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 This paper presents a voltage sensitivity analysis with respect to the real 

power injected with renewable energies to determine the optimal integration 

of distributed generation (DG) in distribution systems (DS). The best nodes 

where the power injections improve voltages magnitudes complying with the 

constraints are determined. As it is a combinatorial problem, particle swarm 

optimization (PSO) and simulated annealing (SA) were used to change 

injections from 10% to 60% of the total power load using solar and wind 

generators and find the candidate nodes for installing power sources. The 

method was tested using the 33-node, 69-node and 118-node radial 

distribution networks. The results showed that the best nodes for injecting 

real power with renewable energies were selected for the distribution 

network by using the voltage sensitivity analysis. Algorithms found the best 

nodes for the three radial distribution networks with similar values in the 

maximum injection of real power, suggesting that this value maintains for all 

the power system cases. The injections applied to the different nodes showed 

that voltage magnitudes increase significantly, especially when exceeding the 

maximum penetration of DG. The test showed that some nodes support 

injections up to the limits, but the voltages increase considerably on all 

nodes. 

Keywords: 

Distributed generation 

Distribution networks 

Metaheuristic algorithms 

Sensitivity analysis 

Voltage magnitudes 

Copyright © 2019 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Katherine Cabana,  

Department of Computer Science and Electronics 

Universidad de la Costa, CUC, 

58 # 55 - 66. Barranquilla, Colombia. 

Email: kcabana@cuc.edu.co 

 

 

1. INTRODUCTION 

The integration of DG in distribution network has increased rapidly [1], since the possibility of 

generating power close to consumers, reducing power losses, increasing voltages, improving reliability, and 

others [2], [3]. However, the large penetration of electric sources brings stability problems [4], [5]. For this 

reason, the voltage stability must be study as the increasing penetration of renewable-energy demand high 

levels of reactive power in the power grid and voltage support is a major challenge[6]–[8]. 

According to [9], distribution networks have no stability problems in their normal design, but the 

integration of a large number of DG brings some stability issues. Some previous studies have determine that 

the connection of DG may affect the voltage stability in distribution systems [10], [9]. In [11], the researchers 

presented the particle swarm optimization (PSO) as an alternative to optimize a power injection model from 

DG, with the aim of maximizing voltage stability. In [12], a combination of evolutionary programming (EP) 

and PSO was presented to achieve convergence and accuracy of determining faster DG size and location. 

Furthermore, the authors in [13] have proposed the optimal placement, size and number of different types of 

DG units in distribution systems considering the voltage limits and the lines’ transfer capacities, using the 
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genetic algorithm (GA) as an optimization technique and the backward/forward sweep method (BFS). 

The authors in [14] investigated the evaluation of static voltage stability on IEEE 33-bus, PG&E 69- bus and 

a real case with two stochastic DG units. In the literature, the studies presented focus on determining how the 

integration affects the voltage stability of the distribution network and the maximum value of integrating the 

generators [15]. However, some of these studies have focused on the optimal location of distributed 

generation to minimize power loss or cost functions, not analysing the voltage sensitivities of the nodes. And 

some studies uses metaheuristics applying the same objective functions to determine the best place for the 

power sources, but not other analysis such as voltage changes are considered to evaluate the possible 

integration of the renewable energy sources without affecting the operating conditions. 

This paper focuses on determining the maximum integration of distributed generation in distribution 

networks by using the power flow iteration process integrated to the metaheuristic algorithms to search a 

better place for the power sources and the maximum power suported by the network without affecting the 

voltage conditions of the network. Because this is a large combinatorial problem, we used particle swarm 

optimization (PSO) and simulated annealing (SA) as the optimization techniques to determine the place and 

the size of DG. As the objective function we used the improvement of the voltage voltage profile in 

distribution networks. The approach is applied on IEEE 33-bus, IEEE 69-bus and IEEE 118-bus radial 

distribution system. To achieve this, Section 2 describes the methodology of the research. Section 3 presents 

the review and implementation of the methodology in a case study. Section 4 presents a brief discussion 

about distributed generation effects. Finally, the major contributions and conclusions of the papers are 

summarized. 

 

 

2. RESEARCH METHOD  

Figure 1 summarizes the method used in this research to determine the candidate nodes for installing 

DG. The proposed method starts reading the input data from the models of the distribution network. Then, an 

initial population is defined and evaluated. Finally, the location and size of DG is determined during the 

iteration of the algorithms. 

 

 

 
 

Figure 1. Flow chart of the methodology 
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2.1.  Nodes for injecting power 

Finding the node to inject power in the distribution network is important for this study, because it 

defines the best place to install the DG, maintaining good operating conditions of the system under study. For 

this purpose, the following three stages were proposed in the analysis to determine the best nodes to inject 

power in the distribution networks [16]. 

Stage 1: distribution networks must be modelled to identify voltage sensitivities of different nodes when 

installing DG. A static model of each power plant under analysis is considered [17]. The load is modelled as 

constant value maintaining the same power factor and the main source was considered as the slack node. 

Stage 2: the operating state of the distribution network is found, determining the voltage sensitivities of nodes 

with respect to the real power injected [18]. 

Stage 3: candidate nodes are selected using power flows and analyzed with voltage sensitivities before and 

after injecting real power. In this research, different scenarios of demand are used to identify weak nodes. 

Nodes are classified according to the voltage variations when the injection of real power increase. 

 

2.2. Scenarios for testing the method 

The following scenarios are considered to test the method and analyze the results: 

1. Scenario 1. In this first scenario, no DG is considered for the simulation, being a base case to compare 

other results of the integration of solar and wind energy generation. 

2. Scenario 2. In the second scenario, photovoltaic energy systems are integrated to the distribution network 

to determine the maximum power injection. 

3. Scenario 3. In the third scenario, wind energy systems are integrated to the distribution network to 

determine the maximum power injection. 

4. Scenario 4. In the fourth scenario, photovoltaic and wind energy systems are integrated to the distribution 

network to determine the maximum power injection. 

 

2.3. Considerations 

For testing the method, the following considerations are stated: 

1. More than one generator can be installed at each node. 

2. All DG units operate with a unitary power factor, to avoid interference with voltage control devices 

connected to the system [19], [20]. In addition, the power factor remains constant for all tests. 

3. Wind speed and solar radiation have the same values for all the points where the generators can be 

installed. 

4. Some researchers recommend that DG penetration levels are equal to or less than 30% of the maximum 

load [21]. However, in this study it is up to 60%. The increasing power steps are defined as 0, 10, 20, 30, 

40, 50, and 60%.  

5. The models of the elements proposed in [22] are used in this research. 

6. Load is modelled for the four seasons of the year, as considered in other studies [22]. The power demand 

of each distribution network is considered as the peak value. 

7. Solar radiation and wind speed are modeled using the Beta and Weibull probability density functions, 

respectively, as considered in other studies [22], [23]. 

8. DG units are installed on a given node and the voltage changes are monitored.  

9. Each generator supplies a constant power of 4,5MW, with unity power factor. 

10. The minimum and maximum voltage values for all the distribution networks were defined as Vmin=0.9 

p.u. and Vmax=1.1 p.u, respectively. 

 

2.4. Load model 

Table 1 presents the load profile, as percentages of the annual maximum load [22]. Annual 

maximum load demand is 16.18 MVA. Data is used to model solar radiation and wind speed with the Beta 

and Weibull probability functions, respectively. 
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Table 1. Data Considered for the Loads of the Distribution Network [22] 
Hours Winter Spring Summer Fall 

12—1 am 0.4757 0.3969 0.64 0.3717 

1—2 0.4473 0.3906 0.6 0.3658 

2—3 0.426 0.378 0.58 0.354 
3—4 0.4189 0.3654 0.56 0.3422 

4—5 0.4189 0.3717 0.56 0.3481 

5—6 0.426 0.4095 0.58 0.3835 
6—7 0.5254 0.4536 0.64 0.4248 

7—8 0.6106 0.5355 0.76 0.5015 

8—9 0.6745 0.5985 0.87 0.5605 
9—10 0.6816 0.6237 0.95 0.5841 

10—11 0.6816 0.63 0.99 0.59 

11—2 pm 0.6745 0.6237 1 0.5841 
12—1 0.6745 0.5859 0.99 0.5487 

1—2 0.6745 0.5796 1 0.5428 

2—3 0.6603 0.567 1 0.531 

3—4 0.6674 0.5544 0.97 0.5192 

4—5 0.7029 0.567 0.96 0.531 

5—6 0.71 0.5796 0.96 0.5428 
6—7 0.71 0.6048 0.93 0.5664 

7—8 0.6816 0.6174 0.92 0.5782 

8—9 0.6461 0.6048 0.92 0.5664 
9—10 0.5893 0.567 0.93 0.531 

10—11 0.5183 0.504 0.87 0.472 
11—2 am 0.4473 0.441 0.72 0.413 

 

 

2.5. Solar model 

Solar radiation was modeled using the beta probability density function [22], [23], as shown 

in (1). Where 𝑓𝑏(𝑆) is the beta probability density function, S is the solar radiation in kW/m2, considering 

that 0 ≤ S ≤ 1. α and β are parameters of the distribution function, considering that α > 0 and β > 0. 

 

𝑓𝑏(𝑆) = {
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
∗ 𝑆(𝛼−1) ∗ (1 − 𝑆)(𝛽−1)  

(1) 

 

Parameter 𝛽 can be calculated using (2). Where μ is the mean distribution and 𝜎 is the standard 

deviation of the distribution function. 

 

𝛽 = (1 − 𝜇) ∗ (
𝜇 ∗ (1 + 𝜇) 

𝜎2
− 1) 

(2) 

 

Parameter 𝜎 can be calculated using the average distribution parameter 𝜇 and the parameter 𝛽, as 

shown in (3). 

 

𝜎 =
𝜇 𝛽

1 − 𝜇
 

(3) 

 

2.6. Wind model 

Wind speed variations can be described using the Weibull probability density function as shown 

in (4). Where k is a shape parameter and c is a scale parameter. When k is equal to 2, the probability density 

function is called Rayleigh 𝑓𝑤(𝑣) as shown in (5). Parameter 𝛽 was consider equal to 2.02 and parameter α 

equal to 9 [24], [25]. The scale parameter of the Rayleigh probability density function can be approximated 

as c=1.128*Vm. 

 

𝑓𝑤(𝑣) =
𝑘

𝑐 
(

𝑣

𝑐
)

𝑘−1  

𝐸𝑋𝑃 [− [
𝑣

𝑐
]

𝑘

]  
(3) 

 

𝑓𝑟(𝑣) = (
2𝑣

𝑐2
)

  

𝐸𝑋𝑃 [− [
𝑣

𝑐
]

2

] 
(4) 
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2.7. Problem formulation 

The general model of the power system can be represented by the function 𝑓(𝑥, 𝜆), as shown in (6). 

Where x represents the state variables and λ the load factor. 

 

𝑓(𝑥, 𝜆) = 0 (5) 

 

When the load increases, the system can suffer variations in stress levels. The variation in real and 

reactive power can be represented as shown in (7) and (8) [26]. Where 𝑃𝑖  and 𝑄𝑖  represent the real and 

reactive power of the node i after changing 𝜆, respectively. 𝑃0,𝑖 and 𝑄0,𝑖 are the initial real and reactive power 

of the node i, respectively. 𝐾𝑝,𝑖 and 𝐾𝑞,𝑖 are vectors that indicate the increasing power of node i, and ∆𝜆 

represents the variation of the load. 

 

𝑃𝑖 = 𝑃0,𝑖(1 + 𝐾𝑝,𝑖 . ∆𝜆) (6) 

 

𝑄𝑖 = 𝑄0,𝑖(1 + 𝐾𝑞,𝑖 . ∆𝜆) (7) 

 

The real and reactive power values of each node i, can be calculated as shown in (9) and (10), 

respectively. Where n is the number of nodes, |𝑉𝑖| represents the voltage magnitude of the node i, 𝛿𝑖 

represents the voltage angle of the node i, |𝑌𝑖𝑗| is the admittance magnitude of the element (i,j) and 𝜃𝑖𝑗 is the 

impedance angle of the element (i,j). 

 

𝑃𝑖 = ∑|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗|cos (𝜃𝑖𝑗−𝛿𝑖 + 𝛿𝑗

𝑛

𝑗=1

) 
(8) 

 

 

 

𝑄𝑖 = ∑|𝑉𝑖||𝑉𝑗||𝑌𝑖𝑗|sen (𝜃𝑖𝑗−𝛿𝑖 + 𝛿𝑗

𝑛

𝑗=1

) 
(9) 

The real power changes of the different generators can be modelled by the expression presented 

in (11). Where 𝑃𝐺0 the initial real power of each generation unit and λ represents the power changing 

parameter.  The variation of λ is performed between zero (charge nominal system) and the maximum value of 

convergence [26]. 

 

𝑃𝐺 = (1 + 𝜆)𝑃𝐺0 (10) 

 

The space of (1 + λ) variation in this research is limited between 0.5 and 1.5 times the load base. 

The increase in the level of charge is carried out with same value of λ, for all nodes. 

 

2.8. Objective function 

The objective function is defined to increase the generation at different nodes according to the 

voltage magnitudes of the network, as shown in (12). Where 𝑉𝑙 is the voltage at the selected node of the 

current scenario. 𝑉𝑙𝑏𝑎𝑠𝑒   is the voltage of the load node in the previous scenario. Where a high value of 𝑉𝑀 

indicates an excellent location of DG in terms of the voltage magnitudes. At the maximum voltage values, 

the real or reactive powers are maximized [27]. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑉𝑀 =
𝑉𝑙

[1 − (𝑉𝑙 − 𝑉𝑙𝑏𝑎𝑠𝑒)]
 

(11) 

 

2.9. Electrical constraints 

The real power generated at node i, 𝑃𝑖 , must be limited by the maximum and minimum value, as 

shown in (13). Where 𝑃𝑖,𝑚𝑖𝑛 and 𝑃𝑖,𝑚𝑎𝑥  represent the maximum and minimum real power limits generated at 

node i, respectively. 

 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥   𝑖 = (𝑚 + 1), (𝑚 + 2), … , 𝑛 (12) 

 

The reactive power generated at node i, 𝑄𝑖 , must be restricted by the maximum and minimum value, 

as shown in (14). Where 𝑄𝑖,𝑚𝑖𝑛 and 𝑄𝑖,𝑚𝑎𝑥represents the maximum and minimum reactive power limits 

generated at node 𝑖, respectively. 
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𝑄𝑖,𝑚𝑖𝑛 ≤ 𝑄𝑖 ≤ 𝑄𝑖,𝑚𝑎𝑥   𝑖 = (𝑚 + 1), (𝑚 + 2), … , 𝑛 (13) 

 

Voltage magnitude, 𝑉𝑖, of each node must be limited according to the maximum and minimum 

values, as presented in (15). Where 𝑉𝑖,𝑚𝑖𝑛  𝑎𝑛𝑑 𝑉𝑖,𝑚𝑎𝑥  represents the maximum and minimum voltage 

magnitude limits of the node 𝑖, respectively. The slack node is assumed to have a voltage magnitude of 1 p.u. 

 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑖𝑛  (145) 

 

2.10. Test cases and simulations 

Three radial distribution systems were selected to test the method [28]–[31]. The 33-node radial 

distribution network [28], [29] has 33 nodes, 32 lines, 1 main source, and 32 loads. The total load of the 

network is 3715 kW and 2300 kVAr and the total power supply of 3926 KW and 2443 kVAr. The 69-node 

radial distribution network [28]–[30] has 69 nodes, 68 lines, 1 main source, and 49 loads. The total load of 

the network is 4014 kW and 2845 kVAr and the total generation of 4265 kW and 2957 kVAr. And finally, 

the 118-node radial distribution network [31] has 118 nodes, 117 lines, 1 main source, and 117 loads. 

The total load of the network is 22709 kW and 17041 kVAr and the total generation of 24000 kW and 

18019 kVAr. 

 

 

3. RESULTS AND ANALYSIS 

3.1 Node selection 
Table 2 shows the results obtained when locating and sizing different generators in the distribution 

network with the objective function studied. The first column is the distribution network test case, the second 

column is the node selected for installing DG, and the other columns correspond to the results obtained with 

the algorithm testing the four scenarios. The higher power injection is obtained for the nodes away from the 

main source. Additionally, from the table we can conclude that the algorithms find the same solutions, but 

SA have a large time to converge for the solution compared to the PSO. The number of iterations of the SA is 

greater than the used with the PSO. The voltage sensitivity analysis found with PSO and SA presented a 

correlation coefficient of 0.9, indicating a strong and positive correlation between the data obtained by each 

algorithm. 

 

 

Table 2.  Location and Size of DG with PSO and SA 

Power System Nodes 

Scenario (MW) 

1 2 3 4 
PSO SA PSO SA PSO SA PSO SA 

IEEE 33 

29 0 0 1.1 1.1 1.1 1.1 0.0 0.0 

30 0 0 0.0 0.0 0.0 0.0 0.0 0.0 

32 0 0 4.4 4.4 2.5 2.5 3.48 3.48 3.48 1.2 

IEEE 69 

19 0 0 0.0 0.0 1.6 1.2 0.0 0.0 

25 0 0 2.2 2.2 0.0 0.0 0.0 0.0 

68 0 0 4.8 4.5 2.92 2.92 3.2 3.2 3.2 2.2 

IEEE 118 

21 0 0 3.78 3.78 0.0 0.0 0.0 0.0 

22 0 0 0.0 0.0 1.1 1.1 0.0 0.0 

117 0 0 9.57 8.57 4.16 4.16 4.36 4.36 4.36 1.1 

 

 

Figure 2 shows the voltage sensitivity analysis when the power injected varies from 10% to 60% of 

the total load. When the power injection exceeds the 30%, the voltage sensitivity values increase and separate 

from the initial values. The voltages have an exponential increase and the power flow shows that some nodes 

are overloaded. The simulations show a similar result obtained in previous results related to not exceed 30% 

of the power load [16], [21].  
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Figure 2. Voltage sensitivity with different power injection 

 

 

3.2 Sensitivity analysis of the 33-node test case 

Figure 3 presents the voltage sensitivity analysis of the 33-node radial distribution network. 

The real power was injected changing from 10% to 60% of the total load in steps of 10%. The axis y 

represents the change in voltage magnitudes with respect to the change in real power. The axis x represents 

the node of the distribution network. When the real power injection reaches 40%, the voltage changes 

significantly. The changes in voltage represents a large variation for all nodes of the distribution network. 

This result confirms the maximum levels of DG penetration for the 30% of the maximum load [21]. Nodes 

selected by the algorithms (29, 30 and 32) are the most sensitive of the network, changing voltages 

significantly. Furthermore, a node randomly selected (node 6) shows that the maximum percentage has a 

different behavior in voltages of all nodes. 

 

 

 
 

Figure 3. Voltage sensitivity analysis ΔV/ΔP for the 33-node radial distribution network 
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3.3 Sensitivity analysis of the 69-node test case 

Figure 4 presents the voltage sensitivity analysis of the nodes in the 69-node radial distribution 

network. The real power was injected changing from 10% to 60% of the total load in steps of 10%. The axis 

y represents the change in voltage magnitude with respect to the change in real power injection. The nodes 

selected by the algorithms are 19, 25 and 68, and the node 7 was selected randomly to compare the voltage 

variations. Voltage magnitude variations are confirmed, especially when the generation is larger than 30% of 

the load. The voltage variations are similar for all nodes. When the penetration is higher the voltages are 

largely increased. 

 

 

 
 

Figure 4. Voltage sensitivity analysis ΔV/ΔP for the 69-node radial distribution network 

 

 

3.4 Sensitivity analysis of the 118-node test case 

Figure 5 presents the voltage sensitivity analysis of the nodes in the 118-node radial distribution 

network. The real power was injected changing from 10% to 60% of the total load in steps of 10%. The axis 

y represents the voltage magnitude change with respect to the real power change. The axis x represents the 

node of the distribution network. The PSO and SA selected the nodes 21, 22 and 117.  
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Figure 5. Voltage sensitivity analysis ΔV/ΔP for the 118-node radial distribution network 

 

 

Additionally, the node 8 was selected to compare the results with the best nodes for the power 

injection. Similar to the previous results, the nodes selected show a high increase of voltage magnitudes, 

especially when the power injections are greater than 30% of the total load. The node 8 presents a low 

voltage changes after the power injections and the variation do not represent significant changes on voltage 

magnitudes of all nodes.  

 

 

4. CONCLUSION  

This article presented the placement and size of DG in distribution systems using voltage sensitivity 

analysis. PSO and SA were used in this research to identify the nodes that accept the maximum real power 

injections. The algorithms identified well the nodes for power injection, but PSO was faster than the SA. 

Nodes away from the main source can increase more the voltage magnitudes and are more likely to be 

selected with the model applied. The model presented in this paper showed how to place different types of 

DG in distribution systems to improve voltage profiles with a good percentage of success. The results of the 

simulations show the location and size of the injections of power to impact positively on the system. 
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The model showed a good percentage of success when locating different types of DG to improve 

voltage magnitudes in the three distribution networks. Location and size of power sources impact positively 

the radial network and after repeating all the test the results were similar, although in all the analysis 

performed the PSO is faster than the SA.  
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