Finally, following NeutrAvidin functionalization a 

large C1s peak is observed, which may be attributed to the carbon found in NeutrAvidin, 

a N1s peak is observed which can be attributed to primary amines in the protein, and the 

O1s and Si2p peaks are further decreased as a result of increased shielding from 

NeutrAvidin. These results indicate that NeutrAvidin can be covalently coupled to the 

surface of a glass slide in a manner similar to avidin, but further work is required to 

ensure SWNT binding occurs and compare its efficacy, and distribution to previously 

described methods. 
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Figure 3-1: Generating NeutrAvidin derivatized surfaces. XPS Spectra for the C1s, N1s, O1s, and Si2p 
atomic states demonstrate proper NeutrAvidin Functionalization following the methods developed in 
chapter 2. 
 

 

3.2.3 Increasing Available Surface Area  

 

 Despite optimizing the degree of biotinylation and the avidin isoform used, this 

platform may still not produce enough SWNT deposition for some unforeseen 

applications. One method to increase deposition further would be to increase the surface 

area of the underlying glass (SiO2) framework through the use of nanoporous SiO2 films. 

Nanoporous SiO2 films can readily be created on the surface of existing glass substrates 

through the use of an inverse opal technique [296-298]. Briefly, colloidal polymer latex 
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nanospheres, such as polystyrene (PS) or poly (methyl methacrylate) (PMMA), are 

allowed to self-assemble on the surface of a glass slide through an evaporative process, 

creating a crystal film [296-298]. A sol-gel solution is applied, infiltrating the crystal film 

and acting as a precursor for the creation of the SiO2 nanopores [299-303]. The 

nanospheres are then removed, typically by calcination, and an inverse opal film is 

generated [271, 304] (Figure 3-2). The inverse nonporous film can drastically increase 

area available for functionalization, allowing additional SWNT to be adhered to the 

surface using the techniques developed in chapter 2. 

  

Figure 3-2: Creating inverse opal films. The general procedure for creating a porous surface through the 
inverse opal technique are (1) generating a colloidal crystal (2) filling the open spaces of the matrix with 
nanoparticles (3) removing the colloidal crystal. Reprinted from [301] with permission from Elsevier. 
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3.2.4 Improving Reaction Times 

 

 The timeline for each processing step in the development of the SWNT 

platformed in this thesis should be evaluated. The method utilized in this paper was a 

modified version of the one found in the popular handbook Protein Microarrays and a 

recent paper by Zhanjun Yang et al. [15, 271]. For this thesis, timelines for certain 

derivatization steps were conservative, resulting in a derivatization process which 

required 5 days to complete. Many laboratories may consider a 5-day preparation time to 

be too long. If the time period for platform development is decreased without altering 

performance, then increased research flow/progress could be achieved. While the issue of 

extensive preparation time can be partially combated with increases in the batch size, this 

may be impractical for smaller labs, therefore a new study should be performed to 

accurately characterize the necessary reaction times to achieve optimally derivatized 

slides. The derivatization of glass substrates with 3-GPTMS has been extensively studied 

[305-307] and new timelines for its derivatization might be determined from the 

literature. However, the addition of avidin to the 3-GPTMS monolayer remains 

understudied at best, and the necessary reaction times for biotinylated SWNT to achieve 

maximal saturation on the avidin surface has not been studied at all. Proper reaction times 

could be determined using a variety of surface characterization techniques including 

ellipsometry, XPS spectroscopy, and AFM. By focusing on the timelines required for 

avidin derivatization and subsequent SWNT functionalization entire days could be 

removed from the protocol, allowing researchers to accelerate their project timelines. 
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3.3 Future Studies: Deposition of Additional Sensors  

 

 This thesis focused on the 6,5 d(AT)15 SWNT sensor as a proof of concept for the 

deposition of DNA-SWNT complexes using the avidin-biotin binding mechanism. 

Additional sensors of different chirality’s and DNA wrappings must be tested and 

optimized before they can be used. Moreover, following the optimization of many 

sensors, the platform should be used in a practical manner to demonstrate its versatility, 

such as the development of a microarray. 

 

3.3.1 Optimizing Additional DNA-SWNT Complexes 

 

 Although the DNA wrapped SWNT share similar physical properties, they are not 

identical. Many chirality’s of SWNT are used for sensors and many DNA wrappings are 

commonly used. For example, the sensor responsible for the detection of H2O2 is a 7,6 

d(GT)15 SWNT, while the sensor responsible for lipid detection is a 9,4 d(CTTC3TTC) 

SWNT [80, 308]. It is not clear how DNA oligos of variable bases or length might affect 

the sensor platform. Recently, Robert Nißler et al. demonstrated a practical method for 

the determination of the number of oligos per SWNT of various nucleotide sequence and 

length [276]. In doing so, it was demonstrated that the number of DNA oligos per 6,5 

SWNT was highly dependent upon the length of the oligo and its sequence. Because the 

number of biotin moieties present on SWNT is linked to the number of DNA wrappings, 

this would suggest that the degree of biotinylation between sensors would also be highly 
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variable without carefully tailoring the wrapping procedure to each sensor. Unfortunately, 

Nißler’s study focused only on 6,5 SWNT and a handful of DNA oligos, so many of the 

more useful DNA-SWNT complexes have yet to be characterized. However, the method 

developed by Nißler could easily be extended to determine the number DNA oligos 

wrappings for the varieties of DNA-SWNT complexes used for sensors. Once the number 

of oligos per SWNT is known, the ratio of biotinylated to non-biotinylated DNA oligos 

can be tailored so that each sensor will have a similar number of biotin per SWNT.  

 

3.3.2 Developing a Sensor Microarray 

 

Following optimization of desirable sensors, the field would benefit from a 

practical application of the avidin-biotin immobilization scheme. One such application 

would be the immobilization of multiple DNA-SWNT sensors to form a microarray. 

Microarrays are essential for the high throughput analysis of biomolecule expression. The 

use of the avidin-biotin bonding mechanism could easily be used to generate a label free 

microarray using various DNA-SWNT complexes. Spotting, microprinting, or masking 

of the avidin derivatized surface with the sensors of the researcher’s choice all have the 

potential to create viable microarrays. The use of SWNT sensors for the development of a 

microarray has already been pursued by Dong et al. [74]. However, Dong’s method of 

deposition required matrix immobilization of the sensors, which could alter sensor 

response time as previously discussed. Surface decoration though the process developed 
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in this thesis could significantly decrease microarray response times and increase the 

variety of sensors that could be utilized. 

 

3.4 Future Studies: Cellular Applications 

3.4.1 Effects of SWNT Substrates on Cellular Behavior 

 

 Although the effects of DNA-SWNT complexes on animals have been shown to 

be minimal [5, 80, 151, 162, 163], the effects on cells remains less certain [1], primarily 

due to the unknown status of DNA-SWNT’s interactions with common indicators of cell 

health. Raw SWNT has been shown to interact with a host of assays including 

Commassie Blue, Alamar Blue™, Neutral Red, MTT and WST-1, primarily though 

hydrophobic interactions [167, 168]. However, the DNA-wrapping on SWNT sensors 

makes them hydrophilic and may decrease or prevent hydrophobic interactions from 

occurring. A study should be conducted to determine the effects of DNA-wrapped SWNT 

on common cell health assays when SWNT is in solution and when SWNT is adhered to 

the surface of a substrate using the avidin-biotin bonding mechanism. A series of studies 

should then be conducted to determine the effects of SWNT derivatized surfaces on 

cellular adhesion, proliferation, viability, and cytoskeletal development across a variety 

of cell types using those assays with which DNA-SWNT does not interfere. 

Although cellular indicators are necessary for a more in depth understanding of 

the effects of SWNT surfaces on cellular behavior, preliminary work to determine this 

platform’s ability to serve as a viable cell culture substrate can begin immediately. 
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Recently, Xiaoke Zhang et al. demonstrated that SWNT polysaccharide wrappings, 

which produced a high zeta potential (surface charge) and a low contact angle, produced 

the greatest benefits to cellular growth in comparison to raw and oxidized SWNT [309]. 

As a result of these findings, contact angle measurements were taken using the platform 

developed in chapter 2 (Figure 3-3). An average contact angle of 47.7° was achieved, 

which is substantially less than the 81° achieved by Xiaoke Zhang et al. Moreover, 

avidin’s highly cationic nature may prove beneficial in enhancing the zeta potential of 

this platform. These results indicating that adhered DNA-SWNT complexes have 

potential for use as cellular growth substrates. 

 

 
Figure 3-3: Contact angle achieved by SWNT derivatized surfaces. 6,5 biotinylated d(AT)15 adhered to an 
avidin derivatized substrate displaying an aggregate contact angle of 47.7 ° well below the 81° achieved by 
Xiaoke Zhang et al. and indicating the potential for good biocompatibility.  

 

3.4.2 High Resolution Imaging of Cellular Signaling 

 

 This thesis did not include high resolution imaging of cellular signaling molecules 

and proteins which were produced directly by cells, but it is a logical next step once the 

effects of the platform on cell health have been determined. The 6,5 d(AT)15 SWNT 

sensor would be an interesting candidate for initial testing since it was previously used to 

47.7 ° 
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quantify intracellular NO concentrations [69]. The cell lines and stimulants used for the 

study of intracellular NO could be used to study extracellular NO concentrations. In fact, 

much of the work which has already been developed for the use of a variety of SWNT as 

intracellular sensors could be co-opted for use in extracellular studies. 

 

3.5 Final Thoughts 

 

 The outcomes of this thesis, demonstrated in Chapter 2, illustrate the potential of 

the avidin-biotin bond to enhance binding specificity and concentration of fluorescent 

single walled carbon nanotubes on a glass substrate. Chapter 3 has suggested many future 

studies which will further enhance SWNT binding, reduce platform preparation time, 

provide additional substrate options to researchers, determine the effects of SWNT 

surfaces on cellular health, and demonstrate the platform’s practical value. 

 Increasing SWNT deposition could provide researchers with a new tool to more 

accurately study cellular signaling and communication. Because cellular signaling 

underpins almost every coordinated biological process its understanding is critical to the 

understanding and treatment of disease. Providing researchers with this tool may 

ultimately result in new treatments and monitoring devices for clinicians and patients.   
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