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ABSTRACT 

Stripe Rust (Puccinia striiformis f. sp. tritici) is a foliar disease that significantly impacts global 

wheat production, and resistant cultivars provide the most efficient method of control. High-

throughput phenotyping using unmanned aircraft systems (UAS) offers a potentially more 

efficient method for field-based phenotyping compared to visual assessment. Here we tested the 

ability of remote sensing to predict stripe rust severity in a diverse population of 594 soft red 

winter wheat lines, planted in single-rows, and evaluated them by visually rating stripe rust 

intensity and remotely using the dark green color index (DGCI), normalized difference 

vegetation index (NDVI) and blue NDVI. Significant relationships (p<0.0001) were found 

between the visual and remote sensing data; however, the ability to predict severity is not 

accurate at the time. A genome-wide association study identified peaks on chromosomes 1B, 2A 

and 4B that were consistent between visual and DGCI and consistent with the location of known 

stripe rust resistance genes.  

 In a second study, the effect of plot size (single-row, two-row and four-row) on 

relationship between visual and remote sensing data (DGCI and NDVI) was explored. We 

evaluated a panel of 13 genotypes preselected to range from 0 to 100% severity, planted in three 

plot sizes across two measurement days. Significant (p<0.0001) relationships were observed 

between visual severity and remote sensing data with four-row plot sizes, generally indicating 

the strongest relationship, followed by two-row, with both being significantly greater than the 

single-row plot size. Overall this research will aid in the future implementation of remote sensing 

as a surrogate for visual rating of stripe rust severity. 
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CHAPTER 1: LITERATURE REVIEW 

Wheat Production 

Wheat (Triticum aestivum L.) has been a vital crop since domestication, 10,000 years ago during 

the Neolithic Revolution, in the Middle East between the Tigris and Euphrates river. This was a 

crucial transitional period for humankind as hunting and gathering slowly diminished and 

agriculture-based economies developed (Abbo et al., 2005). It was one of the earliest 

domesticated crops due to its adaptability, high yield potential, and viscoelastic properties that 

are the basis of dough used for bread and other food products (Shewry, 2009). Presently, wheat 

is the third most valuable crop globally, behind maize (Zea mays) and rice (Oryza sativa) and 

was grown on approximately 219.7 million hectares globally in 2017, producing 758.3 million 

metric tons of grain (USDA, 2018). In 2017, 18.58 million hectares of wheat were planted in the 

US, yielding 37.8 million metric tons; a decrease from 50.2 million metric tons the previous 

season (Bond and Liefert, 2018). 

Classifications of Wheat 

Wheat is classified into six market classes based on color, hardness and growing season 

including: durum, hard white winter (HWW), soft white winter (SWW), soft red winter (SRW), 

hard red spring (HRS), and hard red winter (HRW) (Bond and Liefert, 2018). The six classes are 

grown in various regions of the US and for different end-use products. 60% of durum wheat is 

produced in North Dakota and the remaining 40% in Arizona and California (“U.S. Wheat 

Associates,” 2018). Due to its high protein and gluten content, durum is milled almost entirely 

for pasta production (Liu et al., 1996). Hard White Winter is primarily grown in North Dakota 

and Kansas and is used for Asian-style noodles, whole wheat flour and tortilla production (“U.S. 



2 

 

Wheat Associates,” 2018). Soft white winter is grown primarily in the Pacific Northwest region 

of the US (Washington, Oregon, and Idaho). It contains low protein, and weak gluten strength 

making it ideal to produce cakes and pastries (Kaldy and Rubenthaler, 1987). Hard red spring is 

grown in  the Dakotas and Minnesota and is used to produce designer foods like rolls, croissants, 

bagels, and pizza  and is primarily grown in (“U.S. Wheat Associates,” 2018). Hard red winter is 

the most widely grown and versatile wheat class, milled to produce Asian style noodles, rolls, 

flat breads, tortillas and all-purpose flour (“U.S. Wheat Associates,” 2018). The production area 

for HRW ranges over several states including the Great Plains of Kansas, Nebraska, Oklahoma 

and Texas (Bond and Liefert, 2018). Soft red winter accounts for 15 to 20% of US wheat 

production and is grown primarily in states near the Mississippi River Delta in the Eastern area 

of the country, including Arkansas. Soft red winter is milled primarily for cakes, cookies, and 

crackers (Bond and Liefert, 2018). 

 Arkansas is one of the top-ten producers of SRW wheat in the US, where it is grown in 

the Mississippi Delta, Arkansas River Valley and the Red River Valley regions of the state. In 

Arkansas, wheat is planted in the Fall (ideally October 1st -November 20th), following summer 

annual crops, and harvested the following June (Kelley, 2016). Arkansas farmers often use SRW 

wheat in rotation with summer annuals, as cover crop, or for animal grazing. In the 2017, SRW 

wheat was planted on 72,800 hectares in Arkansas; a 49% decrease in comparison to 2016 

(NASS, 2017). 

Common Wheat Diseases 

Fungal pathogens are one of many challenges in wheat production. Considering farming 

practices, climate, and other factors, many diseases have become more prevalent over time (Chen 

et al., 2002). Economically important diseases in Arkansas include stripe rust (Puccinia 
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striiformis f. sp. tritici), septoria leaf blotch (Septoria tritici), powdery mildew (Blumaria 

graminis f. sp tritici) and Fusarium head blight (Fusarium graminearum)(Spurlock et al., 2014). 

Among these, stripe rust has the largest economic impact annually (Spurlock et al., 2014). Stripe 

rust is caused by the fungal pathogen, P. striiformis f. sp. tritici, a macrocyclic pathogen that 

requires a primary (wheat) and alternate (other grasses) host to complete its life cycle. This 

fungal pathogen is classified in the phylum Basidiomycota, Class Urediniomycetes, order 

Uredinales, family Pucciniaceae, genus Puccinia. Its species name is specified by the host that it 

infects.  

Stripe Rust 

Stripe Rust is a foliar disease of wheat caused by the fungal pathogen Puccinia striiformis f. sp. 

tritici. and is one of the most devastating foliar diseases globally, being reported in more than 60 

countries (Stubbs, 1985; Chen, 2005; Chen et al., 2010). It was initially recognized in the United 

States in Washington in 1915 (Carleton, 1915). The life cycle of stripe rust begins with the 

dissemination of urediospores by wind or rain onto the leaf surface. Urediospores are asexual 

and maintain dominance in the population on the primary host. The ability of urediospores to be 

transported by wind in the asexual stage results in large-scale epidemics in cereal crops (Chen et 

al., 2002). Infection by stripe rust can occur at any time during the wheat life cycle, from the 

seedling stage, to plant maturity (Chen, 2005). Under optimum conditions, spore germination 

begins within three hours from initial infection.  

 All three rust pathogens (stripe rust, leaf rust and stem rust) are obligate parasites with 

different optimum temperature ranges for disease development. Stripe rust is a moist- 

environment and cool-temperature disease with optimum growing temperatures from 7-12 °C 

(Line and Chen, 1995). Stripe rust is highly active during the night due to dew formation and 
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lower temperatures (Stubbs, 1985). Stripe rust has also developed adaptation to higher 

temperatures, with a maximum germination temperature reaching 20 °C and a latent period of 

8.5 days. (Schroeder, 1964; Milus et al., 2006). Symptoms are easily identified within one week 

after initial infection with or without sporulation (Chen, 2005). Five to seven days following 

infection, sporulation begins and a cluster of yellow-orange pustules, called uredia can be found 

on leaf sheaths, necks and glumes. After penetrating and infecting the vein of the leaf, the 

arrangement of the pustules on the plant resembles a stripe (Emge and Shrum, 1976).  

 The disease develops in “hot spots” throughout a field that can grow up to 10 m in 

diameter. Once temperatures reach 25 °C or greater, the production of urediospores is reduced or 

ceases completely and black teliospores are produced in preparation for overwintering stages. 

Temperatures below -10 °C can halt or terminate the pathogen (Chen, 2005). However, if winter 

temperatures are mild, teliospores can germinate to form haploid basidiospores, enabling 

survival on an alternate host like the Oregon Grape (Mahonia aquifolium) (Wang and Chen, 

2013).  

 In the southern areas of the US, stripe rust survives throughout mild winter months and 

remains in the uredia form if its host has not become senescent, which continues the 

dissemination of uredia (Line and Chen, 1995). Contingent on the growth stage when infection 

occurs, stripe rust can drastically reduce kernels per spike, test weight and grain yield. Though 

stripe rust is not a seed-borne disease, like Fusarium head blight, its ability to decimate wheat 

grain yield and quality up to 70% is just as concerning on a global level (Line and Chen, 1995).  
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Resistance to Stripe Rust 

While an integrated management approach including genetic resistance, fungicide application 

and proper cultural practices is necessary for control, genetic resistance is the most efficient and 

effective strategy to minimize crop losses (Chen, 2005; Ellis et al., 2014; Singh et al., 2016).  

More than 70 stripe rust resistance genes have been identified to date (Yang et al., 2016; 

McIntosh et al., 2017) . These genes are classified into two major gene types, all-stage resistance 

(ASR)/seedling resistance and adult plant resistance (APR). 

 All-stage resistance genes are effective throughout the wheat life cycle, barring a race 

change. ASR genes often encode protein receptors that interact with corresponding avirulence 

effector genes from the pathogen. As a result, these race-specific genes tend to lose effectiveness 

within a few years of deployment due to resistance genes being overcome by new races of stripe 

rust (Chen et al., 2009; Singh et al., 2011; Liu et al., 2014). These virulent races have adapted to 

warmer climates, developed mutations against native ASR genes, have shorter latent periods, and 

increased spore germination up to 18° C, increasing their dissemination rate and expanding 

geographically (Chen et al., 2002; Milus et al., 2006; Singh et al., 2016).   

 Adult Plant Resistance is effective at the post seedling stage, likely at the booting stage 

(Feekes GS 9 to10). It is controlled by smaller effect quantitative trait loci (QTL), which 

individually confer only low to moderate levels of resistance, often after there is partial disease 

development this referred to as “slow rusting” (Wu et al., 2016). Some APR genes may be 

induced in response to growth temperature and light conditions, referred to as Heat-APR (Wu et 

al., 2016). Lines possessing APR genes are usually selected in field trials during the growth 

stages of stem elongation (Feekes 5) to as late as mid-grain fill (Feekes 11.1). Adult plant 
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resistance is considered more durable than ASR because of epistatic effects; however, this is not 

to say that some APR genes are not race specific (Hickey et al., 2012). Observations for race 

specific resistance genes have been reported for different sources of stripe rust APR genes in US 

SRW wheat and European wheat (Hao et al., 2011; Sørensen et al., 2014). Given that APR may 

have low or delayed expression, resistance could be expressed too late to protect yield loss, 

leading to a misinterpretation of its effectiveness (Wu et al., 2016). Most APR genes that are 

used in crops are most likely due to the combination of non-race specific and race specific genes 

(Ellis et al., 2014). Some APR genes provide resistance to all three species of rust pathogens, and 

recent studies show that “near immunity” can be achieved when multiple APR genes are 

pyramided. (Singh et al., 2014).  

Unmanned Aerial Systems  

Unmanned Aerial Systems (UAS), also referred to as unmanned aerial vehicles (UAV), remote 

piloted aircrafts (RPA), or drones, are becoming important tools for the agriculturale industry 

(Watts et al., 2012). The development and application of UAS parallels that of manned aircrafts, 

both being pushed by military applications and migrating into civilian usage. The initial use of 

UASs was based on alleviating dangerous tasks for manned flight stemming from fatal flight 

accidents during military training. UASs were not used directly in battle but in 1933, Reginald 

Denny developed them for Army gunners and Naval simulations as aerial targets (Keane and 

Carr, 2013). The evolution of UASs is still driven primarily by advances in military technology. 

However, many applications have been discovered for civilian usage for remote sensing, 

reconnaissance, and scientific data collection (Watts et al., 2012). In the 1990s the National 

Aeronautics and Space Administration, developed the Environmental Research Aircraft and 
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Sensory Technology program, which initiated the first major steps into developing protocols in 

support of UAS in scientific research (Watts et al., 2012). 

Types of UAS Platforms 

Fixed-wing platforms consist of a rigid wing capable of flight due to the uplift generated by the 

aircraft’s forward airspeed and shape of the wing. They are powered by a combustible engine or 

electric motor. Like conventional manned aircrafts, fixed-wings are built with ailerons 

(roll/longitudinal axis), elevators (pitch/lateral axis) and rudders (yaw/vertical axis), for in-flight 

control (Heaphy et al., 2017). These platforms vary in size, flight endurance, and other 

capabilities. The largest fixed wing is the U.S. RQ-4 Global Hawk, which is capable of 30 hours 

of flight time and covering 8200 nautical miles (Cook, 2007). On the other end of the spectrum, 

smaller fixed-wings like the Parrot Disco, weighing 690 grams, are often used for aerial 

surveying and crop analysis on a large scale. Advantages of fixed wings are extended flight 

times, low maintenance, and ability to survey large areas. However, fixed wings often need a 

runway or launch and recovery system to assist in takeoff and landings and lack the ability to 

hover or analyze parameters at low altitudes (Marshall et al., 2016). 

 Vertical take-off and landing (VTOL) platforms ascend by air flowing over a wing. 

These wings or blades create air movement around a single mast, called a rotor. These platforms 

have one to eight single rotors attached to one aircraft. The major advantage of the rotor-wing 

aircraft over the fixed-wing is the ability to take off and land vertically and as such requires 

minimal space. Forward speed is not necessary to maintain lift, which allows it to hover and 

assess small-scale agriculture research plots (Heaphy et al., 2017). Other advantages of multi-

rotor aircrafts include the compensation for wind during flight and the ability to carry an array of 

different payloads simultaneously to gather multiple types of data. The biggest drawback of most 



8 

 

multi-rotor aircrafts is attributed to their battery powered motors equating to shorter flight times 

and are typically unable to cover as much land area as a fixed-wing aircraft (Heaphy et al., 

2017).  

 VTOL aircrafts range in size as well. For example, the Kaman K-MAX is the largest 

unmanned helicopter, weighing 2,721 kg and is used primarily to deliver supplies to military 

ground units in high threat environments (Mansur et al., 2011). On the other end of the spectrum, 

the DJI Mavic series (SZ DJI Technology Co., Ltd., Shenzhen, GD, CHN) includes the Mavic 

Pro, Mavic 2, Mavic Air, and Mavic Mini, ranging from 249g to 743g. The Mavic series aircrafts 

are used for recreation, professional photography and video, surveillance, land assessments, etc. 

High Throughput Phenotyping 

The art and science of phenotyping is a key component for genetic improvement of domesticated 

plants (Fehr, 1991; Haghighattalab et al., 2016). However, phenotyping large breeding nurseries 

requires substantial investment in time, cost, and labor (Haghighattalab et al., 2016). High 

throughput phenotyping (HTP) platforms have emerged as a method to obtain detailed 

measurements of phenotypic traits (Finkel, 2009). The objective of HTP is to characterize large 

numbers of genotypes using a fraction of the time and labor of manual phenotyping methods 

(Poland and Price, 2015). Initially, HTP was primarily used in robotic greenhouse operations, 

where the most commonly used application was assessing shoot biomass by acquiring digital 

images of plants at specified orientations with known illumination conditions; however, these 

operations were limited in their two-dimensional analysis and scale in comparison to field 

experiments (Fanourakis et al., 2014). The two dimensional images alluded to overlapping leaves 

and stems and led to the underestimation of plant size and other characteristics (Fanourakis et al., 

2014; Poland and Price, 2015). Field conditions on the other hand are heterogeneous, but 
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simulate conditions the genotypes will grow in (Araus and Cairns, 2014). Field-based HTP 

systems are one of few approaches that offer the accuracy of trait measurements in a large 

population with repeated measurements, while being cost effective and less tedious. (Poland and 

Price, 2015). 

 Remote sensing has been a catalyst in field based HTP of large breeding populations. 

Phenotyping using remote sensing is the process of measuring a population of lines from a 

distance using a non-destructive and non-invasive approaches (Araus and Cairns, 2014; Marshall 

et al., 2016). Remote sensing measurements are derived from electromagnetic radiation. When 

the radiation reaches a surface, the reflection of the energy is dependent upon the smoothness 

and uniformity of the surface. If not uniform the energy can be reflected in many directions, 

diffusing the reflectance. However, some radiation can be absorbed, depending upon the 

thickness of the object, and the amount of radiation exposure (Curtis, 1991). Through the 

photosynthetic pigments of plants, healthy plants absorb specific wavelengths of visible light and 

reflect other wavelengths on the electromagnetic spectrum. Chlorophyll A is the most abundant 

pigment in plants. It absorbs blue wavelengths (~430nm) and red wavelengths (~662nm) 

(Knipling, 1970). Leaf reflectance is low throughout the electromagnetic spectrum, until it peaks 

at the green wavelengths (~550nm) and increases, when it reaches the infrared range (~700-

1300nm) (Knipling, 1970). Crop health assessments are determined by this photosynthetic 

activity when captured by different types of sensors.    

 Visible spectrum/near infrared (VIS/NIR), long wave infrared sensors , and conventional 

digital cameras are commonly utilized in field-based HTP; however, improved variations and 

combinations of these sensors are developed daily (Araus and Cairns, 2014).    
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 Visible/Near-Infrared (VIS/NIR) sensors capture wavelengths between 400-660nm (VIS) 

and 700-1100nm (NIR) on the electromagnetic spectrum. Visible sensors generally capture three 

red (665nm), green (550nm), and blue (425) wavelengths. Near-infrared sensors behave in an 

identical manner, but are modified to capture NIR wavelengths (Marshall et al., 2016). 

Multispectral and hyperspectral sensors are popular as they measure reflected energy over 

several bands.  

 Hyperspectral sensors capture reflected energy in narrow and numerous bands, upwards 

of 100 bands per pixel. With such immense amount of data, this sensor detects subtle variations 

in reflected energy,  and allows the assessment of complex traits, such as canopy fluorescence 

and photosynthesis under natural sunlight (Zarco-Tejada et al., 2013). This sensor is larger than 

most sensors and is sensitive to vibration, requiring a larger aircraft to support its weight and 

maintain stability during flight.  

 Multispectral sensors capture reflected energy in 3 to 10 bands, typically visible green, 

visible red, visible blue, NIR, etc. and are portable compared to hyperspectral sensors.  

Multispectral imagery has been used in several agricultural applications like mapping wetland 

vegetation (Adam et al., 2010), estimating leaf area index (Asrar et al., 1985), determining plant 

height (Fanourakis et al., 2014), crop yield predictions (Yu et al., 2016), phenotyping for large 

breeding populations (Haghighattalab et al., 2016) quantifying turf grass (Karcher and 

Richardson, 2003), classifying plant diseases (Kumar et al., 2016)  and more.  

 Long wave infrared sensors gather data beyond 1800 nanometers on the electromagnetic 

spectrum (Marshall et al., 2016). The images are a wide spectrum of monochromatic images, 

representing thermal emission in response to the intensity of heat. Long-wave infrared sensors 
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have been used to monitor drought tolerance, and to detect biotic and abiotic stresses in crops. 

(Jones, 2006; Berger et al., 2010; Munns et al., 2010). 

 The early application of field-based high-throughput phenotyping involved the usage of 

high clearance tractors and other ‘phenomobiles’ equipped with global positioning system (GPS) 

or global navigation satellite system (GNSS) technology along with active and passive sensors 

that monitored photosynthetic activity (Bausch and Delgado, 2005; Montes et al., 2011; Comar 

et al., 2012). For example, a cart was used to position ultrasonic proximity sensors to measure 

morphological characteristics of bushy plants in 1989 (Ruixiu et al., 1989). Andrade-Sanchez et 

al (2014) used a tractor mounted with remote sensors to measure canopy height, reflectance, and 

temperature simultaneously in cotton at the rate of 0.84 ha hr-1. While this approach was accurate 

and decreased laborious techniques, time expenditure and portability remained limitations. 

 Unlike phenomobiles, UASs allow the analysis of entire populations simultaneously, and 

have become increasingly popular in precision agricultural techniques and high-throughput 

phenotyping. For UASs to be effective, data processing software is required for platform control, 

data gathering, and data extraction. Autonomous flight software allows the creation of mission 

plans including logistics (elevation, image overlap/side-lap, flight path, drone speed, flight time), 

determining the area of interest, and survey type, making data acquisition easy and repetitive. 

This reduces error and increases image accuracy in comparison to full-control flights (Marshall 

et al., 2016). UAS photogrammetry is very accurate, much like real time kinematic (RTK) GPS 

data, making it possible for UAS photogrammetry to be used in land surveying and crop scouting 

(Uysal et al., 2015).  
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Vegetative Indices  

Vegetative indices were developed to observe two or more spectral wavelengths, according to 

mathematic formulas to derive single spectrally-based numbers (Wanjura and Hatfield, 1987). 

The indices respond to the amount of photosynthetically active tissue within a plant (Wiegand et 

al., 1986). Some vegetative indices offer a general form of information regarding multiple crops, 

while other indices detect specific phenotypic characteristics from one index to the next. This 

leads to the increase in development of vegetative indices and research analyzing their efficacy 

to detect vegetative symptoms due to nutrient deficiencies, biotic, and abiotic stresses(Wiegand 

et al., 1986; Devadas et al., 2009, 2015).  

 Normalized Difference Vegetative Index (NDVI) is widely used across many agricultural 

and environmental disciplines. It is defined as the differenced ratio of reflectance in the red and 

near infrared wavelength; initially prompted by the motivation to assess winter wheat dry matter 

using Landsat satellite data (Tucker, 1979). However, with the use of proximal and remote 

sensing, field and plot level research has discovered various uses of NDVI in the evaluation of 

other agronomic traits including: indirect selection for waterlogging tolerance in wheat (Arguello 

et al., 2016), heat and drought stress tolerance (Reynolds et al., 2007), estimating nitrogen uptake 

and efficiency (Heege et al., 2008; Magney et al., 2016), estimating grain yield (Aparicio et al., 

2000), rating spot blotch disease (Kumar et al., 2016), and has shown promise for high-

throughput phenotyping in breeding programs (Haghighattalab et al., 2016; Duan et al., 2017). 

NDVI values range from -1.0 to 1.0 are linearly correlated with leaf area index (LAI) and 

biomass production (Kross et al., 2015). This index is broadly suited for stress detection among 

crops and can distinguish between yellow rust from healthy leaves in wheat (Devadas et al., 

2009; Su et al., 2018). 
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 The dark green color index was developed to measure dark green color of biomass in 

digital imaging, after discovering that amounts of red and blue alters the green color in images 

(Karcher and Richardson, 2003). This index is significant in the ability to quantify turf grass 

color and has also found a strong relationship between yield, leaf nitrogen and corn greenness 

(Rorie et al., 2011). It functions by using the average of a transformed hue, saturation and 

brightness (HSB) values. HSB values are based on human perception of color, where hue is 

defined as the angle on a continuous circular scale from 0° to 360° (0°=red, 60°=yellow, 

120°=green, 180°=cyan, 240°=blue, 300°=magenta) saturation is the purity of the color from 0% 

(gray) to 100% (fully saturated) and brightness is relative lightness or darkness of the color from 

0% (black) to 100% white) (Purcell et al., 2013).  The dark green hue transform is calculated as 

Hue – 60/60, so that hues of 60 and 120 would equal to dark green hue transforms of zero and 

one. Since lower saturation and brightness values correspond to darker green colors, 1 – 

saturation and 1 – brightness was used to calculate the dark green color transforms for saturation 

and brightness. After taking the average of transformed HSB values, a single measure of dark 

green color ranging from zero to one are yielded, with higher values corresponding to dark green 

color (Karcher and Richardson, 2003). 

Genome-Wide Association Studies 

 Genome-Wide Association Studies (GWAS) are experimental designs that detect 

associations between genetic variants and traits of interest within a given population and have 

been used to understand the genetic sources behind phenotypic variation in humans, plants and 

animals, being more successful in plants than the others (Brachi et al., 2011; Visscher et al., 

2017). In globally produced food crops like maize, rice, and wheat, GWASs have been used to 

identify quantitative trait loci (QTL) associated with, disease resistance (Kertho et al., 2015; 



14 

 

Kumar et al., 2015), stress tolerance (Farfan et al., 2015), nutrition quality, yield,(Huang et al., 

2010) and more. 

Although linkage mapping remains significant, it suffers at only being capable of identifying 

traits in specific regions of a genome in either F2 populations or recombinant inbred lines, and it 

lacks mapping resolution due to the amount of recombination that occurs within recombinant 

inbred lines. However, GWASs overcome this limitation by using historic recombination events 

and using larger panels of diverse, unrelated individuals. With the increased variation, 

recombination events increase, thus increasing the mapping resolution (Brachi et al., 2011; Korte 

and Farlow, 2013).  

 Many research projects have used GWASs in efforts of identifying stripe rust resistance 

QTL. One previous study evaluated 567 winter wheat lines provided by NSGC representing 44 

countries against five races of stripe rust previously identified in North Dakota. The association 

analysis identified 31 QTL markers associated with resistance to all five races of stripe rust 

(Kertho et al., 2015).  
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CHAPTER 2: UTILITY OF UAS TO ASSESS STRIPE RUST SEVERITY AND DETECT 

KNOWN RESISTANCE GENES IN A SOFT RED WINTER WHEAT BREEDING 

NURSERY 

Abstract 

Stripe Rust (Puccinia striiformis f. sp. tritici) is an economically important fungal pathogen of 

wheat, however, resistant cultivars provide the most efficient method of control. High-throughput 

phenotyping using unmanned aircraft systems (UAS) offers a potentially more efficient method 

for field-based phenotyping compared to visual assessment. However, there is limited research in 

this area and further proof of concept is warranted. In this study, the ability of remote sensing to 

predict stripe rust severity was evaluated in a diverse population of 594 soft red winter wheat 

lines, over two years. Genotypes were sown in single-row plots to mimic the progeny-row 

generation of breeding and were inoculated. Ground measurements were obtained by visually 

rating stripe rust intensity, and normalized difference vegetation index (NDVI), blue NDVI 

(BNDVI), and dark green color index (DGCI) were obtained using a UAS. In 2018, significant 

(p<0.0001) relationships were observed between visual severity and DGCI (R2 = 0.54) and visual 

severity and BNDVI (R2 = 0.12). Similar relationships were observed in 2019 with DGCI (R2 = 

0.16, p<0.0001) and NDVI (R2 = 0.36, p<0.0001) with visual severity. When combined across 

years the linear relationship between visual severity and DGCI increased (R2 = 0.58). A genome-

wide association study (GWAS) identified peaks on chromosomes 1B, 2A, and 4B that were 

consistent between visual ratings and DGCI and were consistent with the location of known 

stripe rust resistance genes. Additional research is needed to assess the effect of plot size and 

evaluate other indices that might improve the prediction of stripe rust severity using UAS. 
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Introduction 

Stripe Rust is a foliar disease of wheat caused by the fungal pathogen Puccinia striiformis f. sp. 

tritici. It is one of the most devastating wheat diseases globally, reported in more than 60 

countries (Stubbs, 1985; Chen, 2005; Chen et al., 2010). Yield losses from 50% to 100% may 

occur in susceptible cultivars if infection occurs early in the growing season with cool and wet 

conditions (Chen et al., 2002; Wegulo and Byamukama, 2012). In the US, stripe rust was first 

identified in Washington in 1915 with the first notable outbreak during the 1950s occurring in 

the western part of the state (Carleton, 1915; Chen, 2007). US wheat production lost due to stripe 

rust exceeded 6.4 million metric tons in 2016 across 30 states (Chen, 2007; USDA, 2016). The 

spread of stripe rust has resulted from new races of P. striiformis that have overcome deployed 

resistance genes and as such, pose a constant challenge to wheat breeders and producers (Line, 

2002; Chen et al., 2010). While an integrated management approach that includes genetic 

resistance, fungicide applications, and the proper cultural practices is necessary, genetic 

resistance remains the most cost efficient and effective (Chen, 2005; Singh et al., 2016).  

There are two major types of stripe rust resistance. All-stage resistance (ASR) is effective 

beginning at the seedling stage and barring a race change, continues throughout the entire life 

cycle (Chen, 2005). ASR genes often encode protein receptors that interact with corresponding 

avirulence effector genes from the pathogen. As a result, these race-specific genes tend to lose 

effectiveness within a few years of deployment due to resistance genes being overcome by new 

races of stripe rust (Singh et al., 2011; Liu et al., 2014). Many P. striiformis races, such as PstS1 

and PstS2, are now adapted to warmer temperatures, increasing spore germination at 

temperatures up to 18° C. These strains have developed mutations against native ASR genes, and 
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have shorter latent periods at 18° C than at 12° C (Chen et al., 2002; Milus et al., 2006; Singh et 

al., 2016). 

Adult plant resistance (APR) is primarily effective at the post seedling stage and is 

quantitatively inherited. APR is conferred by smaller effect quantitative trait loci (QTL) that 

individually provide only low to moderate resistance after initial infection has occurred. This is 

referred to as “slow rusting” (Wu et al., 2016). Due to its polygenic control, APR is considered 

the most durable type of resistance and near immunity may be achieved by pyramiding multiple 

genes (Chen, 2005; Singh et al., 2011; Rahmatov et al., 2017).  

 For the past decade, the cost of genotyping has decreased significantly, allowing  

increased discovery of disease resistance QTL and the application of molecular markers in 

breeding. Marker-assisted selection (MAS) and more recently genomic selection (GS), are being 

used to select for stripe rust resistance in combination with phenotypic selection (Rutkoski et al., 

2014; Singh et al., 2016). While genotyping technology has progressed rapidly, the development 

and utilization of new phenotyping methods has been more gradual. The lag connecting genetic 

variants to observed phenotypes results in a bottleneck in the breeding process due to time 

requirement to evaluate thousands of genotypes in replicate, and across multiple environments 

(White et al., 2012).  

The agricultural unmanned aerial system (UAS) market is predicted to exceed 4 billion 

dollars by 2022, due largely to the rise of precision agriculture and crop health assessment 

applications (Jenkins and Vasigh, 2013; Marshall et al., 2016; Reagan, 2017). High-resolution 

data from remote sensors mounted to UAS can rapidly capture the absorption and reflection 

properties of plants based on their photosynthetic activity to determine the health of the plants. 

(Marshall et al., 2016). Chlorophyll A is the most abundant pigment in plants, absorbing both 
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blue (~430nm) and red wavelengths (~662nm) (Knipling, 1970). Leaf reflectance is low 

throughout the electromagnetic spectrum, until reaching the green wavelengths (~550nm), and 

continues an upward trend of reflectance into the infrared range (~700-1300nm) (Knipling, 

1970). Many vegetative indices including the dark green color index (DGCI), normalized 

difference vegetation index (NDVI), and blue NDVI (BNDVI) were developed from observing 

the ratios of two or more spectral wavelengths as a proxy for the amount of photosynthetically 

active tissue (Wiegand et al., 1986; Wanjura and Hatfield, 1987).  

DGCI was developed to measure the color of plants in digital images after it was 

discovered that the amount of red and blue light alters green color (Karcher and Richardson, 

2003a). This index is used to quantify the intensity of leaf greenness for nitrogen content in corn 

(Karcher and Richardson, 2003a) and turf (Rorie et al., 2011).  

NDVI is the differenced ratio of reflectance in the red and near infrared wavelengths 

(Tucker, 1979). It has been used in the evaluation of waterlogging (Arguello et al., 2016), heat, 

and drought stress tolerance (Reynolds et al., 2007; Haghighattalab et al., 2016; Duan et al., 

2017), nitrogen uptake and efficiency (Heege et al., 2008), grain yield prediction (Aparicio et al., 

2000), and disease detection (Kumar et al., 2016)  . Blue NDVI replaces the red band with blue 

and serves as an alternative when using a low-cost digital camera. 

Currently there is limited proof of concept for the use of remote sensing to assess disease 

severity in wheat, particularly during the early breeding generation when plot size and replication 

are limited. The objectives of this study were to (1) evaluate the relationship between remote 

sensing indices and a visual rating of stripe rust severity, (2) compare remote and proximal 

measurements of NDVI, and (3) determine the ability to detect stripe rust resistance QTL using 

UAS.  
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Materials and Methods 

Germplasm 

The germplasm used in this study consisted of 594 genotypes from the Gulf Atlantic Wheat 

Nursery (GAWN). Of these genotypes, 102 were developed by the University of Arkansas, 109 

from the University of Georgia, 107 from Louisiana State University Ag Center, 103 from North 

Carolina State University, 59 from Texas A&M University, 41 from the University of Florida, 40 

from Virginia Institute of Technology, 19 from Clemson University, and 14 from private 

industry or the USDA-ARS. These programs represent the germplasm used in the University of 

Arkansas Wheat Breeding Program and have varying levels of stripe rust resistance. In addition 

to the GAWN population, a stripe rust resistant check, ‘Pat’ (Bacon et al., 2004), and a stripe rust 

susceptible check, ‘Croplan Genetics 514W’ (CG514W) were included.  

Experimental Design 

The study was conducted at the Milo J. Shult Agricultural Research and Extension Center in 

Fayetteville, Arkansas, over two years (2017-2018 and 2018-2019). The GAWN genotypes were 

drill-seeded in single-row plots, 1.22 m in length, with 0.38 m spacing between rows and 0.60 m 

alleys between tiers. In year one, the trial was planted in a randomized complete block design 

with two replications. In year two, genotypes were planted in an un-replicated augmented design 

with each block containing the resistant and susceptible checks. The blocks were unbalanced 

with 94 entries in the first and seventh blocks and 84 entries in the remaining five blocks.  

Trials were planted on October 26, 2017 and October 23, 2018. In both years, nitrogen 

fertilizer in the form of urea was applied after the tillering stage (Feekes 3 to 5) in two 

applications of 67 kg N ha-1 and 33 kg N ha-1, respectively. Plots were rainfed and managed with 



26 

 

Axial (Syngenta AG, Basel, CHE) for ryegrass, Harmony Xtra (DuPont Agroscienes, 

Wilmington, DE, USA) for winter annuals, and Grizzly (Winfield United, Arden Hills, MN, 

USA) for aphids.  

Stripe Rust Inoculation 

Inoculum was collected from susceptible wheat seedlings that were grown in a growth chamber, 

programmed for a 14-hr photoperiod with a 12° C/8 °C day/night cycle, with uncontrolled 

humidity. The seedlings were inoculated with a mixture of 1.0 g of talcum powder per 0.01 g of 

previously stored PST-127 and PST-37 races, using an atomizer. After at least two reproductive 

life cycles of the pathogen, the inoculum was collected and dried in a desiccator for 12 to 48 

hours. The dried spores were then stored at -80° C until field inoculation.  

To simulate natural wind dispersion, uridiniospores were applied in the field by a Hudson 

model 18539 back-pack blower (H.D. Hudson Manufacturing Company, Lowell, MI, USA) with 

an approximate ratio of 1.0 g: 100.0 g uridinospores to talcum powder ratio. The nursery was 

surrounded by the susceptible check which provided a continuous source of inoculum after 

infection. Experimental plots were artificially inoculated six times, beginning at stem elongation 

(Feekes 4 to 5).  

Visual Stripe Rust Severity Evaluations 

In year one (2017-2018), each experimental plot was rated for stripe rust severity twice, once at 

the booting stage (Feekes 9, severity at booting) and again at the grain-fill (Feekes 11.0, severity 

at grain-fill). In year two, each plot was rated for stripe rust severity three times, once at the 

beginning of the booting stage (Feekes 9, severity at booting), at the heading stage (Feekes 10.0, 

severity at heading), and again during grain-fill (Feekes GS 11.0, severity at grain-fill). A 
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modified Cobb scale was used, which rates percentage of leaf area infected from 0 to 100 in 

increments (0, 2, 7,15, 30, 50, 70, 85, 93, 98, 100), with 0 showing no sign of infection and 100 

being the highest level of infection (Fig.1, Peterson et al., 1948). In year two, area under the 

disease progress curve (AUDPC) was calculated using the repeated ratings (Madden et al., 2007) 

and the following formula: 

����� =  ∑ (
��
�
�)�������� (���� − ��)          

where yi is an assessment of the disease severity rating at the ith observation, ti is the time 

component (in days) of the ith observation, and n is the total number of observations. Values 

greater than 0 indicated progression of stripe rust over the 14-day time period of the repeated 

measure. 

Platforms and Cameras Used to Capture Remote Sensing Data 

In year one, the Phantom 4 Pro (SZ DJI Technology Co., Ltd., Shenzhen, GD, CHN) quadcopter, 

equipped with an integrated global positioning system (GPS) and global national satellite system 

(GLONASS) was used to capture red, green, blue (RGB) and near infrared (NIR) images. The 

payload included a 20-megapixel complementary metal oxide semiconductor (CMOS) sensor 

and a Canon S110 camera (Canon Inc., Tokyo, JPN). RGB images were captured using the 

CMOS sensor and NIR images captured using the Canon S110 modified to Blue-Green-NIR 

(400-760nm). The ground station pro application (SZ DJI Technology Co., Ltd., Shenzhen, GD, 

CHN) was used for autonomous flight navigation, based on ground coordinates utilizing the 

spline survey option.  

In year two (2018-2019), the DJI Matrice 200 quadcopter, equipped with a downwelling 

light sensor, global positioning system (GPS) magnetometer module, and a RedEdge M 
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multispectral sensor, all developed by MicaSense (MicaSense, Inc, Seattle, WA, USA), was used 

for image capture (SZ DJI Technology Co., Ltd., Shenzhen, GD, CHN). The RedEdge M 

captures five images (1280 x 800) for five bands, including green, blue, red, red-edge, and near 

infrared (475-840nm). A combination of the DJI GO 4 application and the sensor Wi-Fi 

connection was applied to execute autonomous flights and monitor the multispectral sensor 

during data collection.  

Ground NDVI measurements were captured using the Greenseeker Handheld Optical 

Sensor in year two (Trimble, Inc, Sunnyvale, CA, USA). Readings were gathered by walking 

between the adjacent plots, with the sensor held over the plots at 0.50 m, near solar noon and in 

time proximity to the visual ratings (Greenseeeker booting, heading, grain-fill). 

Remote Sensing Data Collection  

In 2018, UAS data collection were collected on April 19 and May 4 and visual severity ratings 

on April 23 and May 3. Remote sensing measurements were taken within one hour of solar noon 

to minimize variation in illumination and solar zenith angle (Gu et al., 1992). Flights were 

executed using a spline survey in the DJIGO 4 application. The application ensured an altitude of 

45 meters above ground level (AGL), an 80% front-lap, and 70% side-lap. A two-second timer 

and platform speed of 4.0 ms-1 allowed automated image collection using the Canon S110 while 

maintaining desired overlap for NIR imaging. 

In 2019, data collection was executed on April 29th and May 17th, using the MicaSense 

RedEdge M multispectral sensor and severity ratings on May 3rd and May 17th. The May 3rd 

flight was executed under clear skies, near solar noon. The May 17th flight was executed under 

clear sky conditions approximately three hours before solar noon. The flights were executed 
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using a spline survey in the DJIGO 4 application that ensured an altitude of 30-meters AGL, an 

80% image front-lap, 75% image side-lap, at 4.0 ms-1, with the pixel size at approximately 1.8 

cm. A Galaxy tablet (Samsung, Seoul, KOR) and an iPhone 7 Plus (Apple Inc., Cupertino, CA, 

USA) were used to launch the DJIGO 4 application and to monitor the multispectral sensor 

during data collection. 

Images of the reflectance calibration panels were captured before and after flights to 

provide accurate reflectance data for each band. Green and yellow color disc panels were placed 

at the end of the field to serve as internal color standards for imaging across measurement days 

and lighting conditions for DGCI calculation (Fig. 2).  

Mosaic Construction Using CMOS and Digital Sensor Data 

For the 2018 data, a semi-automated processing pipeline was used to extract plot-level data from 

the UAS imagery (Haghighattalab et al., 2016). The Agisoft PhotoScan software (Agisoft LLC. 

St. Petersburg, RUS) was used to create mosaic images, using the scale-invariant feature 

transform (SIFT) algorithm (Lowe, 2004). The following workflow was used: (1) load the joint 

photographic experts group (JPEG) images, (2) image alignment, (3) import geo-referencing 

information, (4) build a dense point cloud, (5) build a dense elevation model (DEM) or Mesh, 

and (6) generate mosaics. After construction, mosaics were analyzed in the Field Analyzer 

software (https://www.turfanalyzer.com/field_analyzer.html) to determine DGCI and BNDVI of 

the individual plots 

Mosaic Construction Using Multispectral Data 

For the 2019 data, Pix4D Mapper Pro software (Pix4D S.A. Prilly, CHE) was used for image 

processing based on the SIFT algorithm. The following workflow was used: (1) import band 
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images (2) implement the Ag Multispectral processing template (3) insert radiometric calibration 

specifications and calibration panel images, and (4) process data. Spectral band images, 

including the geolocation and orientation data, were detected by Pix4D from the Exchangeable 

Image File (EXIF) metadata.  

Reflectance panel data for each band was incorporated into the workflow and the 

calibrated reflectance surface was selected from each panel image by constructing a rectangular 

boundary around the surface. Albedo values for each band was set and radiometric correction 

was performed using the camera parameters and sun irradiance information in the EXIF 

metadata.  

For final processing, the following workflow was used: (1) build a dense point cloud and mesh, 

(2) build a digital surface model (DSM), and (3) build mosaic and index reflectance maps. After 

processing in Pix4D, the mosaics and reflectance maps were exported as individual Geolocation 

Tagged Image File Formats (GeoTIFFs) for each band. These were imported into QGIS 3.8.0 

(QGIS Development Team, 2019) to create a virtual raster layer for each measurement day, 

which QGIS recognized as a multispectral image. Each band was assigned relative to the 

program’s recognition (Band 1=Blue, Band 2=Green, Band 3= Red) and the smallest minimum 

and largest maximum were made identical for all bands to create a more visually uniform image. 

RGB images were imported into Field Analyzer for DGCI analysis and NDVI reflectance maps 

were generated in Pix4D and imported as GeoTIFF files into QGIS.  

Vegetative Indices 

DGCI is calculated using the average of the transformed hue saturation and brightness (HSB) 

values. HSB values are based on human perception of color, where hue is defined as the angle on 
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a continuous circular scale from 0° to 360° (0°=red, 60°=yellow, 120°=green, 180°=cyan, 

240°=blue, 300°=magenta), saturation is the purity of the color from 0% (gray) to 100% (fully 

saturated), and brightness is relative lightness or darkness of the color from 0% (black) to 100% 

white) (Purcell et al., 2013). The dark green HSB transform is calculated as Hue – 60/60, so that 

hues of 60 and 120 would equal to dark green hue transforms of zero and one (Karcher and 

Richardson, 2003). Since lower saturation and brightness values correspond to darker green 

colors, 1 – saturation and 1 – brightness was used to calculate the dark green color transforms 

for saturation and brightness. Taking the average of transformed HSB values result in a single 

measure of dark green color ranging from zero to one, with higher values corresponding to dark 

green color (Karcher and Richardson, 2003a). DGCI was calculated using this formula:  
���� =  [(��� –  60)/60 +  (1 –  $%��&%�'()) + (1 –  *&'+ℎ�)�--)]/3 

NDVI was calculated as the normalized transformed ratio between reflectance measurements at 

the red and NIR wavelength ranges: 

0�1� =  (0�2 −  23�) / (0�2 +  23�) 

The RedEdge multispectral sensor provided 5-band TIFs with Red and NIR peaking at 668nm 

and 840nm wavelengths (“RedEdge-M User Manual (PDF),”). NDVI was calculated as a mean 

for each plot across all pixels. BNDVI was calculated as the normalized transformed ratio 

between reflectance measurements at the blue wavelength range and NIR wavelength range 

using this formula: 

40�1� = (0�2 –  45�3) / (0�2 +  45�3) 

Where the NIR wavelength ranged from 700-900 nm and the blue and green wavelengths from 

360-550 nm. BNDVI was also calculated as a mean for each plot.  
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 DGCI and BNDVI values were calculated in Field Analyzer, creating polygons manually, 

capturing only the center (core) of the plot. For NDVI, uniform polygons 0.86 m in length and 

0.10 m in width were placed over each plot using the grid creator plugin in QGIS. Zonal 

statistics were used to calculate the average NDVI across the pixels within each polygon. 

Statistical Analysis  

For the first year, in which a RCBD was used, each response variable was analyzed in an 

analysis of variance (ANOVA) and adjusted means were calculated using a mixed linear model 

in SAS 9.4 software (SAS Institute, Cary, NC):  

Yijk= µ + Ri + Lk + ℇijk 

where Yijk is the response variables relative to phenotypic observation, µ is the overall mean, Ri 

is the random replication effect of the ith replication, Lk is the fixed genotype effect of the kth 

genotype, and ℇijk is the random error term. For the augmented design used in year two, the 

following formula was used for ANOVA:  

Yijk= µ + βi + Cj + Lk(i) + ℇijk. 

where Yijk is the response variables relative to the phenotypic observation, µ is the overall mean, 

βi is the random block effect of the ith block, Cj is the fixed controls effect of the jth resistant and 

susceptible check, Lk(i) is the kth genotype nested within each block, and ℇijkl is the random error 

term. When data were combined across years, the following formula was used:  

Yijkl= µ + Lk + Yi+ LYik + Al(k) + R(j) + ℇijkl 

where Yijkl is the response variables relative to the phenotypic observation, µ is the overall mean, 

Lk is the fixed genotypic effect of the kth genotype, Yi is the fixed year effect of the ith year, LYik is 
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the fixed interaction effect of the genotype by year interaction, Al(k) is the fixed awns effect of the 

lth presence or absence of awns nested within the genotype, Rj(i) is the random replication effect 

of the jth replication nested within the year, and ℇijkl is the random error term.  

 Linear regressions were used to assess the relationship between visual severity ratings 

and remote (DGCI and BNDVI) and proximal (NDVI) sensing data in JMP Pro 14.2 (SAS 

Institute, Cary, NC). For regressions, a negative slope would indicate the expected relationships 

between the modified Cobb scale and DGCI and NDVI.   

Genome-Wide Association Study 

The GAWN was previously analyzed using genotype by sequencing (GBS) at the United 

States Department of Agriculture Eastern Genotyping Lab in Raleigh, NC. DNA was extracted 

using a Mag-Bind® Plant DNA Plus kit from Omega Bio-tek, according to manufacturer’s 

recommended protocol. GBS libraries were assimilated using Pst1-Msp1 in conjunction with the 

Pst1-Mse1 restriction enzymes. The samples were barcoded, pooled at 192-plex, and sequenced 

on an Illumina Hi-Seq 2500 sequencer (Illumina Inc., San Diego, CA, USA). Molecular markers 

and the combined phenotypic datasets over years were used in the Genomic Association and 

Prediction Integrated Tool (GAPIT) in R v3.5.5 software to conduct a genome wide association 

study (GWAS) using a Fixed and Random Model Circulatory Probability Unification Multi-

locus model (FarmCPU). The GWAS was performed using 594 genotypes and 49,024 GBS 

single nucleotide polymorphisms (SNPs) to identify marker-trait associations (MTAs). 

Population structure was controlled with the first seven principle components, as they each 

accounted for more than two percent of the total genetic variation of the population. 
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Results 

Analysis of Variance – Year One 

In year one, the population had mean severity ratings of 15% at the heading stage and 42% at the 

ripening stage, indicating positive disease progression. The effect of genotype was significant for 

severity at booting, severity at heading, and DGCI at booting. The effect of awns was not 

significant when included in the model (Table 2). The strongest linear relationship was observed 

between severity and DGCI (R2=0.55, p<0.0001) during grain-fill. Significant relationships were 

also observed between severity and DGCI (R2=0.08, p<0.0001) at booting and severity and 

BNDVI (R2=0.12, p<0.0001) during grain-fill. (Table 3. Fig.3) 

Analysis of Variance – Year Two 

In year two, the population had a mean severity rating of 7% at booting, 15% at heading, 

30% during grain-fill, and an average AUDPC value of 91, indicating positive disease 

progression. The effect of genotype was significant (p<0.0001) for severity at heading, severity 

at grain-fill, Greenseeker at booting, Greenseeker at grain-fill, and DGCI at booting. (Table 1). 

Significant relationships were observed for severity and DGCI (R2=0.13, p <0.0001) at booting, 

severity and DGCI (R2 = 0.16, p<0.0001) during grain-fill, and severity and NDVI during grain-

fill (R2 = 0.36, p<0.0001) (Table 3). Both years followed a similar trend of stronger relationships 

between visual and remote measurements from latter flights (Fig 4). The strongest relationship 

between proximal (Greenseeker) and remote (UAS) measurements of NDVI was during grain-

fill (R2 = 0.42, p<0.0001).  
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Analysis of Variance – Combined Over Years 

When data were combined across years, the effect of genotype was significant (p<0.0001) for 

severity at booting, severity at grain-fill, and DGCI at grain-fill. The interaction of year and 

genotype was significant for severity and DGCI during grain-fill. The effect of awns nested 

within genotype was significant for severity during grain-fill (p<0.0001) and DGCI during grain-

fill (p<0.05) (Table. 2). The most significant linear relationship was observed between severity 

and DGCI (R2 = 0.58, p<0.0001) at grain-fill. A significant relationship was also observed 

between severity and DGCI (R2 = 0.17, p<0.0001) at the booting stage (Table 3, Fig. 5).  

Confidence interval analysis at 95 % indicated that for any given plot with DGCI = 0.40, 

the prediction of a new individual would be between 61 % to 100 % severity. For DGCI = 0.50, 

the prediction of a new individual would be between 30 % and 100 %. For DGCI = 0.60, the 

predicted severity rating of a new individual ranged from 0% to 100 %. For DGCI = 0.70 DGCI, 

the predicted severity rating ranged from 0 to 70 %. For DGCI = 0.80, the predicted severity 

rating ranged from 0 % to 40 %. 

Marker-Trait Associations for Stripe Rust Resistance  

The FarmCPU model identified 28 MTAs that exceeded the Bonferroni corrected threshold of -

log10(p) ≥ 5.99 for the four response variables from the combined dataset (Table 5, Fig. 7 and 8). 

There were ten MTA for severity during booting, seven for severity during grain-fill, four for 

DGCI during booting, and six for DGCI during grain-fill. For the booting stage, MTAs for 

severity were identified on chromosomes 1B, 2A, 2B, 2D, 3A, 3B, 4B, 6B, 7A; with the most 

significant, SNP, S2A_18910313, located on chromosome 2A (Table 5). For DGCI at the 

booting stage, MTAs were identified on chromosomes 1B, 2A, 3D, and 5B; with 
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S5B_529987661 on 5B. Consistent MTAs across visual and remote measurements at the booting 

stage were located on chromosomes 1B and 2A (Table 5 Fig. 7).  

At the grain-fill stage, MTAs for visual severity ratings were identified on the 2B, 3B, 

4B, 6B, and 7A chromosomes; with the most significant SNP, S4B_598847646 on chromosome 

4B (Table 5). For DGCI at grain-fill, MTAs were identified on chromosomes 2A, 4B, 6A, and 

7D, with the most significant SNP, S4B_609487031, located on chromosome 4B (Table 5). A 

consistent MTA across visual and remote measurements during grain-fill was identified on 

chromosome 4B (Fig. 8). 

Discussion 

Relationship Between Visual Severity and Remote Sensing Indices  

Significant linear relationships between visual severity and remote sensing indices, particularly 

DGCI, were observed across both years and in the combined analysis. In general, the severity 

ratings and DGCI at booting of each year had a weaker relationship (R2 = 0.08 and 0.14 for year 

one and two, respectively) compared to latter flights, likely the result of lower disease pressure, 

leading to low visible differences between healthy and damaged leaf color at that time. As 

severity increased, the ability of the UAS to differentiate between severity levels improved and a 

stronger relationship was observed (R2 = 0.55 and 0.16 for year one and two, respectively). The 

relationship also improved as more data were included in the regression model, as seen in the 

combined analysis (R2 = 0.18 and 0.58 at booting and grain-fill stages respectively). The 

relationship between visual severity and BNDVI was generally weak in comparison to DGCI and 

the multispectral NDVI, likely due to the lack of image resolution and sensitivity of the index. 
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In year two, multispectral NDVI showed a stronger relationship with visual severity (R2 

= 0.36) compared to DGCI, possibly due to the sensitivity of NDVI to differentiate between 

healthy and stripe rust induced damage. Devadas et al (2009) evaluated the ability of several 

indices to distinguish stripe rust damage from that of leaf and stem rust in a controlled 

environment. They found that for the mean values of the vegetative indices, including NDVI, 

across all three rust pathogens, that stripe rust produced the strongest response due to the rapid 

generation of uredia per fungal colony developing streaks of yellow-orange color down the leaf 

and hindering the proper absorption of red wavelengths and reflectance of NIR. Su et al (2018) 

evaluated several narrow band indices for their ability to detect stripe rust in a field-based 

environment using UAS and multispectral imagery. They found NDVI to be the second most 

capable index among 22 narrow-band indices for detecting stripe rust. Both studies support the 

relationship observed in the current study.  

A significant relationship between proximal and remote sensing measurements of NDVI 

(R2 = 0.42 p<0.0001) was also observed, in agreement with other studies where R2 = 0.63 to 0.84 

have been reported (Arora et al., 2013; Duan et al., 2017). For the latter, seven-meter plot sizes 

were used, possibly influencing the relationship between proximal and remote NDVI. Using 

single-row plot sizes likely introduces error and reduces the strength of the relationship in our 

study. In addition, the spatial resolution of the multispectral sensor was approximately of 1.8 cm 

at 30m AGL, making it capable of sensing shadows, soil and underlying biomass within the field 

of view as previously reported by Lu and He (2018).  

Predictability of Visual Severity 

The linear predictability of visual severity ratings using DGCI was evaluated by analyzing the 

upper and lower limits at 95% confidence for the strongest relationship observed in the study 
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between visual severity and DGCI (R2 = 0.58). The upper and lower confidence limits represent 

the range in severity for a new DGCI value of an un-replicated measurement. The mean upper 

and lower confidence limits represent the range of severity for a new mean DGCI value with 

three replicates. At a DGCI value of 0.40 the predicted severity ranges from 60% to 100%, while 

the mean confidence limits are 100% (Table 4). On the other end of the spectrum at a DGCI 

value of 0.80, the predicted severity ranges from 0% to 40%, while the mean confidence limits 

are 0%. Overall, when predicting visual severity, analyzing the mean of three replicates was 

more accurate compared to a single replicate. However, a DGCI value of 0.40 includes only 17% 

of the total genotypes. From a practical viewpoint, a breeder could successfully remove these 

susceptible genotypes using either the replicated or un-replicated design. In comparison, a DGCI 

value of 0.80 includes approximately 45% of the genotypes. Using an un-replicated design in this 

scenario would risk low accuracy or advancement of moderately susceptible genotypes. In 

addition, the average DGCI value showed no significant difference between a severity rating of 

2% and 70% (Fig. 6). Although DGCI has not previously been used as an indirect measurement 

of disease severity, our results indicate that it does have utility in this area, despite some 

limitations. In general, there was a relationship, but the ability to predict visual severity ratings 

using DGCI was not precise for new individual; however, replicating the population three times 

or more, improves precision (Table 4).  

Marker Trait Associations 

Proximal and UAS remote sensing have been successful in the detection of QTL for 

morphological (Virlet et al., 2015) and transpiration improvements, disease resistance (Kumar et 

al., 2016; Pretorius et al., 2017; Stewart et al., 2019), abiotic stress tolerance (Condorelli et al., 

2018), plant height (Wang et al., 2019; Hassan et al., 2019) and other traits. In the current study, 
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different MTAs were detected during early UAS flights and early visual ratings compared to 

latter assessments. Consistent MTAs identified during for visual ratings during the booting stage 

were located on chromosomes 1B and 2A. The 2A MTA is likely the resistance gene Yr17, 

introduced from Aegilops ventricosa chromosome 2NS and is widely present in US southern soft 

wheat germplasm due to tight linkage with leaf rust (Lr37), and stem rust resistance (Sr38) genes 

(Robert et al., 1999; Helguera et al., 2003). It has previously been classified as both an all-stage 

and adult plant resistance gene (Sthapit et al., 2011; Hubbard and Bayles, 2013; Milus et al., 

2015). The MTA on chromosome 1B is likely the resistance gene Yr15, introduced from wild 

Emmer wheat, (Triticum dicoccoides) and previously reported to confer resistance to a broad 

spectrum of stripe rust isolates at both seedling and adult plant stages (Gerechter-Amitai et al., 

1989; Peng et al., 2000).  

 For the visual and DGCI measurements during grain-fill, a consistent MTA was detected 

on chromosome 4B only. Previous research indicates that the 4B chromosome contains an APR 

gene with minor effects (William et al., 2003; Suenaga et al., 2003; Yang et al., 2016). Stripe rust 

resistance in the soft wheat cultivar ‘USG3555’ was mapped to the 4BS region (Christopher et 

al., 2013) and present in multiple soft red winter wheat genotypes. Overall these results indicate 

that UAS remote sensing can be a surrogate for traditional phenotyping in the identification of 

MTAs for stripe rust resistance.  

Conclusion 

As stripe rust virulence continues to evolve, so does the size and diversity of breeding programs, 

and the cost and labor for phenotyping. This research showed a relationship between visual stripe 

rust severity ratings and both DGCI and NDVI in a diverse population of wheat genotypes, 

though there are constraints that limit the confidence. Our results also indicate that the ability to 
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predict stripe rust severity using DGCI is not precise for predicting a genotype in an un-

replicated design. However, precision does improve with replication.  Lastly, the results show 

that although DGCI has not been used for assessing disease severity, it can identify resistance 

genes for stripe rust that are also detected when severity is rated visually. Further research is 

warranted on plot size, optimal spatial resolution, and extensively on NDVI or other specialized 

vegetative indices that could be more sensitive to stripe rust detection and less sensitive non 

disease related phenotypic variation. 
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Tables and Figures 

 Table 1. Analysis of variance for genotype effect stripe rust severity and UAS 
measurements in 596 wheat genotypes evaluated over two growing seasons in 
Fayetteville, AR. 

Year Response Variable Genotype P-value 

2017-2018 Severity at booting <0.0001 

 Severity at grain-fill <0.0001 

 DGCI at booting 0.0391 

 DGCI at grain-fill 0.8225 

 BNDVI at grain-fill 0.8224 

2018-2019 Severity at booting 0.1371 

 Severity at heading <0.0001 

 Severity at grain-fill <0.0001 

  DGCI at booting 0.0183 

 DGCI at grain-fill 0.4595 

 NDVI at booting 0.7984 

 NDVI at grain-fill 0.6643 

 Greenseeker at booting 0.0370 

 Greenseeker at heading 0.9453 

 Greenseeker at grain-fill <0.0001 
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Table 2. Combined analysis of variance for stripe rust severity and UAS 
measurements in 596 wheat genotypes evaluated over two growing seasons in 
Fayetteville, AR. 

 P-value 

Response Variable Genotype Year 

Genotype 

by year Awns 

Severity at booting <0.0001 0.6499 1.0000 - 

Severity at grain-fill <0.0001 0.1190 <0.0001 0.3620 

DGCI at booting 0.9997 0.1770 1.0000 - 

DGCI at grain-fill <0.0001 0.3770 <0.0001 0.0349 

Awn measurements were not included due to the lack of awn presence during the 
booting stage. 
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Table 3. Linear regressions for stripe rust severity and UAS measurements in 596 wheat 
genotypes evaluated over two growing seasons in Fayetteville, AR. 

Year Regression R2 P-value 

2017-2018 Severity x DGCI at booting 0.08 <0.0001 

 Severity x DGCI at grain-fill 0.55 <0.0001 

 Severity x BNDVI at grain-fill 0.12 <0.0001 

2018-2019 Severity x DGCI at booting 0.14 <0.0001 

 Severity x DGCI at grain-fill 0.16 <0.0001 

 Severity x NDVI at grain-fill 0.37 <0.0001 

 Severity x NDVI at booting -0.0012 0.6101 

 Greenseeker x NDVI at grain-fill 0.42 <0.0001 

 Greenseeker x NDVI at booting 0.0002 0.7692 

Combined Severity x DGCI at booting 0.18 <0.0001 

 Severity x DGCI at grain-fill 0.58 <0.0001 
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Table 4. Severity predictions using DGCI ratings of the combined data during the 
grain-fill evaluations at 95% confidence.  

ℇDGCI Prediction ℇStd Err 

Pred. 

ℇLCLI ◊UCLI 

 

†LCLM ‡UCLM 

 

0.40 113.354 5.50295 61.217 >100 > 100 >100 

0.50 82.161 5.21810 30.137 >100 71.927 92.395 

0.60 50.968 5.06846 <0 >100 41.027 60.909 

0.70 19.776 5.06602 <0 71.742 9.840 29.712 

0.80 -11.417 5.21099 <0 40.604 <0 <0 

ℇDGCI: A given Dark Green Color Index  
ℇStd Error Pred: The standard error of the predicted value 

ℇLCLI: Lower confidence limit for a new predicted individual 

◊UCLI: Upper confidence limit for a new predicted individual 
†LCLM: Lower confidence limit for means  

‡UCLM: Upper confidence limit for means 
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Table 5. Marker-trait associations (MTAs) identified by a FarmCPU model genome-wide 
association study for stripe rust severity and UAS measurements in 596 wheat genotypes 
evaluated over two growing seasons in Fayetteville, AR. 

Response⁕   SNP_Position⁕ Chrℇ Allele MAF† P-value Effect  

Severity at booting S2A_18910313 2A T/C 0.47 7.6E-15 -3.55 

 S1B_683140161 1B T/C 0.05 1.92E-11 -5.48 

 S4B_602447901 4B C/T 0.41 1.59E-09 3.02 

 S6B_591265094 6B A/G 0.25 6.03E-09 2.73 

 S2D_50157935 2D G/C 0.05 4.62E-08 4.16 

 S3B_650829511 3B C/T 0.33 1.44E-07 -2.04 

 S2B_666629276 2B C/G 0.05 1.75E-07 4.07 

 S3A_644716732 3A C/T 0.07 2.15E-07 -3.32 

 S2B_468445975 2B G/A 0.27 2.55E-07 8.54 

 S3B_7153553 3B T/C 0.06 9.04E-07 -3.27 

 S4B_580353549 4B A/G 0.20 2.11E-06 2.37 

 S4A_168336979 4A G/A 0.07 3.2E-06 -2.99 

 S7A_70208434 7A T/C 0.06 4.34E-06 -2.75 

 S6A_12087708 6A T/C 0.05 7.45E-06 -3.29 

 S4B_560999693 4B C/T 0.24 1.46E-05 1.97 

 S5A_700116990 5A G/A 0.06 1.86E-05 -3.14 

 S4A_717462504 4A C/G 0.06 3.15E-05 -2.61 

Severity at grain-fill S4B_598847646 4B C/T 0.38 1.84E-30 -12.56 

 S3B_5973360 3B A/G 0.26 4.45E-15 7.10 

 S2B_468445975 2B G/A 0.27 2.88E-08 21.66 

 S2B_19375915 2B A/C 0.46 3.29E-08 5.69 

 S7A_636168477 7A C/G 0.08 4.98E-07 6.95 

 S6B_560457640 6B A/G 0.28 6.68E-07 5.26 

 S7A_726771085 7A C/T 0.41 1.22E-06 -3.18 

 S3B_361671302 3B G/A 0.06 1.59E-06 8.679 

 S5A_471182188 5A A/C 0.07 3.01E-06 6.55 

 S5B_265722985 5B C/T 0.06 7.23E-06 -8.29 

 S2A_11194997 2A T/C 0.25 1E-05 -4.50 

 S1A_519860957 1A C/T 0.08 1.01E-05 -6.29 

 S3B_589641918 3B G/A 0.05 1.78E-05 9.04 

 S4D_6558263 4D A/G 0.34 1.9E-05 -3.30 

 S2B_715023997 2B A/G 0.31 2.92E-05 -4.32 

 S4D_472982770 4D G/A 0.27 7.63E-05 -3.68 

DGCI at booting S5B_529987661 5B A/T 0.46 9.43E-08 0.01 

 S2A_11194972 2A A/G 0.48 2.06E-07 -0.01 

 S3D_604968955 3D A/G 0.16 2.13E-07 0.01 

 S1B_281684193 1B G/T 0.06 2.97E-07 0.01 

 S3B_13454494 3B C/G 0.41 1.05E-06 0.01 

 S7A_693685823 7A C/T 0.36 4.08E-06 -0.01 

 S5B_268892901 5B T/A 0.05 1.52E-05 0.01 

 S3B_482345832 3B C/T 0.19 1.68E-05 0.01 
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Table 5. (Cont.)       

Response⁕   SNP_Position⁕ Chrℇ Allele MAF† P-value Effect  

 S2B_34843162 2B G/C 0.05 4.3E-05 -0.01 

 S1A_3780088 1A T/C 0.28 5.01E-05 0.01 

 S7A_643418804 7A T/C 0.41 5.45E-05 -0.004 

 S3A_37498804 3A G/T 0.26 5.8E-05 -0.01 

 S2B_217268814 2B T/C 0.06 7.58E-05 -0.01 

DGCI at grain-fill S4B_609487031 4B T/C 0.48 6.93E-15 0.02 

 S2A_3634514 2A C/T 0.48 8.09E-09 0.01 

 S7D_388736851 7D A/C 0.22 4.23E-08 -0.01 

 S4B_580353549 4B A/G 0.21 7.88E-08 -0.01 

 S6A_2997672 6A A/G 0.15 2.86E-07 0.01 

 S2A_11552559 2A A/G 0.25 4.9E-07 -0.01 

 S6A_456295876 6A C/T 0.09 1.22E-06 -0.01 

 S2B_488198528 2B A/G 0.28 1.47E-06 0.03 

 S7A_37923130 7A C/T 0.27 2.5E-06 0.01 

 S3A_627917290 3A C/G 0.06 3.79E-06 0.01 

 S3B_735391182 3B T/C 0.10 4.66E-06 -0.01 

 S7A_49510162 7A C/G 0.23 6.78E-06 -0.01 

 S5D_431083013 5D A/C 0.06 7.68E-06 0.01 

 S5B_268892901 5B T/A 0.05 2.39E-05 0.02 

 S3B_5973360 3B A/G 0.26 3.56E-05 -0.01 

 S1A_504420080 1A G/C 0.26 7.8E-05 0.01 

Responseℇ: response variables including visual and remote sensing evaluations over 
measurement days 
SNPℇ: single-nucleotide polymorphism 
Chrℇ: Triticum aestivum chromosome number  

MAF†: Minor allele frequency  
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Figure 1: The Modified Cobb visual rating scale with severity ratings ranging from 0 to 100 

based on the severity of stripe rust infection on the leaf.    
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Figure 2: (A) Color standards placed at the end of the field. (B) RGB image at 45m AGL from 

the CMOS 20 Megapixel camera.  
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Figure 3: Linear Regressions in the 2017-2018 growing season. A) The relationship between the 
DGCI and visual severity evaluations during the booting stage. B) The relationship between the 
DGCI and visual severity evaluations during the grain-fill stage. C) The relationship between the 
blue NDVI and visual severity evaluations during the booting stage.  
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Figure 4: Linear Regressions in the 2018-2019 growing season. A) The relationship between the 
DGCI and the visual severity evaluations during the booting stage. B) The relationship between 
the DGCI and the visual severity evaluations at the grain-fill stage. C) The relationship between 
the NDVI and visual severity evaluations during the grain-fill stage. D) The relationship between 
the greenseeker and the multispectral NDVI evaluations during the grain-fill stage.  
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Figure 5: Linear Regressions of the combined data over both years. A) The relationship between 
the DGCI and visual severity evaluations during the booting stage. B) The relationship between 
the DGCI and visual severity evaluations during the grain-fill stage 
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Figure 6: Predictive partitioning tree plot of the combined data, at the grain-fill stage, split by 
the modified Cobb rating scale with the number of lines, mean DGCI values, and standard 
deviation within each split. 
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Figure 7: Manhattan plots and Quantile-Quantile Plots showing marker-trait associations 
identified in the Fixed and random model Circulatory Probability Unification (FarmCPU) model. 
(A) MTAs identified from the visual evaluations during the booting stage. (B) MTAs identified 
from the DGCI evaluations during the booting stage. The x-axis displays the respective 
chromosome and the y-axis displays the likelihood of odds (LOD) score. The red dashed line is 
the Bonferroni threshold set at a LOD=5.99 or p=0.00000102. 
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Figure 8: Manhattan plots and Quantile-Quantile plots showing marker-trait associations 

identified in the Fixed and random model Circulatory Probability Unification (FarmCPU) model 

(A) MTAs identified from visual evaluations during the grain-fill stage. (B) MTAs identified 

from the DGCI evaluations during the grain-fill stage. The x-axis displays the respective 

chromosome and the y-axis displays the likelihood of odds (LOD) score. The red dashed line is 

the Bonferroni threshold set at a LOD=5.99 or p=0.00000102. 
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CHAPTER 3: EVALUATING THE PLOT SIZE EFFECT ON THE RELATIONSHIPS 

BETWEEN VISUAL, PROXIMAL, AND REMOTE SENSING MEASUREMENTS FOR 

STRIPE RUST SEVERITY IN WHEAT  

 

Abstract 

Stripe rust (Puccinia striiformis f. sp. Tritici) is a foliar disease that significantly impacts global 

wheat production. When breeding for resistance, phenotyping large nurseries can be a bottleneck 

for genetic improvement. The use of unmanned aerial systems (UAS) for high-throughput 

phenotyping is on the rise, but their accuracy compared to manual ground measurements needs 

further proof of concept. Here, the effect of plot size (single-row, two-row, and four-row) on the 

ability of UAS to assess stripe rust severity in an inoculated nursery was explored in a panel of 

13 genotypes preselected to range from 0 to 100 % severity. The normalized difference 

vegetation index (NDVI) and dark green color index (DGCI) were measured by UAS at the 

booting and grain-fill stages to determine their relationship with ground severity ratings. 

Significant (p<0.0001) relationships were observed between visual severity and DGCI across 

both measurement days, with the four-row plot size having the strongest relationship (R2 = 0.84 

to 0.85), though not significantly different from single-row (R2 = 0.75 to 0.74) or two-row (R2= 

0.72 to 0.71). Significant regressions were also observed between visual severity and NDVI, 

where the two-row (R2 = 0.78) and four-row (R2 = 0.84) plot size regressions were significantly 

stronger than single-row (R2 = 0.02) during the booting stage. Overall, this research provides 

evidence that larger plot sizes significantly increase the accuracy of sensor-based assessment of 

stripe rust severity in wheat using UAS. 
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Introduction 

Stripe rust is a foliar disease of wheat (Triticum aestivum) caused by the fungal pathogen 

Puccinia striiformis f. sp. Tritici. It is one of the most devastating wheat diseases globally, 

reported in over 60 countries (Stubbs, 1985; Line, 2002; Chen, 2005; Chen et al., 2010). Yield 

losses of 50 to 100% have been reported with the most significant yield losses from infection 

occurring early in the growing season, in cool and wet conditions (Chen et al., 2002; Wegulo and 

Byamukama, 2012). In the US, stripe rust was first identified in Washington in 1915 and the first 

notable outbreak occurred during the 1950s in western Washington. (Carleton, 1915; Chen, 

2007). The spread of stripe rust has resulted from new races of P. striiformis that have overcome 

deployed resistance genes, challenging wheat breeders and producers seasonally (Line, 2002; 

Chen et al., 2010).  

Within the past decade, a lower cost for whole-genome sequencing and genotyping has 

resulted in a plethora of genomic information on disease resistance quantitative trait loci (QTL) 

(Jannink et al., 2010; Brachi et al., 2011). However, accurate phenotyping remains a vital 

component for genetic improvement, including for stripe rust resistance. The challenge for plant 

breeders now becomes producing phenotypic information to keep pace with genomics (Furbank 

and Tester, 2011; White et al., 2012). Phenotyping of single plots in large breeding nurseries is 

difficult and can have low accuracy when performed quickly. (Fehr, 1991; Andrade-Sanchez et 

al., 2014). High-throughput phenotyping, including both proximal and remote sensing, provides 

a potentially more rapid method to produce phenotypic data, (Poland and Price, 2015; 

Haghighattalab et al., 2016). However, to be useful in a practical breeding program high-

throughput methods must be accurate within the context of varying plot sizes, experimental 

designs, and field conditions (Haghighattalab et al., 2016). 
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Proximal sensing is defined as a measurement taken in close range of the plants, resulting 

in less atmospheric interference. This is done using a hand-held sensor or a vehicle modified 

with sensors to provide high resolution and multiple view angles at a known distance (Ruixiu et 

al., 1989; Andrade-Sanchez et al., 2014). Proximal sensing has limitations involving portability 

and rapidity. In cotton, canopy height, reflectance, and temperature were measured 

simultaneously using a tractor modified with sensors (Andrade-Sanchez et al., 2014). Although 

this approach was accurate and more efficient than manual phenotyping, the time expenditure 

(0.84 ha hr-1) was significant. 

 Remote sensing is defined as the process of measuring an object from a distance using a 

non-destructive and non-invasive approach (Araus and Cairns, 2014; Marshall et al., 2016). 

While this was initially done using manned aircrafts, unmanned aerial systems (UAS) are now 

used almost exclusively in agricultural research (Marshall et al., 2016). Unmanned aerial systems 

provide lower flight altitudes and higher spatial resolution (pixel size < 25cm), delivering more 

detailed image analysis (Wulder et al., 2004). Unmanned aerial systems are also able to cover 

entire experiments in a short time span, alleviating the time and portability limitations of  

proximal sensing (Ruixiu et al., 1989; Lan, 2009; Marshall et al., 2016).  

Several types of sensors are used in the remote sensing of crops, but all are developed 

around the same principle of capturing the reflection and absorption of energy based on plant 

photosynthetically active tissue (Wiegand et al., 1986; Wanjura and Hatfield, 1987). Healthy 

plants absorb blue (~430nm) and red (~662nm) wavelengths through Chlorophyll A in the 

leaves. In Contrast , leaf reflectance is low on the electromagnetic spectrum except in the green 

wavelengths (~550nm) and throughout the infrared range (~700-1300nm) (Knipling, 1970). 

Indices similar to the normalized difference vegetation index (NDVI) and dark green color index 
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(DGCI) observe two or more spectral wavelengths, and respond to the amount of 

photosynthetically active tissue in the plant (Wiegand et al., 1986). 

NDVI is the differenced ratio of reflectance in the red and near infrared wavelengths 

(Tucker, 1979), and has been used to evaluate many agronomic traits. DGCI was developed to 

measure the color of  plants in digital images after it was discovered that the amount of red and 

blue light alters green color (Karcher and Richardson, 2003). This index has been used to 

quantify the intensity of leaf greenness for nitrogen content in corn (Karcher and Richardson, 

2003) and turf (Rorie et al., 2011).  

Although UASs can obtain high spatial resolution in comparison to satellite imaging, data 

collected from  low altitude flights  (30 m AGL) show that the relationship between remote 

sensing methods and ground evaluations improve with increasing target surface area 

(Haghighattalab et al., 2016; Duan et al., 2017). Remote sensing technologies must be amenable 

to the experimental design, including the plot size, in order to be effective in large breeding 

programs (Haghighattalab et al., 2016). Individual breeding programs have constraints in terms 

of space availability for research and budget, and there is a need for proof of concept research 

determining the ability of UAS technologies to replace or compliment manual methods of 

phenotyping. Given this, the objective of this research was to determine if plot size has a 

significant effect on the relationship between visual and proximal or remote sensing of stripe rust 

severity. 
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Materials and Methods 

Germplasm  

The germplasm used in this study consisted of 11 genotypes preselected from evaluations in 

2017-2018 to represent the variability of the modified Cobb visual severity rating scale. The 

modified Cobb visual severity rating scale rates the percentage of leaf area infected from 0 to 

100 in increments (0, 2, 7,15, 30, 50, 70, 85, 93, 98, 100), with 0 showing no sign of infection 

and 100 being the highest level of infection (Fig.1, Peterson et al., 1948). The 11 preselected 

genotypes included: ARGA06411-9-3-4 represented 100% severity, NC05-20671 at 98%, 

AR99263-7-1 at 93%, NC07-25169 at 85%, AR04015-5 at 70%, LA10191C-1 at 50%, 

TX13D5193 at 30%, AR06037-17-2 at 15%, ARLA07133C-3-4 at 7%, LA08115C-30 at 2% and 

AR00255-16-1 at 0% severity. In addition to the 11 preselected genotypes, two check cultivars 

were included, a resistant check, ‘Pat’ (Bacon et al., 2004) and susceptible check ‘Croplan 

Genetics 514W’ (CG514W), for a total of 13 lines. 

Experimental Design 

The experiment was conducted at the Milo J. Shult Agricultural Research and Extension Center 

in Fayetteville, Arkansas, during the 2018-2019 growing season. The 13 genotypes were drill-

seeded in a split-plot design where plot-size was the whole-plot and genotype the was the split-

plot factor, with genotype randomized for each plot size. Plots size included single-row (0.24 m 

width and 1.22 m length), two-row (0.50 m width and 1.22 m length), and four-row (1.21 m 

width and 1.22 m length). This design was replicated three times where each plot size contained 

all 13 genotypes (Fig.1).  
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The experiment was planted on October 23, 2018. Nitrogen fertilizer in the form of urea 

was applied after the tillering stage (Feekes 3-5) in two applications of 67 kg ha-1 and 33 kg ha-1, 

respectively. Plots were rainfed and managed with Axial (Syngenta AG, Basel, CHE) for 

ryegrass, Harmony Xtra (DuPont Agroscienes, Wilmington, DE, USA) for winter annuals and 

Grizzly (Winfield United, Arden Hills, MN, USA) for aphids. 

Stripe rust inoculation procedures ,visual and remote sensing evaluations, aerial platforms, active 

and passive sensors, flight parameters, and post flight processing procedures were identical to 

those in “CHAPTER 2: UTILITY OF UAS TO ASSESS STRIPE RUST SEVERITY AND 

DETECT KNOWN RESISTANCE GENES IN A SOFT RED WINTER WHEAT BREEDING 

NURSERY” (Jamison Murry1, Richard Esten Mason, David Moon, Larry Purcell Leandro 

Mozzoni Dylan Larkin) regarding the experiment conducted in the second year.  

Statistical Analysis 

Each response variable was analyzed in an analysis of variance, and adjusted means were 

calculated using a mixed linear model in SAS 9.4 software (SAS Institute, Cary, NC):   

Yijk= µ + Tj + Lk + TLjk + βi + ℇijk. 

where Yijk  is the response variables relative to the phenotypic observation, µ is the overall mean, 

Tj is the fixed plot size effect of the jth treatment, Lk is the fixed genotype effect of the kth 

genotype, TLjk is the fixed plot size by genotype interaction effect, βi is the random blocking 

effect of the ith blocking variable, and ℇijk is the random error term. Linear regressions were used 

to determine the relationship between the visual and remote or proximal sensing data, among 

measurement days and by plot size in JMP Pro 14.2 software (SAS Institute, Cary, NC). The 
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coefficients of determination from the regression analysis were converted into Pearson 

correlation coefficients and transformed into Fisher’s Z coefficients using the following formula: 

67 = .5[ln(1 + &) − ln(1 − &)] 
 where ln is the natural log, and r is the correlation coefficient (Statistics How To, 2014). An 

online calculator (https://www.statisticshowto.datasciencecentral.com/fisher-z/) was then used to 

determine the significance between plot sizes using the z test statistic and the following formula:  

<=>?@AB@C = (<� −  <�)DE 10� − 3F + E 10� − 3F  
Where Z1 and Z2 are the converted r coefficients for comparisons, and N1 and N2 are the 

corresponding sample sizes (Statistics Solutions, 2019).  

Results 

Relationship Between DGCI and Visual Severity Ratings 

The experiment had a mean visual severity rating of 20% at the booting stage, 30% at the 

heading stage, 40% at the grain-fill stage, and an AUDPC of 47, indicating positive disease 

progression. The effect of genotype was significant (p<0.0001) for all severity and DGCI 

measurements (Table 1). The effects of plot-size and the interaction of plot-size and genotype 

were significant for DGCI at grain-fill only. A significant linear relationship was observed 

between severity and DGCI across both days and all plot sizes. The strongest relationship 

observed between severity and DGCI was at the grain-fill stage for the four-row plot size (R2 = 

0.86, p<0.0001). In general, the relationship was strongest for the four-row (R2 = 0.85 to 0.86) 

compared to the two-row (R2= 0.72 to 0.71) and one-row (R2 = 0.75 to 0.74) plot sizes (Table 2, 
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Fig. 2). However, comparing the correlation coefficients found no significant differences 

identified between plot size correlations across measurement days (Table 3).  

Relationship Between UAS NDVI and Visual Severity Ratings 

The effect of genotype was significant (p<0.05) for NDVI at booting. The effect of plot size and 

the interaction of plot size and genotype were not significant for NDVI (Table 1). The four-row 

plot size (R2 = 0.84, p< 0.0001) had the strongest relationship between severity and NDVI, 

which was significantly different compared to the single-row (R2 = 0.02, p<0.6204) but not the 

two-row (R2 = 0.78, p<0.0001) plot sizes (Fig. 3, Table 2). The correlation coefficients for 

single-row and the two-row plot sizes were also significantly different from each other (Table 3). 

Relationship Between Proximal NDVI and Visual Severity Ratings 

The effect of genotype was significant (p<0.0001) for all proximal Greenseeker NDVI 

measurements (Table 1). The effect of plot size was significant (p<0.05) for the Greenseeker 

NDVI values at grain-fill only (Table 1). At the booting stage, the relationship between severity 

and proximal NDVI was greater for the four-row (R2 = 0.88, p<0.0001) and two-row (R2 = 0.88, 

p<0.0001), compared to the single-row (R2 = 0.86, p<0.0001) plot size (Fig. 4, Table 2). At the 

grain-fill stage, the single-row (R2  = 0.98, p<0.0001) plot size relationship was the strongest, 

followed by the four-row (R2 = 0.95, p<0.0001) and two-row (R2 = 0.89, p<0.0001), with no 

significant differences. 

Relationship Between UAS and Proximal NDVI Measurements 

The strongest relationship between proximal Greenseeker NDVI and remote NDVI occurred at 

the booting stage with the four-row plot size (R2 = 0.92, p< 0.0001). but the four-row values 

were not significantly different from the two-row (R2 = 0.86 p<0.0001). Both the two-row and 
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four-row were significantly greater than the single-row (R2 = 0.01 p<0.7862) plot size 

relationship (Fig 5, Table 2 and 3 

Discussion 

When breeding field crops, plot sizes vary among field trials and generation of breeding lines, 

often contingent on breeding objectives, financial and land resources, and seed availability  

(Fehr, 1991). Smaller plots are mostly used in the early stages of breeding to evaluate genotypes 

rapidly and at lower cost (Fehr, 1991; Barmeier and Schmidhalter, 2016). When considering the 

use of UAS to phenotype large breeding nurseries in a heterogenous area, the spatial resolution 

to accurately capture differences in spectral reflectance for each plot must be considered (Lu and 

He, 2018). For stripe rust, the pixel size must be small enough to analyze disease symptoms. 

Increasing plot size can amplify the visibility of disease symptoms over the larger homogenous 

plot and increase ability to accurately determine severity. 

Plot-Size Effect on the Relationship Between DGCI and Visual Assessments  

The results of this study indicate that the relationship between visual severity and DGCI 

collected with a UAS was the strongest for the four-row plot sizes, though not significantly 

different from the two-row and one-row. The strong relationships among all the treatments and 

measurement days are likely attributed to the HSB transformation that DGCI utilizes, which is 

closely related to the human perception of color, evaluating the plots similarly to visual 

assessments. (Karcher and Richardson, 2003). Rorie et al (2011) showed that the greenness of 

corn and other non-legume crops is a strong indicator of nitrogen (N) status. They used DGCI to 

evaluate the N status of corn and found a strong relationship with SPAD units, a surrogate for N 

in crops. Stripe rust produces yellow-orange spores that induces leaf chlorosis similar to N 
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deficiency symptoms, resulting in the ability of DGCI to evaluate the symptoms of stripe rust 

across plot sizes.  

It should be noted that for the two-row plot size, the susceptible check had a mean DGCI 

value that was higher than expected. The anticipated rating was a maximum mean of 0.60, 

similar to what was observed for CG514W in the single-row plot size, however as the plot size 

increased, the DGCI value slightly increased. Possible explanations include the stunting of 

growth for this specific genotype from disease severity, increased biomass of smaller vegetation 

captured within the polygon, or shading from neighboring genotypes, which could alter the 

DGCI value and classification of the genotype. Lu and He, (2018) showed that when classifying 

specific grass species in heterogeneous grasslands using a UAS, high spatial resolution flights 

(pixel size ≤5cm) captured shadowing effects and other vegetation, hindering the classification 

of desired species. With a pixel size of 1.8 cm, this effect was likely a cause of higher DGCI 

ratings observed for the susceptible CG514W genotype. Overall an increase in plot size did not 

significantly improve the relationship between visual and DGCI evaluations.  

Plot Size Effect on the Relationship Between Visual Assessments and Multispectral NDVI 

Similar to DGCI, the four-row plot size showed the strongest relationship between visual 

severity and remote NDVI, significantly equal to the two-row and significantly different from the 

single-row plot sizes. This difference is likely due to increased pixel count reducing the error 

associated with determining mean per plot NDVI. Devadas et al (2009) tested multiple 

vegetative indices in a controlled environment for ability to identify stripe rust against stem rust 

(Puccinia graminis) and leaf rust (Puccinia triticina) using a leaf reflectance spectrometer. The 

authors found that stripe rust produced the strongest response for many of the indices, including 

NDVI. Su et al (2018) evaluated the usefulness of a five-band multispectral camera (MicaSense 
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RedEdge) in the monitoring of stripe rust and found NDVI among the top three vegetative 

indices to discriminate stripe rust from healthy wheat plants at low altitude (26m). Statistical 

differences between plot sizes among the indices are likely attributed to the amplification of the 

stripe rust symptoms from the plot size increase and the ability of NDVI to better discriminate 

yellow rust from healthy biomass compared to DGCI.  

Plot Size Effect on the Relationship Between Visual Severity and Proximal NDVI 

Visual severity and Greenseeker NDVI were highly correlated across all plot sizes. The 

relationships did not show a statistical difference across plot sizes likely due to high resolution, 

limited atmospheric noise and simultaneous ratings of both visual and proximal evaluations. 

Since the Greenseeker evaluated each plot at 0.5 meters, the plot size was likely  not a factor 

because each plot was analyzed individually, instead of multiple plots being evaluated at once 

like the elevated multispectral sensor, leading to no significant differences being detected. Arora 

et al (2013) visually and proximally evaluated stripe rust reactions four times at seven-day 

intervals, converting the visual ratings to area under the disease pressure curve (AUDPC) values. 

They observed a significant regression coefficient (R2 = 0.63) between the AUDPC and NDVI 

and concluded that the ground based NDVI data could be effective in quantifying severity. 

Kumar et al (2015) used a hand-held Greenseeker NDVI sensor to map spot blotch disease 

resistance QTL in 108 germplasm lines and 335 single seed decent-derived lines from a cross of 

two wheat cultivars. They found significant relationships between proximal NDVI measurements 

and visual for both the single-seed-descent derived lines (R2 = 0.83 p<0.0001) and the 

germplasm lines (R2 = 0.79 p<0.0001). This evidence confirms the strong relationship between 

visual severity ratings and proximal sensing, and that proximal sensing can be used in 

phenotyping a large breeding population, preventing subjective ratings.  
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Plot Size Effect on the Relationship Between Proximal NDVI and Multispectral NDVI  

The relationship between proximal and remote NDVI was significantly greater for the four-row 

and two-row plot sizes compared to the single-row. A reduction in spectral reflectance in small 

plots due to lower biomass in the sensor field of view and interference due to soil exposure have 

previously been reported (Barmeier and Schmidhalter, 2016). (Duan et al., 2017) used a large 

plot size (2m wide and 7m long) and observed a strong relationship between airborne 

multispectral NDVI and a handheld Greenseeker for both early (R2 = 0.85 p<0.01) and late 

sowing dates (R2 = 0.84, p<0.01) under variable irrigation, planting date, and nitrogen 

treatments. In contrast, (Haghighattalab et al., 2016) found only moderate correlation between 

red-edge NDVI and a handheld spectroradiometer (R2 =0.41) for single-row plots under heat-

stress. It should also be noted that the Greenseeker exhibited a larger range of NDVI values 

compared to the multispectral sensor. This 0.30-unit increase in range may be attributed to lower 

resolution at increased altitude of the multispectral sensor, making it incapable of sampling small 

patches of soil, increasing NDVI values with a smaller range, compared to the handheld 

Greenseeker. This observation was also made by (Duan et al., 2017). 

Conclusion 

Phenotyping is essential to cultivar development and new methods of higher throughput must be 

applicable across experimental designs. This research indicates that when using proximal or 

remote sensing to assess stripe rust severity, a larger plot size can significantly increase the 

relationship between visual and remote sensing measurements. The hand-held Greenseeker 

should also be considered for a more standardized and efficient method of phenotyping stripe 

rust severity.  Further research is necessary to evaluate other indices in variable experimental 

designs and in more diverse germplasm.  
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Tables and Figures 

  Table 1. Analysis of variance for stripe rust severity, proximal, and remote 
measurements in 13 wheat genotypes evaluated in 2018-2019 in inoculated 
nursery in Fayetteville, AR. 

 P-value 

Trait and Growth Stage Genotype  Plot Size  

Genotype by  

Plot Size  

 Severity at booting <0.0001 0.6248 0.3786 
 Severity at heading <0.0001 0.8527 0.9163 
 Severity at grain-fill <0.0001 0.2136 0.2887 
DGCI at booting <0.0001 0.0590 0.2193 
DGCI at grain-fill <0.0001 <0.0001 0.0097 
NDVI at booting 0.0418 0.3469 0.4812 
Greenseeker at booting <0.0001 0.0636 0.1500 
Greenseeker at heading <0.0001 0.0467 0.8606 
Greenseeker at grain-fill <0.0001 0.4736 0.5768 
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Table 2. Linear Regressions for stripe rust severity, proximal, and remote 
measurements in 13 wheat genotypes evaluated in 2018-2019 in inoculated 
nursery in Fayetteville, AR. 

 

Plot Size Regression R2 r P-value 

Single-row Severity x DGCI at booting 0.75 0.87 <0.0001 

 Severity x DGCI at grain-fill 0.74 0.86 0.0002 

 Severity x NDVI at booting 0.02 0.14 0.6204 

 Severity x Greenseeker at booting 0.86 0.93 <0.0001 

 Severity x Greenseeker at grain-fill 0.98 0.99 <0.0001 

 NDVI x Greenseeker at booting 0.01 0.10 0.7862 

Two-row Severity x DGCI at booting 0.72 0.85 0.0002 

 Severity x DGCI at grain-fill 0.71 0.84 0.0032 

 Severity x NDVI at booting 0.78 0.88 <0.0001 

 Severity x Greenseeker at booting 0.88 0.94 <0.0001 

 Severity x Greenseeker at grain-fill 0.89 0.94 <0.0001 

 NDVI x Greenseeker at booting 0.86 0.93 <0.0001 

Four-row Severity x DGCI at booting 0.85 0.92 <0.0001 

 Severity x DGCI at grain-fill 0.86 0.93 <0.0001 

 Severity x NDVI at booting 0.84 0.92 <0.0001 
 Severity x Greenseeker at booting 0.88 0.93 <0.0001 

 Severity x Greeseeker at grain-fill 0.95 0.97 <0.0001 

 NDVI x Greenseeker at booting 0.92 0.95 <0.0001 
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Table 3. Fisher’s Z-test of the correlation coefficients over plot sizes for stripe rust 
severity, Greenseeker, and UAS relationships 

Relationship Plot-size 

Comparison 

Z Statistic P-value 

Severity x DGCI at booting  1-row x 2-row 0.17 0.865 

 1-row x 4-row 0.57 0.568 

 2-row x 4-row 0.74 0.459 

Severity x DGCI at grain-fill 1-row x 2-row 0.16 0.873 

 1-row x 4-row 0.82 0.412 

 2-row x 4-row 0.79 0.429 

Severity x NDVI at booting 1-row x 2-row 2.76 0.006 

 1-row x 4-row 3.24 0.001 

 2-row x 4-row 0.48 0.631 

Severity x Greenseeker at booting 1-row x 2-row 0.18 0.857 

 1-row x 4-row 0 1 

 2-row x 4-row 0.18 0.857 

Severity x Greenseeker at grain-fill 1-row x 2-row 2.03 0.042 

 1-row x 4-row 1.24 0.215 

 2-row x 4-row 0.79 0.429 

NDVI x Greenseeker at booting 1-row x 2-row 3.48 0.001 

 1-row x 4-row 3.87 <0.001 

 2-row x 4-row 0.39 0.696 
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Figure 1: Field design of the genotypes planted it each plot size, respectively, planted in three 
replications.  

Rep 1 Rep 2 Rep 3 

= Single-row 

= Two-row 

= Four-row 
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Figure 2: Linear relationships between visual stripe rust severity and dark green color index 
(DGCI) for 13 wheat lines in single-row, two-row, and four-row plots at the (A) Booting stage 
and (B) Grain-fill stage. Relationships with the same letters are not significantly different from 
each other (Fisher’s Z-test) 
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Figure 3: Linear relationships between visual stripe rust severity and multispectral NDVI for 13 
wheat lines in single-row, two-row, and four-row plots at the booting stage. Relationships with 
the same letters are not significantly different from each other (Fisher’s Z-test)  
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Figure 4: Linear relationships between visual stripe rust severity and proximal Greenseeker 

NDVI for 13 wheat lines in single-row, two-row, and four-row plot sizes at the (A) Booting stage 

and (B) Grain-fill stage. Relationships with the same letters are not significantly different from 

each other (Fisher’s Z-test) 
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Figure 5: Linear relationships between proximal Greenseeker NDVI and multispectral NDVI for 
13 wheat lines in single-row, two-row, and four-row at the booting stage. Relationships with the 
same letters are not significantly different from each other (Fisher’s Z-test) 
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