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Abstract. In higher education, student dropout is a relevant problem, not just in Latin America 

but also in developed countries. Although there is no consensus to measure the education quality, 

one of the important indicators of university success is the time to graduation (TTG), which is 

directly related to student dropout [1]. Global estimates put this dropout rate at 42% [2]. In the 

United States, this rate is around 30% and represents a loss of 9 billion dollars in the education 

of these students [3]. However, desertion not only affects the quality of education and the 

economy of a country, but also has effects on the development of society, since society demands 

the contributions derived from the population with higher education such as: innovation, 

knowledge production and scientific discovery [4]. Using basic statistical learning techniques, 

this paper presents a simple way to predict possible dropouts based on their demographic and 

academic characteristics. 

1. Introduction 

There are several investigations that determine dropout in Latin America. Most of them are about 

determining the factors that lead to desertion, measuring the number of dropout students and 

mechanisms to reduce it [5]. There are two proposals for the quantification of dropout: the first one is 

established as the proportion of students graduating in a given time corresponding to the time to get the 

degree; and the second one is just the number of students who drop out of their studies. In order to 

reduce desertion, these researches propose to improve mechanisms for early detection of potential 

dropout students. 

The application of statistical learning methods to address the problem of desertion has already been 

proposed by several studies, analyzing either desertion or completion of a course [6] or a career [3,7,8,9]. 

Some of the methods used in these studies are: logistic regression, k-nearest neighbors, decision trees 

including random forests, Bayesian networks, neural networks, among others. The present study chooses 

a balance between ease of interpretation and precision [10], with special emphasis on the detection of 

dropout students rather than on the reduction of bad classifications. Two methods were selected to 

generate comprehensible models: decision trees and logistic regression; and two methods that offer great 

precision capacity: naive bayes and k-nearest neighbors. These 4 methods together will produce a 

compromise solution between comprehensibility and precision, the latter being evaluated mainly by the 

percentage of detected dropouts [11]. 

This paper presents a framework of early detection systems for potential dropouts, by using together 

the four already mentioned techniques. To measure the effectiveness of the framework, these techniques 
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are applied to the dataset from the academic system of a higher education institution, name Universidad 

de Estudios Superiores (UES) 

 

2.  Method 

 

2.1 Preliminary analysis  

In essence, this project intends to compare the characteristics of students who drop out versus the 

characteristics of those who keep studying, in order to define a rule or model that differentiates them. In 

this study, a student is considered a dropout if he or she has stopped studying for the last 3 years (2016, 

2017, and 2018) and has not graduated. 

Figure 1 shows the trend in dropout rate of students who entered the UES for the period 2016-2018, 

classified by gender. This dropout rate has been decreasing to 13.75% for women and 24.36% for men; 

however, they are still high percentages, especially if translated into absolute amounts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. Dropout behavior by year and sex. 

 

Figure 1 also reflects that there is a considerable difference in desertion between the two groups. This 

difference shows not only that there has been a higher percentage of male than female dropouts, but that 

the gap between these two groups has narrowed, but has always existed. Table 1 shows the percentage 

comparison of dropouts by gender. Pearson's 𝜒2 statistics [12] for the independence test of this 

contingency table is 85.96 with a value of p<0.0001, indicating that dropout and gender are not 

independent. However, the latter does not imply that gender is able to discriminate between dropouts 

and non-dropouts. 

 

Table 1. Desertion of students who entered from 2016 to 2018 

 

 Feminine Masculine All 

Quantity % Quantity % Quantity % 

Dropout 391 13.75 1,010 24.36 1,407 20.15 

Non-Dropout 2,449 86.25 3,135 75.64 5,578 79.85 

Total 2,840 100.00 4,145 100.00 6,985 100.00 

 

 

2.2 Selecting the target dataset 

For the selection of the target dataset, the second half of the year 2016 will be taken as the "time instant". 

Specifically, the target dataset is made up of students who joined the UES in 2016 and studied in 

semester 2016-2s with the characteristics they had at that instant of time. This data set consists of 6,985 

students of which 1,407 are dropouts. 
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The set of selected variables is divided into 2 groups: the variables related to the personal 

characteristics of the student and the variables related to his/her academic behavior. Table 2 shows the 

description of each of these variables. The probationary period mentioned in the variables "Passed" and 

"Missed" refers to the semester in which a student has the last opportunity to pass (approve) a course 

after failing twice in previous semesters; failing such course in the probationary period restricts the 

student from continuing studying in the same career. 

 

Table 2. Description of the selected variables. 

 
# Variable Description Type Possible values 

1 SEX Student's sex Categorical {F, M} 

2 AGE Student's age Numerical 18 forward 

3 FACTOR_P Level indicator  0 a 42 

4 socio-economic Numerical  {LOCAL,PROV} 

5 RESIDENCE Type of residence Categorical 0 forward 

6 APPROVED # of subjects passed Numerical 0 forward 

7 REPROVED # of failed subjects Numerical 0 a 12 

8 AVERAGE Overall average Numerical 0 a 8 

9 ANTIQUITY # of study semesters Numerical From 0 forward 

10 LOSSES # of times he lost Numerical From 0 forward 

 

11 

a probationary 

period 

Numerical Numerical  

From 0 forward 

 

12 

Approved # of times he overcame Numerical  

{YES,NO} 

 

 

2.3 Training of classification models 

For the application of techniques, 75% of the data is taken for training and the remaining 30% for tests. 

Several random samples are taken with the 72-34 scheme. After the generation of the models with the 

training samples, the precision of the models is evaluated. 

The applied methods that present easy-to-interpret models are: decision tree and logistic regression. 

Both methods allow to determine the variables that present the greatest influence on university desertion. 

Decision trees may have incidental rules that lack generality, taking them into account would lead to 

the effect known as over-adjustment [13, 14, 15]. After the training with different samples, the following 

general rule is obtained: 

 

If (APPROVED < 14.5 and REPROVED > 5.5) 

Then, it is a dropout. 

otherwise IT IS NON-DROPOUT 

 

Logistic regression is a classification method that allows predicting the probability of student 

dropout. The results of the application of this method to one of the training samples are shown in Figure 

2. As observed, the pro-desertion variables are age and number of failed subjects with coefficients of 

0.2 and 0.24 respectively; while the variables that could avoid desertion are the number of approved 

subjects and the student's autonomous work with coefficients of -0.1 and -0.007 respectively; all these 

influence variables with a p value less than 0.00011. The other 2 methods that apply to the dataset are: 

K-Nearest Neighbors and Naive Bayes. These methods, known as delayed methods, do not always 

generate an explicit model in the way of the decision tree or logistic regression and use the most 

processing time when consulted about the classification of a new element [16]. 



ICE4CT 2019

Journal of Physics: Conference Series 1432 (2020) 012077

IOP Publishing

doi:10.1088/1742-6596/1432/1/012077

4

 
 
 
 
 
 

 

 

Figure 2. Logistic regression report of a sample, generated with the R statistical program. 

 

2.4 Validation of classification models 

The main interest is to predict with reasonable precision the dropout rate of a group of students, which 

is why the percentage of correct classifications is not widely used as a measure of evaluation. Applying 

10-fold cross validation for the naive bayes and logistic regression methods, average detection 

percentages of 22.47% and 29.26% respectively are obtained. 

The cross-validation technique is especially useful for the determination of the ideal k-value in the 

K-nearest neighbor method. In this case, Leave-One-Out cross validation is used, which consists of 

taking all the elements except one to train the model, being the surplus element used for the test [17]. 

 

3.  Results y discussion  

This section shows the results of evaluating each method with 5 test sets. In evaluating each method, the 

following rates can be obtained: bad classifications, false positives, false negatives and detection. In the 

case of logistic regression, it is common to label a new student as a dropout if the probability of desertion 

obtained is greater than 0.6. However, lower values for this threshold decrease false negatives, but on 

the other hand, increase false positives. In this respect, Figure 3 shows the behavior of the different rates 

as the threshold varies. The selection of the threshold is not entirely objective, since it depends, to a 

large extent, on the resources available to the institution to deal with false positives. According to the 

figure, a value for the threshold could be 0.3 or 0.4, since a detection percentage greater than 30% is 

obtained with a false positive percentage less than 12%. It is interesting to note that the percentage of 

poor ratings (% error) varies very little for threshold values between 0.2 and 0.5. 
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Figure 3. Trends in the main logistic regression indicators, average. 

 

Table 3 shows a summary of the test for each of the methods. In this table, the best and worst results 

are observed for each method, being logistic regression the method with the best percentage of average 

detection, with threshold of 0.5. 

 

Table 3. Detection percentages by method and by sample. 

 
Methods Tree Knn1 Naive Bayes Logit (0.4) 

sample 1 27.13% 31.24% 40.01% 39.14% 

sample 2 21.10% 32.23% 35.66% 31.63% 

sample 3 15.71% 31.24% 23.55% 28.26% 

sample 4 18.39% 33.37% 24.51% 28.85% 

sample 5 18.35% 26.78% 25.22% 29.83% 

Average 20.73% 31.25% 31.98% 32.34% 

 

In order to find the percentage of global detection of dropouts, it is necessary to apply each method 

sequentially and count the new dropouts that arise. Table 4 shows the final summary of the successive 

application of the 4 methods of the project. As can be seen, the estimation of the project's capacity to 

predict university dropout is greater than 54% and its precision to correctly classify is greater than 84%.  

 

Table 4. Cumulative detection percentage and precision per sample. 

 
Methods Tree Knn1 Naive Bayes Logit (0.4) Precision 

sample 1 27.14% 42.78% 54.12% 56.33% 83.47% 

sample 2 21.14% 42.23% 53.24% 54.47% 82.25% 

sample 3 15.83% 33.67% 48.36% 47.25% 81.75% 

sample 4 12.39% 33.40% 42.98% 48.47% 82.65% 

sample 5 17.34% 38.63% 47.47% 52.98% 83.47% 

Average 20.73% 37.88% 46.35% 54.24% 82.58% 
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4.  Conclusions 

Generally speaking, the results obtained show that the more students progress in their studies, the less 

likely they are to drop out; and with the exception of age, the personal characteristics of the students 

have little influence on their dropout from university. 

According to the decision tree method, failing more than 4 subjects in the early stages of the career 

significantly contributes to desertion. In the case of logistic regression, the variables that most contribute 

to student dropout are: age and the number of failed subjects. On average, it was found that older students 

have 24% more chances (odds) of dropping out than those who are a year younger; and, for each failed 

subject, the chances of dropout versus non-dropout are increased by 30%. On the other hand, each 

approved subject reduces the ratio between the probability of dropping out versus not dropping out by 

18% and the consultation of bibliographic material reduces this same ratio by 2% for each day of 

consultation. 

Since the variables "lost" and "passed" do not influence dropout, it is concluded that failing a subject 

while on probation is not a guarantee of university dropout; just as overcoming a probationary period 

does not imply greater resilience in studies. 

After the experiments, it is estimated that the average capacity of the project to detect a possible 

dropout is greater than 54%; and, the average capacity to classify a student in the correct group is greater 

than 84%. 

In the case of the prediction on the current data, when applying the 4 methods of discrimination to 

the 6,985 students registered in the second semester of 2017, it was obtained that around 24% of the 

students were detected as possible dropouts by at least one of the methods; while 330 students were 

detected by more than 2 methods thus increasing their risk of dropout. 

The preliminary results obtained in this research indicate that the teaching-learning process could 

benefit from focusing on students detected as possible dropouts, allowing them to have greater access 

not just to specialized bibliographic material but also to better opportunities to increase their autonomous 

work, thus favoring their active learning. Some of the next steps to enhance these results would be to 

estimate the time that managers have before the student drops out, as calculated in [18]; and, the 

incorporation of non-cognitive aspects into the analysis, as suggested in [19]. Also a longitudinal 

semester-by-semester analysis to obtain the average precision to detect potential dropouts, the 

incorporation of other methods like SVM to increase the detection capacity and the increase in the 

collection of data related to the autonomous work of the student that goes beyond bibliographical 

consultations, are some of the proposals for future investigations. 
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