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Abstract Measurements are presented of associated pro-
duction of a W boson and a charm quark (W + c) in proton–
proton collisions at a center-of-mass energy of 13 TeV. The
data correspond to an integrated luminosity of 35.7 fb−1 col-
lected by the CMS experiment at the CERN LHC. The W
bosons are identified by their decay into a muon and a neu-
trino. The charm quarks are tagged via the full reconstruc-
tion of D∗(2010)± mesons that decay via D∗(2010)± →
D0 +π± → K∓ +π± +π±. A cross section is measured in
the fiducial region defined by the muon transverse momen-
tum pμ

T > 26 GeV, muon pseudorapidity |ημ| < 2.4, and
charm quark transverse momentum pc

T > 5 GeV. The inclu-
sive cross section for this kinematic range is σ(W + c) =
1026 ± 31 (stat)+76−72 (syst) pb. The cross section is also mea-
sured differentially as a function of the pseudorapidity of
the muon from the W boson decay. These measurements are
compared with theoretical predictions and are used to probe
the strange quark content of the proton.

1 Introduction

Precise knowledge of the structure of the proton, expressed
in terms of parton distribution functions (PDFs), is important
for interpreting results obtained in proton–proton (pp) colli-
sions at the CERN LHC. The PDFs are determined by com-
paring theoretical predictions obtained at a particular order
in perturbative quantum chromodynamics (pQCD) to exper-
imental measurements. The precision of the PDFs, which
affects the accuracy of the theoretical predictions for cross
sections at the LHC, is determined by the uncertainties of
the experimental measurements used, and by the limitations
of the available theoretical calculations. The flavor composi-
tion of the light quark sea in the proton and, in particular, the
understanding of the strange quark distribution is important
for the measurement of the W boson mass at the LHC [1].
Therefore, it is of great interest to determine the strange quark
distribution with improved precision.

� e-mail: cms-publication-committee-chair@cern.ch

Before the start of LHC data taking, information on the
strange quark content of the nucleon was obtained pri-
marily from charm production in (anti)neutrino-iron deep
inelastic scattering (DIS) by the NuTeV [2], CCFR [3], and
NOMAD [4] experiments. In addition, a direct measurement
of inclusive charm production in nuclear emulsions was per-
formed by the CHORUS experiment [5]. At the LHC, the
production of W or Z bosons, inclusive or associated with
charm quarks, provides an important input for tests of the
earlier determinations of the strange quark distribution. The
measurements of inclusive W or Z boson production at the
LHC, which are indirectly sensitive to the strange quark dis-
tribution, were used in a QCD analysis by the ATLAS exper-
iment, and an enhancement of the strange quark distribution
with respect to other measurements was observed [6].

The associated production of W bosons and charm quarks
in pp collisions at the LHC probes the strange quark content
of the proton directly through the leading order (LO) pro-
cesses g + s → W++c and g + s → W−+c, as shown in
Fig. 1. The contribution of the Cabibbo-suppressed processes
g+d → W++c and g+d → W−+c amounts to only a few
percent of the total cross section. Therefore, measurements of
associated W+c production in pp collisions provide valuable
insights into the strange quark distribution of the proton. Fur-
thermore, these measurements allow important cross-checks
of the results obtained in the global PDF fits using the DIS
data and measurements of inclusive W and Z boson produc-
tion at the LHC.

Production of W+c in hadron collisions was first inves-
tigated at the Tevatron [7–9]. The first measurement of the
cross section of W+c production in pp collisions at the LHC
was performed by the CMS Collaboration at a center-of-
mass energy of

√
s = 7 TeV with an integrated luminosity of

5 fb−1 [10]. This measurement was used for the first direct
determination of the strange quark distribution in the proton
at a hadron collider [11]. The extracted strangeness suppres-
sion with respect to u and d quark densities was found to be in
agreement with measurements in neutrino scattering experi-
ments. The cross section for W+c production was also mea-
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Fig. 1 Dominant contributions to W+c production at the LHC at lead-
ing order in pQCD

sured by the ATLAS experiment at
√
s = 7 TeV [12] and used

in a QCD analysis, which supported the enhanced strange
quark content in the proton suggested by the earlier ATLAS
analysis [6]. A subsequent joint QCD analysis [13] of all
available data that were sensitive to the strange quark distri-
bution demonstrated consistency between the W+c measure-
ments by the ATLAS and CMS Collaborations. In Ref. [13],
possible reasons for the observed strangeness enhancement
were discussed. Recent results of an ATLAS QCD anal-
ysis [14], including measurements of inclusive W and Z
boson production at

√
s = 7 TeV, indicated an even stronger

strangeness enhancement in disagreement with all global
PDFs. In Ref. [15], possible reasons for this observation were
attributed to the limitations of the parameterization used in
this ATLAS analysis [14]. The associated production of a
W boson with a jet originating from a charm quark is also
studied in the forward region by the LHCb experiment [16].

In this paper, the cross section for W+c production is
measured in pp collisions at the LHC at

√
s = 13 TeV

using data collected by the CMS experiment in 2016 cor-
responding to an integrated luminosity of 35.7 fb−1. The
W bosons are selected via their decay into a muon and
a neutrino. The charm quarks are tagged by a full recon-
struction of the charmed hadrons in the process c →
D∗(2010)± → D0 +π±

slow → K∓ +π± +π±
slow, which has a

clear experimental signature. The pion originating from the
D∗(2010)± decay receives very little energy because of the
small mass difference between D∗(2010)± and D0(1865) and
is therefore denoted a “slow” pion π±

slow. Cross sections for
W+D∗(2010)± production are measured within a selected
fiducial phase space. The W+c cross sections are compared
with theoretical predictions at next-to-leading order (NLO)
QCD, which are obtained with mcfm 6.8 [17–19], and are
used to extract the strange quark content of the proton.

This paper is organized as follows. The CMS detector
is briefly described in Sect. 2. The data and the simulated
samples are described in Sect. 3. The event selection is pre-
sented in Sect. 4. The measurement of the cross sections and
the evaluation of systematic uncertainties are discussed in
Sect. 5. The details of the QCD analysis are described in
Sect. 6. Section 7 summarizes the results.

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapid-
ity coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid.

The silicon tracker measures charged particles within the
pseudorapidity range |η| < 2.5. It consists of 1440 silicon
pixel and 15 148 silicon strip detector modules. For noniso-
lated particles of 1 < pT < 10 GeV and |η| < 1.4, the
track resolutions are typically 1.5% in pT and 25–90 (45–
150) µm in the transverse (longitudinal) impact parame-
ter [20]. The reconstructed vertex with the largest value of
summed physics-object p2

T is taken to be the primary pp inter-
action vertex. The physics objects are the jets, clustered using
the jet finding algorithm [21,22] with the tracks assigned
to the vertex as inputs, and the associated missing trans-
verse momentum, taken as the negative vector sum of the
pT of those jets. Muons are measured in the pseudorapidity
range |η| < 2.4, with detection planes made using three tech-
nologies: drift tubes, cathode strip chambers, and resistive-
plate chambers. The single muon trigger efficiency exceeds
90% over the full η range, and the efficiency to reconstruct
and identify muons is greater than 96%. Matching muons
to tracks measured in the silicon tracker results in a relative
transverse momentum resolution, for muons with pT up to
100 GeV, of 1% in the barrel and 3% in the endcaps. The pT

resolution in the barrel is better than 7% for muons with pT

up to 1 TeV [23]. A more detailed description of the CMS
detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found in
Ref. [24].

3 Data and Monte Carlo samples and signal definition

Candidate events for the muon decay channel of the W boson
are selected by a muon trigger [25] that requires a recon-
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structed muon with pμ
T > 24 GeV. The presence of a high-

pT neutrino is implied by the missing transverse momentum,
�pmiss

T , which is defined as the negative vector sum of the
transverse momenta of the reconstructed particles.

Muon candidates and �pmiss
T are reconstructed using the

particle-flow (PF) algorithm [26], which reconstructs and
identifies each individual particle with an optimized combi-
nation of information from the various elements of the CMS
detector. The energy of photons is obtained directly from the
ECAL measurement. The energy of electrons is determined
from a combination of the electron momentum at the pri-
mary interaction vertex determined by the tracking detector,
the energy of the corresponding ECAL cluster, and the energy
sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The muon momentum is
obtained from the track curvature in both the tracker and the
muon system, and identified by hits in multiple stations of
the flux-return yoke. The energy of charged hadrons is deter-
mined from a combination of their momentum measured
in the tracker and the matching ECAL and HCAL energy
deposits, corrected for both zero-suppression effects and the
response function of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energy.

The D∗(2010)± meson candidates are reconstructed from
tracks formed by combining the measurements in the sili-
con pixel and strip detectors through the CMS combinatorial
track finder [20].

The signal and background processes are simulated using
Monte Carlo (MC) generators to estimate the acceptance
and efficiency of the CMS detector. The corresponding MC
events are passed through a detailed Geant4 [27] simula-
tion of the CMS detector and reconstructed using the same
software as the real data. The presence of multiple pp inter-
actions in the same or adjacent bunch crossing (pileup) is
incorporated by simulating additional interactions (both in-
time and out-of-time with respect to the hard interaction) with
a vertex multiplicity that matches the distribution observed in
data. The simulated samples are normalized to the integrated
luminosity of the data using the generated cross sections. To
simulate the signal, inclusive W+jets events are generated
with MadGraph5_amc@nlo (v2.2.2) [28] using the NLO
matrix elements, interfaced with pythia8 (8.2.12) [29] for
parton showering and hadronization. A matching scale of
10 GeV is chosen, and the FxFx technique [30] is applied
for matching and merging. The factorization and renormal-
ization scales, μ2

r and μ2
f , are set to μ2

r = μ2
f = m2

W + p2
T,W.

The proton structure is described by the NNPDF3.0nlo [31]
PDF set. To enrich the sample with simulated W+c events, an
event filter that requires at least one muon with pμ

T > 20 GeV
and |ημ| < 2.4, as well as at least one D∗(2010)± meson, is
applied at the generator level.

Several background contributions are considered, which
are described in the following. An inclusive W+jets event
sample is generated using the same settings as the sig-
nal events, but without the event filter, to simulate back-
ground contributions from W events that do not con-
tain D∗(2010)± mesons. Events originating from Drell–
Yan (DY) with associated jets are simulated with Mad-
Graph5_amc@nlo (v2.2.2) with μ2

r and μ2
f set to m2

Z +
p2

T,Z. Events originating from top quark–antiquark pair
(tt) production are simulated using powheg (v2.0) [32],
whereas single top quark events are simulated using powheg
(v2.0) [33,34] or powheg (v1.0) [35], depending on the pro-
duction channel. Inclusive production of WW, WZ, and ZZ
bosons and contributions from the inclusive QCD events are
generated using pythia8. The CUETP8M1 [36] underlying
event tune is used in pythia8 for all, except for the tt sample,
where the CUETP8M2T4 [37] tune is applied.

The dominant background originates from processes like
u + d → W+ + g∗ → W+ + cc or d + u → W− + g∗ →
W− + cc, with c quarks produced in gluon splitting. In the
W+c signal events the charges of the W boson and the charm
quark have opposite signs. In gluon splitting, an additional c
quark is produced with the same charge as the W boson. At
the generator level, an event is considered as a W+c event if it
contains at least one charm quark in the final state. In the case
of an odd number of c quarks, the c quark with the highest pT

and a charge opposite to that of the W boson is considered as
originating from a W+c process, whereas the other c quarks
in the event are labeled as originating from gluon splitting.
In the case of an even number of c quarks, all are considered
to come from gluon splitting. Events containing both c and b
quarks are considered to be W+c events, since c quarks are of
higher priority in this analysis, regardless of their momentum
or production mechanism. Events containing no c quark and
at least one b quark are classified as W + b. Otherwise, an
event is assigned to the W + udsg category.

The contribution from gluon splitting can be significantly
reduced using data. Events with the same charge sign for
both the W boson and charm quark, which correlates to the
charge sign of the D∗(2010)± meson, are background, which
is due to gluon splitting. Since the gluon splitting background
for opposite charge pairs is identical, it can be removed by
subtracting the same-sign distribution from the signal. The
measurement is performed in the central kinematic range
and is not sensitive to the contributions of processes c+g →
W + s with a spectator charm quark.

For validation and tuning of MC event generators using
a Rivet plugin [38], the W+D∗(2010)± measurement is
performed. This requires a particle-level definition without
constraints on the origin of D∗(2010)± mesons. Therefore,
any contributions from B meson decays and other hadrons,
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though only a few pb, are included as signal for this part of
the measurement.

4 Event selection

The associated production of W bosons and charm quarks
is investigated using events, where W → μ + νμ and the
c quarks hadronize into a D∗(2010)± meson. The recon-
struction of the muons from the W boson decays and of the
D∗(2010)± candidates is described in detail in the following.

4.1 Selection of W boson candidates

Events containing a W boson decay are identified by the
presence of a high-pT isolated muon and �pmiss

T . The muon
candidates are reconstructed by combining the tracking infor-
mation from the muon system and from the inner tracking
system [23], using the CMS particle-flow algorithm. Muon
candidates are required to have pμ

T > 26 GeV, |ημ| < 2.4,
and must fulfill the CMS “tight identification” criteria [23].
To suppress contamination from muons contained in jets, an
isolation requirement is imposed:

1

pμ
T

[
CH∑

pT + max

(
0.,

NH∑
pT +

EM∑
pT − 0.5

PU∑
pT

)]
≤ 0.15,

where the pT sum of PF candidates for charged hadrons (CH),
neutral hadrons (NH), photons (EM) and charged particles
from pileup (PU) inside a cone of radius ΔR ≤ 0.4 is used,
and the factor 0.5 corresponds to the typical ratio of neutral
to charged particles, as measured in jet production [26].

Events in which more than one muon candidate fulfills
all the above criteria are rejected in order to suppress back-
ground from DY processes. Corrections are applied to the
simulated samples to adjust the trigger, isolation, identifi-
cation, and tracking efficiencies to the observed data. These
correction factors are determined through dedicated tag-and-
probe studies.

The presence of a neutrino in an event is assured by impos-
ing a requirement on the transverse mass, which is defined
as the combination of pμ

T and �pmiss
T :

mT ≡
√

2 pμ
T �pmiss

T (1 − cos(φμ − φ �pmiss
T

)). (1)

In this analysis, mT > 50 GeV is required, which results in
a significant reduction of background.

4.2 Selection of D∗(2010)± candidates

The D∗(2010)± mesons are identified by their decays
D∗(2010)± → D0 + π±

slow → K∓ + π± + π±
slow using the

reconstructed tracks of the decay products. The branching
fraction for this channel is 2.66 ± 0.03% [39].

The D0 candidates are constructed by combining two
oppositely charged tracks with transverse momenta ptrack

T >

1 GeV, assuming the K∓ and π± masses. The D0 candidates
are further combined with a track of opposite charge to the
kaon candidate, assuming the π± mass, following the well-
established procedure of Refs. [40,41]. The invariant mass
of the K∓π± combination is required to be |m(K∓π±) −
m(D0)| < 35 MeV, where m(D0) = 1864.8±0.1 MeV [39].
The candidate K∓ and π± tracks must originate at a fitted sec-
ondary vertex [42] that is displaced by not more than 0.1 cm
in both the xy-plane and z-coordinate from the third track,
which is presumed to be the π±

slow candidate. The latter is
required to have ptrack

T > 0.35 GeV and to be in a cone of
ΔR ≤ 0.15 around the direction of the D0 candidate momen-
tum. The combinatorial background is reduced by requir-
ing the D∗(2010)± transverse momentum pD∗

T > 5 GeV and
by applying an isolation criterion pD∗

T /
∑

pT > 0.2. Here∑
pT is the sum of transverse momenta of tracks in a cone of

ΔR ≤ 0.4 around the direction of the D∗(2010)± momen-
tum. The contribution of D∗(2010)± mesons produced in
pileup events is suppressed by rejecting candidates with a
z-distance > 0.2 cm between the muon and the π±

slow. After
applying all selection criteria, the contribution of D0 decays
other than K∓π± is negligible compared to the uncertainties.

The D∗(2010)± meson candidates are identified using the
mass difference method [41] via a peak in the Δm(D∗, D0)

distribution. Wrong-charge combinations with K±π± pairs
in the accepted D0 mass range mimic the background origi-
nating from light-flavor hadrons. By subtracting the wrong-
charge combinations, the combinatorial background in the
Δm(D∗, D0) distribution is mostly removed. The presence of
nonresonant charm production in the right-charge K∓π±π±
combinations introduces a small normalization difference of
Δm(D∗, D0) distributions for right- and wrong-charge com-
binations, which is corrected utilizing fits to the ratio of both
distributions.

4.3 Selection of W+c candidates

An event is selected as a W+c signal if it contains a W
boson and a D∗(2010)± candidate fulfilling all selection cri-
teria. The candidate events are split into two categories: with
W± + D∗(2010)± combinations falling into the same sign
(SS) category, and W∓ + D∗(2010)± combinations falling
into the opposite sign (OS) category. The signal events con-
sist of only OS combinations, whereas the W+cc and W+bb
background processes produce the same number of OS and
SS candidates. Therefore, subtracting the SS events from the
OS events removes the background contributions from gluon
splitting. The contributions from other background sources,
such as tt and single top quark production, are negligible.
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The number of W+c events corresponds to the number of
D∗(2010)± mesons after the subtraction of light-flavor and
gluon splitting backgrounds. The invariant mass of K∓π±
candidates, which are selected in a Δm(D∗, D0) window of
±1 MeV, is shown in Fig. 2, along with the observed recon-
structed mass difference Δm(D∗, D0). A clear D0 peak at
the expected mass and a clear Δm(D∗, D0) peak around the
expected value of 145.4257±0.0017 MeV [39] are observed.
The remaining background is negligible, and the number of
D∗(2010)± mesons is determined by counting the number of
candidates in a window of 144 < Δm(D∗, D0) < 147 MeV.
Alternately, two different functions are fit to the distributions,
and their integral over the same mass window is used to esti-
mate the systematic uncertainties associated with the method
chosen.

5 Measurement of the fiducial W+c cross section

The fiducial cross section is measured in a kinematic region
defined by requirements on the transverse momentum and the
pseudorapidity of the muon and the transverse momentum of
the charm quark. The simulated signal is used to extrapolate
from the fiducial region of the D∗(2010)± meson to the fidu-
cial region of the charm quark. Since the D∗(2010)± kinemat-
ics is integrated over at the generator level, the only kinematic
constraint on the corresponding charm quark arises from
the requirement on the transverse momentum of D∗(2010)±
meson. The correlation of the kinematics of charm quarks
and D∗(2010)± mesons is investigated using simulation, and
the requirement of pD∗

T > 5 GeV translates into pc
T > 5 GeV.

The distributions of |ημ| and pc
T in the simulation are shown

to reproduce very well the fixed order prediction at NLO
obtained, usingmcfm 6.8 [17–19] calculation. The kinematic
range of the measured fiducial cross section corresponds to
pμ

T > 26 GeV, |ημ| < 2.4, and pc
T > 5 GeV.

The fiducial W+c cross section is determined as:

σ(W+c) = Nsel S
Lint B C , (2)

where Nsel is the number of selected OS − SS events in
the Δm(D∗, D0) distribution and S is the signal fraction.
The latter is defined as the ratio of the number of recon-
structed W+D∗(2010)± candidates originating from W+c
to the number of all reconstructed D∗(2010)±. It is deter-
mined from the MC simulation, includes the background
contributions, and varies between 0.95 and 0.99. The inte-
grated luminosity is denoted by Lint. The combined branch-
ing fraction B for the channels under study is a product
of B(c → D∗(2010)±) = 0.2429 ± 0.0049 [43] and
B(D∗(2010)± → K∓ + π± + π±

slow) = 0.0266 ± 0.0003
[39]. The correction factor C accounts for the acceptance
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Fig. 2 Distributions of the reconstructed invariant mass of K∓π± can-
didates (upper) in the range |Δm(D∗, D0)−0.1454| < 0.001 GeV, and
the reconstructed mass difference Δm(D∗, D0) (lower). The SS com-
binations are subtracted. The data (filled circles) are compared to MC
simulation with contributions from different processes shown as his-
tograms of different shades

and efficiency of the detector. The latter is determined using
the MC simulation and is defined as the ratio of the number
of reconstructed W+D∗(2010)± candidates to the number of
generated W+D∗(2010)± originating from W+c events that
fulfill the fiducial requirements. In the measurement of the
W++c (W++D∗(2010)−) and W−+c (W−+D∗(2010)+)
cross sections, the factor C is determined separately for dif-
ferent charge combinations.
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Fig. 3 Number of events after OS − SS subtraction for data (filled
circles) and MC simulation (filled histograms) as a function of |ημ|

The measurement of the W+c cross section relies to a
large extent on the MC simulation and requires extrapola-
tion to unmeasured phase space. To reduce the extrapola-
tion and the corresponding uncertainty, the cross section for
W+D∗(2010)± production is also determined in the fidu-
cial phase space of the detector-level measurement, pμ

T >

26 GeV, |ημ| < 2.4, |ηD∗ | < 2.4 and pD∗
T > 5 GeV, in a sim-

ilar way by modifying Eq. (2) as follows: only the branching
fraction B = B(D∗(2010)± → K∓ + π± + π±

slow) is con-
sidered and the factor C is defined as the ratio between the
numbers of reconstructed and of generated W+D∗(2010)±
candidates in the fiducial phase space after OS−SS subtrac-
tion.

The cross sections are determined inclusively and also in
five bins of the absolute pseudorapidity |ημ| of the muon
originating from the W boson decay. The number of signal
(OS − SS) events in each range of |ημ| is shown in Fig. 3.
Good agreement between the data and MC simulation within
the statistical uncertainties is observed.

5.1 Systematic uncertainties

The efficiencies and the assumptions relevant for the mea-
surement are varied within their uncertainties to estimate the
systematic uncertainty in the cross section measurement. The
resulting shift of the cross section with respect to the central
result is taken as the corresponding uncertainty contribution.
The various sources of the systematic uncertainties in the
W+c production cross section are listed in Table 1 for both
the inclusive and the differential measurements.

– Uncertainties associated with the integrated luminosity
measurement are estimated as 2.5% [44].

– The uncertainty in the tracking efficiency is 2.3% for
the 2016 data. It is determined using the same method
described in Ref. [45], which exploits the ratio of branch-
ing fractions between the four-body and two-body decays
of the neutral charm meson to all-charged final states.

– The uncertainty in the branching fraction of the c →
D∗(2010)± is 2.4% [43].

– The muon systematic uncertainties are 1% each for the
muon identification and isolation, and 0.5% for the trigger
and tracking corrections. These are added in quadrature
and the resulting uncertainty for muons is 1.2%, which
is referred to as the ‘muon uncertainty’.

– The uncertainty in the determination of Nsel is estimated
from the difference in using a Gaussian or Crystal Ball
fit [46]. The largest value of this uncertainty determined
differentially, 1.5%, is considered for all.

– Uncertainties in the modeling of kinematic observables
of the generated D∗(2010)± meson are estimated by
reweighting the simulated pD∗

T and |ηD∗ | distributions
to the shape observed in data. The respective uncertainty
in the inclusive cross section measurement is 0.5%. Due
to statistical limitations, this uncertainty is determined
inclusively in |ημ|.

– The uncertainty in the difference of the normaliza-
tion of the Δm(D∗, D0) distributions for K∓π±π± and
K±π±π∓ combinations (’background normalization’) is
0.5%.

– Uncertainties in the measured �pmiss
T are estimated in

Ref. [47] and result in an overall uncertainty of 0.9%
for this analysis.

– Uncertainties due to the modeling of pileup are estimated
by varying the total inelastic cross section used in the
simulation of pileup events by 5%. The corresponding
uncertainty in the W+c cross section is 2%.

– The uncertainty related to the requirement of a valid sec-
ondary vertex, fitted from the tracks associated with a D0

candidate, is determined by calculating the D∗(2010)±
reconstruction efficiency in data and MC simulation for
events with and without applying this selection criterion.
The number of reconstructed D∗(2010)± candidates after
the SS event subtraction is compared for events with or
without a valid secondary vertex along with the prox-
imity requirement (Δxy < 0.1 cm, Δz < 0.1 cm). The
difference in efficiency between data and MC simulation
is calculated and an uncertainty in the inclusive cross
section of −1.1% is obtained. Since this variation is not
symmetric, the uncertainty is one-sided.

– The PDF uncertainties are determined according to the
prescription of the PDF group [31]. These are added in
quadrature to the uncertainty related to the variation of
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Table 1 Systematic uncertainties [%] in the inclusive and differential
W+c cross section measurement in the fiducial region of the analysis.
The total uncertainty corresponds to the sum of the individual contribu-

tions in quadrature. The contributions listed in the top part of the table
cancel in the ratio σ(W++c)/σ (W−+c)

Pseudorapidity [|ημ|] [0, 2.4] [0, 0.4] [0.4, 0.8] [0.8, 1.3] [1.3, 1.8] [1.8, 2.4]
Luminosity ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5

Tracking ±2.3 ±2.3 ±2.3 ±2.3 ±2.3 ±2.3

Branching ±2.4 ±2.4 ±2.4 ±2.4 ±2.4 ±2.4

Muons ±1.2 ±1.2 ±1.2 ±1.2 ±1.2 ±1.2

Nsel determination ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5

D∗(2010)± ±0.5 ±0.5 ±0.5 ±0.5 ±0.5 ±0.5

kinematics

Background

normalization ± 0.5 +0.9/−0.8 +1.9/−0.8 +1.4/−0.5 +0.8/−1.0 0.0/−0.6

�pmiss
T +0.7/−0.9 +0.4/−1.2 +1.3/−0.3 +1.1/−1.0 0.0/−2.6 0.0/+1.5

Pileup +2.0/−1.9 +0.4/−0.5 +2.9/−3.0 +2.0/−1.9 +4.6/−5.1 +2.7/−2.6

Secondary vertex −1.1 +1.3 −1.2 −1.5 −2.7 −2.5

PDF ±1.2 ±1.3 ±0.9 ±1.4 ±1.5 ±1.7

Fragmentation +3.9/−3.2 +3.4/−1.8 +7.4/−5.2 +3.3/−3.0 +2.2/−1.2 +7.4/−5.7

MC statistics +3.6/−3.3 +8.8/−7.5 +9.0/−11.9 +7.9/−6.8 +9.8/−14.1 +10.1/−8.5

Total +7.5/−7.0 +10.7/−9.3 +13.2/−14.2 +10.1/−9.3 +12.7/−16.2 +13.8/−12.1

αS(mZ) in the PDF, resulting in an uncertainty of 1.2%
in the inclusive cross section.

– The uncertainty associated with the fragmentation of the
c quark into a D∗(2010)± meson is determined through
variations of the function describing the fragmentation
parameter z = pD∗

T /pc
T. The investigation of this uncer-

tainty is inspired by a dedicated measurement of the
c → D∗(2010)± fragmentation function in electron-
proton collisions [48], in which the fragmentation param-
eters in various phenomenological models were deter-
mined with an uncertainty of 10%. In the pythia MC
event generator, the fragmentation is described by the
phenomenological Bowler–Lund function [49,50], in the
form

f (z) = 1

zrc b m
2
q
(1 − z)a exp(−b m2⊥/z) c,

with m⊥ =
√
m2

D∗ + pTD∗ 2, controlled by the two
parameters a and b. In the case of charm quarks, rc =
1 and mq = 1.5 GeV are the pythia standard settings
in the CUETP8M1 tune, whereas the value of m⊥ is
related to the average transverse momentum of gener-
ated D∗(2010)± in the MC sample. The parameters a, b
and c are determined in a fit to the simulated distribution
of f (z), where c is needed for the normalization. Since
the presence of a jet is not required in the analysis, the
charm quark transverse momentum is approximated by
summing up the transverse momenta of tracks in a cone
of ΔR ≤ 0.4 around the axis of the D∗(2010)± candidate.

The free parameters are determined as a = 1.827±0.016
and b = 0.00837 ± 0.00005 GeV−2. To estimate the
uncertainty, the parameters a and b are varied within
±10% around their central values, following the preci-
sion achieved for the fragmentation parameters in [48].
An additional constraint on the upper boundary on the
a parameter in pythia is consistent with this 10% vari-
ation. The resulting uncertainty in the cross section is
3.9%.

5.2 Cross section results

The numbers of signal events and the inclusive fiducial cross
sections with their uncertainties are listed in Table 2 together
with the ratio of σ(W++c)/σ (W−+c). For the differential
measurement of the W+c cross section, the numbers of sig-
nal events are summarized in Table 3 together with the cor-
rections C derived using MC simulations in each |ημ| bin.
The results are presented for dσ(W+c)/d|ημ|, as well as for
dσ(W++c)/d|ημ| and for dσ(W−+c)/d|ημ|.

The measured inclusive and differential fiducial cross sec-
tions of W+c are compared to predictions at NLO (O(α2

s ))
that are obtained using mcfm 6.8. Similarly to the ear-
lier analysis [11], the mass of the charm quark is cho-
sen to be mc = 1.5 GeV, and the factorization and the
renormalization scales are set to the value of the W boson
mass. The calculation is performed for pμ

T > 26 GeV,
|ημ| < 2.4, and pc

T > 5 GeV. In Fig. 4, the mea-
surements of the inclusive W+c cross section and the
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Table 2 Inclusive cross
sections of W+c and
W+D∗(2010)± production in
the fiducial range of the
analysis. The correction factor C
accounts for the acceptance and
efficiency of the detector

W+c W++c W−+c

Nsel 19210 ± 587 (stat) 9674 ± 401 (stat) 9546 ± 367 (stat)

C 0.0811 ± 0.003 (stat) 0.0832 ± 0.004 (stat) 0.0794 ± 0.004 (stat)

σ [pb] 1026 ± 31 (stat) +76
−72

(syst) 504 ± 21 (stat) ±42 (syst) 521 ± 20 (stat) +42
−40

(syst)

σ(W++c)
σ (W−+c) 0.968 ± 0.055 (stat) +0.015

−0.028

W+D∗(2010)± W++D∗(2010)− W−+D∗(2010)+

Nsel 19210 ± 587 (stat) 9674 ± 401 (stat) 9546 ± 367 (stat)

C 0.107 ± 0.004 (stat) 0.113 ± 0.006 (stat) 0.101 ± 0.004 (stat)

σ [pb] 190 ± 6 (stat) +12
−13

(syst) 90 ± 4 (stat) +7
−8

(syst) 99 ± 3 (stat) ±7 (syst)

σ(W++D∗(2010)−)
σ (W−+D∗(2010)+)

0.909 ± 0.051 (stat) +0.014
−0.028

Table 3 Number of signal
events, correction factors C,
accounting for the acceptance
and efficiency of the detector
and the differential cross
sections in each |ημ| range for
W+c (upper), W++c (middle)
and W−+c (lower)

[|ημ
min|, |ημ

max|] Nsel C dσ(W+c)
d|ημ| [pb]

W + c

[0, 0.4] 3795 ± 248 (stat) 0.072 ± 0.006 (stat) 569 ± 37 (stat) +61
−53

[0.4, 0.8] 4201 ± 256 (stat) 0.096 ± 0.006 (stat) 467 ± 28 (stat) +61
−66

[0.8, 1.3] 4334 ± 274 (stat) 0.078 ± 0.006 (stat) 479 ± 30 (stat) +49
−45

[1.3, 1.8] 3823 ± 267 (stat) 0.083 ± 0.007 (stat) 395 ± 28 (stat) +49
−63

[1.8, 2.4] 3042 ± 266 (stat) 0.078 ± 0.007 (stat) 283 ± 25 (stat) +39
−34

[|ημ
min|, |ημ

max|] Nsel C dσ(W++c)
d|ημ| [pb]

W+ + c

[0, 0.4] 2109 ± 167 (stat) 0.073 ± 0.008 (stat) 313 ± 25 (stat) +48
−44

[0.4, 0.8] 2119 ± 172 (stat) 0.094 ± 0.010 (stat) 236 ± 19 (stat) +37
−41

[0.8, 1.3] 2103 ± 186 (stat) 0.077 ± 0.008 (stat) 235 ± 21 (stat) +33
−27

[1.3, 1.8] 1840 ± 184 (stat) 0.093 ± 0.010 (stat) 162 ± 16 (stat) +34
−31

[1.8, 2.4] 1499 ± 186 (stat) 0.080 ± 0.011 (stat) 135 ± 17 (stat) +24
−26

[|ημ
min|, |ημ

max|] Nsel C dσ(W−+c)
d|ημ| [pb]

W− + c

[0, 0.4] 1688 ± 158 (stat) 0.072 ± 0.008 (stat) 255 ± 23 (stat) +35
−42

[0.4, 0.8] 2084 ± 162 (stat) 0.097 ± 0.008 (stat) 231 ± 18 (stat) +28
−42

[0.8, 1.3] 2234 ± 172 (stat) 0.079 ± 0.007 (stat) 244 ± 19 (stat) +29
−38

[1.3, 1.8] 1986 ± 166 (stat) 0.073 ± 0.008 (stat) 237 ± 20 (stat) +33
−37

[1.8, 2.4] 1544 ± 161 (stat) 0.075 ± 0.008 (stat) 149 ± 16 (stat) +25
−21

charge ratio are compared to the NLO predictions calcu-
lated using the ABMP16nlo [51], ATLASepWZ16nnlo [14],
CT14nlo [52], MMHT14nlo [53], NNPDF3.0nlo [31], and
NNPDF3.1nlo [54] PDF sets. The values of the strong cou-
pling constant αS(mZ) are set to those used in the evaluation
of a particular PDF. The details of the experimental data,

used for constraining the strange quark content of the proton
in the global PDFs, are given in Refs. [14,31,52,53,55]. In
these references, the treatment of the sea quark distributions
in different PDF sets is discussed, and the comparison of the
PDFs is presented. The ABMP16nlo PDF includes the most
recent data on charm quark production in charged-current
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Fig. 4 Inclusive fiducial cross section σ(W+c) and the cross section
ratio σ(W++c)/σ (W−+c) at 13 TeV. The data are represented by a line
with the statistical (total) uncertainty shown by a light (dark) shaded
band. The measurements are compared to the NLO QCD prediction
using several PDF sets, represented by symbols of different types. All
used PDF sets are evaluated at NLO, except for ATLASepWZ16, which
is obtained at NNLO. The error bars depict the total theoretical uncer-
tainty, including the PDF and the scale variation uncertainty

neutrino-nucleon DIS collected by the NOMAD and CHO-
RUS experiments in order to improve the constraints on the
strange quark distribution and to perform a detailed study
of the isospin asymmetry of the light quarks in the proton
sea [56]. Despite differences in the data used in the individ-
ual global PDF fits, the strangeness suppression distributions

in ABMP16nlo, NNPDF3.1nlo, CT14nlo and MMHT14nlo
are in a good agreement among each other and disagree with
the ATLASepWZ16nnlo result [14].

The predicted inclusive cross sections are summarized in
Table 4. The PDF uncertainties are calculated using prescrip-
tions from each PDF group. For the ATLASepWZ16nnlo
PDFs no respective NLO set is available and only Hessian
uncertainties are considered in this paper. For other PDFs,
the variation of αs(mZ ) is taken into account as well. The
uncertainties due to missing higher-order corrections are esti-
mated by varying μr and μf simultaneously by a factor of 2
up and down, and the resulting variation of the cross section
is referred to as the scale uncertainty, Δμ. Good agreement
between NLO predictions and the measurements is observed,
except for the prediction using ATLASepWZ16nnlo. For the
cross section ratio σ(W++c)/σ(W−+c), all theoretical pre-
dictions are in good agreement with the measured value.
In Table 5, the theoretical predictions for dσ(W+c)/d|ημ|
using different PDF sets are summarized. In Fig. 5, the mea-
surements of differential W+c and W+D∗(2010)± cross sec-
tions are compared with the mcfm NLO calculations and
with the signal MC prediction, respectively. Good agree-
ment between the measured W+c cross section and NLO
calculations is observed except for the prediction using the
ATLASepWZ16nnlo PDF set. The signal MC prediction
using NNPDF3.0nlo is presented with the PDF and αs uncer-
tainties and accounts for simultaneous variations of μr and
μf in the matrix element by a factor of 2. The W+D∗(2010)±
cross section is described well by the simulation.

6 Impact on the strange quark distribution in the
proton

The associated W+c production at 13 TeV probes the strange
quark distribution directly in the kinematic range of 〈x〉 ≈
0.007 at the scale of m2

W. The first measurement of a fiducial
W+c cross section in pp collisions was performed by the
CMS experiment at a center-of-mass energy

√
s = 7 TeV

with a total integrated luminosity of 5 fb−1 [11]. The results
were used in a QCD analysis [10] together with measure-
ments of neutral- and charged-current cross sections of DIS
at HERA [57] and of the lepton charge asymmetry in W
production at

√
s = 7 TeV at the LHC [11].

The present measurement of the W+c production cross
section at 13 TeV, determined as a function of the absolute
pseudorapidity |ημ| of the muon from the W boson decay
and pμ

T > 26 GeV, is used in an NLO QCD analysis. This
analysis also includes an updated combination of the inclu-
sive DIS cross sections [58] and the available CMS measure-
ments of the lepton charge asymmetry in W boson produc-
tion at

√
s = 7 TeV [11] and at

√
s = 8 TeV [59]. These

latter measurements probe the valence quark distributions
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Table 4 The NLO predictions
for σ(W+c), obtained with
mcfm [17–19]. The
uncertainties account for PDF
and scale variations

σ(W+c) [pb] ΔPDF [%] Δμ [%] σ(W++c)/σ(W−+c)

ABMP16nlo 1077.9 ± 2.1 +3.4
−2.4

0.975 +0.002
−0.002

ATLASepWZ16nnlo 1235.1 +1.4
−1.6

+3.7
−2.8

0.976 +0.001
−0.001

CT14nlo 992.6 +7.2
−8.4

+3.1
−2.1

0.970 +0.005
−0.007

MMHT14nlo 1057.1 +6.5
−8.0

+3.2
−2.2

0.960 +0.023
−0.033

NNPDF3.0nlo 959.5 ± 5.4 +2.8
−1.9

0.962 +0.034
−0.034

NNPDF3.1nlo 1030.2 ± 5.3 +3.2
−2.2

0.965 +0.043
−0.043

Table 5 Theoretical predictions
for dσ(W+c)/d|ημ| calculated
with mcfm at NLO for different
PDF sets. The relative
uncertainties due to PDF and
scale variations are shown

[|ημ
min|, |ημ

max|] ABMP16nlo ATLASepWZ16nnlo
dσ(W+c)

d|ημ| [pb] ΔPDF[%] Δμ [%] dσ(W+c)
d|ημ| [pb] ΔPDF[%] Δμ[%]

[0, 0.4] 537.8 ± 2.2 +3.7
−1.9

607.8 +1.1
−1.3

+4.2
−2.4

[0.4, 0.8] 522.8 ± 2.1 +3.1
−2.3

592.9 +1.1
−1.3

+3.5
−2.7

[0.8, 1.3] 483.9 ± 2.1 +3.2
−2.1

552.7 +1.2
−1.4

+3.6
−2.5

[1.3, 1.8] 422.4 ± 2.0 +3.4
−2.9

487.8 +1.4
−1.6

+3.8
−3.3

[1.8, 2.4] 334.1 ± 2.0 +3.4
−3.0

391.1 +2.2
−2.3

+3.6
−3.3

[|ημ
min|, |ημ

max|] CT14nlo MMHT14nlo
dσ(W+c)

d|ημ| [pb] ΔPDF[%] Δμ[%] dσ(W+c)
d|ημ| [pb] ΔPDF[%] Δμ[%]

[0, 0.4] 499.3 +7.0
−8.0

+3.4
−1.7

526.0 +7.0
−7.7

+3.6
−1.8

[0.4, 0.8] 484.4 +7.0
−8.0

+2.9
−2.1

511.2 +6.8
−7.7

+3.0
−2.1

[0.8, 1.3] 446.3 +6.9
−8.2

+2.9
−1.8

473.4 +6.4
−7.7

+3.0
−1.9

[1.3, 1.8] 387.0 +7.1
−8.5

+3.1
−2.6

414.4 +6.0
−8.0

+3.2
−2.7

[1.8, 2.4] 304.1 +7.8
−9.3

+3.0
−2.6

330.5 +6.5
−9.1

+3.2
−2.7

[|ημ
min|, |ημ

max|] NNPDF3.0nlo NNPDF3.1nlo
dσ(W+c)

d|ημ| [pb] ΔPDF[%] Δμ[%] dσ(W+c)
d|ημ| [pb] ΔPDF[%] Δμ[%]

[0, 0.4] 489.8 ± 7.0 +3.2
−1.5

524.8 ± 5.8 +3.6
−1.8

[0.4, 0.8] 473.2 ± 6.5 +2.7
−1.8

508.1 ± 5.6 +3.0
−2.2

[0.8, 1.3] 432.4 ± 5.5 +2.6
−1.5

465.6 ± 5.4 +3.0
−1.9

[1.3, 1.8] 370.4 ± 4.2 +2.7
−2.3

399.0 ± 5.0 +3.1
−2.7

[1.8, 2.4] 288.1 ± 3.5 +2.7
−2.3

307.9 ± 4.8 +3.1
−2.6

in the kinematic range 10−3 ≤ x ≤ 10−1 and have indi-
rect sensitivity to the strange quark distribution. The earlier
CMS measurement [10] of W+c production at

√
s = 7 TeV

is also used to exploit the strange quark sensitive measure-
ments at CMS in a joint QCD analysis. The correlations of
the experimental uncertainties within each individual data set
are taken into account, whereas the CMS data sets are treated
as uncorrelated to each other. In particular, the measurements
of W+c production at 7 and 13 TeV are treated as uncorre-

lated because of the different methods of charm tagging and
the differences in reconstruction and event selection in the
two data sets.

The theoretical predictions for the muon charge asymme-
try and for W+c production are calculated at NLO using
the mcfm program [17,18], which is interfaced to applgrid
1.4.56 [60].

Version 2.0.0 of the open-source QCD fit framework for
PDF determination xFitter [61,62] is used with the parton
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Fig. 5 Left: Differential cross sections of σ(W+c) production at
13 TeV measured as a function |ημ|. The data are presented by filled
circles with the statistical (total) uncertainties shown by vertical error
bars (light shaded bands). The measurements are compared to the QCD
predictions calculated with mcfm at NLO using different PDF sets, pre-
sented by symbols of different style. All used PDF sets are evaluated
at NLO, except for ATLASepWZ16, which is obtained at NNLO. The
error bars represent theoretical uncertainties, which include PDF and

scale variation uncertainty. Right: σ(W+D∗(2010)±) production dif-
ferential cross sections presented as a function of |ημ|. The data (filled
circles) are shown with their total (outer error bars) and statistical (inner
error bars) uncertainties and are compared to the predictions of the signal
MC generated with MadGraph5_amc@nlo and using NNPDF3.0nlo
to describe the proton structure. PDF uncertainties and scale variations
are accounted for and added in quadrature (shaded band)

distributions evolved using the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi equations [63–68] at NLO, as implemented
in the qcdnum 17-00/06 program [69].

The Thorne–Roberts [70,71] general mass variable flavor
number scheme at NLO is used for the treatment of heavy
quark contributions with heavy quark masses mb = 4.5 GeV
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Table 6 The partial χ2 per
number of data points, ndp, and
the global χ2 per number of
degree of freedom, ndof ,
resulting from the PDF fit

Data set χ2/ndp

HERA I+II charged current e+p 43/39

HERA I+II charged current e−p 57/42

HERA I+II neutral current e−p 218/159

HERA I+II neutral current e+p, Ep = 820 GeV 69/70

HERA I+II neutral current e+p, Ep = 920 GeV 448/377

HERA I+II neutral current e+p, Ep = 460 GeV 216/204

HERA I+II neutral current e+p, Ep = 575 GeV 220/254

CMS W muon charge asymmetry 7 TeV 13/11

CMS W muon charge asymmetry 8 TeV 4.2/11

CMS W+c 7 TeV 2.2/5

CMS W+c 13 TeV 2.1/5

Correlated χ2 87

Total χ2/dof 1385/1160

and mc = 1.5 GeV, which correspond to the values used in
the signal MC simulation in the cross section measurements.
The renormalization and factorization scales are set to Q,
which denotes the four-momentum transfer for the case of the
DIS data and the mass of the W boson for the case of the muon
charge asymmetry and the W+c measurement. The strong
coupling constant is set to αs(mZ) = 0.118. The Q2 range of
HERA data is restricted to Q2 ≥ Q2

min = 3.5 GeV2 to ensure
the applicability of pQCD over the kinematic range of the fit.
The procedure for the determination of the PDFs follows the
approach used in the earlier CMS analyses [11,59]. In the
following, a similar PDF parameterization is used as in the
most recent CMS QCD analysis [59] of inclusive W boson
production.

The parameterized PDFs are the gluon distribution, xg,
the valence quark distributions, xuv , xdv , the u-type, xu,
and xd-type anti-quark distributions, with xs (xs) denoting
the strange (anti-)quark distribution. The initial scale of the
QCD evolution is chosen as Q2

0 = 1.9 GeV2. At this scale,
the parton distributions are parameterized as:

xuv(x) = Auv x Buv (1 − x)Cuv (1 + Euvx
2), (3)

xdv(x) = Adv x Bdv (1 − x)Cdv , (4)

xu(x) = Au x Bu (1 − x)Cu (1 + Eux
2), (5)

xd(x) = Ad x Bd (1 − x)Cd , (6)

xs(x) = As x
Bs (1 − x)Cs , (7)

xg(x) = Ag x Bg (1 − x)Cg . (8)

The normalization parameters Auv , Adv , Ag are deter-
mined by the QCD sum rules, the B parameter is respon-
sible for small-x behavior of the PDFs, and the parameter
C describes the shape of the distribution as x → 1. The

strangeness fraction fs = s/(d + s) is a free parameter in the
fit.

The strange quark distribution is determined by fitting the
free parameters in Eqs. (3)–(8). The constraint Au = Ad
ensures the same normalization for u and d densities at x →
0. It is assumed that xs = xs.

In the earlier CMS analysis [11], the assumption Bu = Bd
was applied. An alternative assumption Bu �= Bd led to a
significant change in the result, which was included in the
parameterization uncertainty. In the present analysis, the B
parameters of the light sea quarks are independent from each
other, Bu �= Bd �= Bs, following the suggestion of Ref. [15].

For all measured data, the predicted and measured cross
sections together with their corresponding uncertainties are
used to build a global χ2, minimized to determine the initial
PDF parameters [61,62]. The quality of the overall fit can
be judged based on the global χ2 divided by the number of
degrees of freedom, ndof . For each data set included in the
fit, a partial χ2 divided by the number of measurements (data
points), ndp, is provided. The correlated part of χ2 quantifies
the influence of the correlated systematic uncertainties in the
fit. The global and partial χ2 values for each data set are
listed in Table 6, illustrating a general agreement among all
the data sets.

The PDF uncertainties are investigated according to the
general approach of HERAPDF 1.0 [57]. The experimental
PDF uncertainties arising from the uncertainties in the mea-
surements are estimated by using the Hessian method [72],
adopting the tolerance criterion of Δχ2 = 1. The exper-
imental uncertainties correspond to 68% confidence level.
Alternatively, the experimental uncertainties in the measure-
ments are propagated to the extracted QCD fit parameters
using the MC method [73,74]. In this method, 426 replicas of
pseudodata are generated, with measured values for the cross
sections allowed to vary within the statistical and systematic
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Fig. 6 The s quark distribution (upper) and the strangeness suppres-
sion factor (lower) as functions of x at the factorization scale of 1.9 GeV
2 (left) and m2

W (right). The results of the current analysis are presented

with the fit uncertainties estimated by the Hessian method (hatched
band) and using MC replicas (shaded band)

uncertainties. For each of them, the PDF fit is performed and
the uncertainty is estimated as the root-mean-square around
the central value. Because of possible nonGaussian tails in
the PDF uncertainties, the MC method is usually consid-
ered to be more robust and to give more realistic uncertain-
ties, in particular for PDFs not strongly constrained by the
measurements, e.g., in the case of too little or not very pre-
cise data. In Fig. 6, the distributions of the strange quark
content s(x, Q2), and of the strangeness suppression factor
rs(x, μ2

f ) = (s + s)/(u + d) are presented.
In Fig. 7 the strangeness suppression factor is shown in

comparison with the ATLASepWZ16nnlo and the
ABMP16nlo, similar to Fig. 1 in Ref. [15]. Whereas the CMS

result for rs(x) is close to the ABMP16nlo PDF, it shows a
significant difference with regard to the ATLASepWZ16nnlo
PDF for x > 10−3. The significant excess of the strange
quark content in the proton reported by ATLAS [14] is not
observed in the present analysis.

To investigate the impact of model assumptions on the
resulting PDFs, alternative fits are performed, in which the
heavy quark masses are varied as 4.3 ≤ mb ≤ 5.0 GeV,
1.37 ≤ mc ≤ 1.55 GeV, and the value of Q2

min imposed
on the HERA data is varied in the interval 2.5 ≤ Q2

min ≤
5.0 GeV2. Also, the variations in PDF parameterization, fol-
lowing Ref. [59] are investigated. These variations do not
alter the results for the strange quark distribution or the
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Fig. 8 The distributions of s quarks (upper panel) in the proton and
their relative uncertainty (lower panel) as a functions of x at the fac-
torization scale of 1.9 GeV 2 (left) and m2

W (right). The result of the

current analysis (filled band) is compared to the result of Ref. [11]
(dashed band). The PDF uncertainties resulting from the fit are shown

suppression factor significantly, compared to the PDF fit
uncertainty. Since each global PDF group is using their own
assumptions for the values of heavy quark masses and cut-
offs on the DIS data, these model variations are not quantified
further.

To compare the results of the present PDF fit with the ear-
lier determination of the strange quark content in the proton
at CMS [11], the “free-s” parameterization of Ref. [11] is
used. There, a flexible form [70,71] for the gluon distribu-
tion was adopted, allowing the gluon to be negative. Further-
more, the condition Bu = Bd = Bs was applied in the central

parameterization, while Bd �= Bs was used to estimate the
parameterization uncertainty. A complete release of the con-
dition Bu = Bd = Bs was not possible because of limited
data input, in contrast to the current analysis. The same PDF
parameterization was used in the ATLASepWZ16nnlo anal-
ysis [14]. The results are presented in Fig. 8. The central
value obtained of the s quark distribution is well within the
experimental uncertainty of the results at

√
s = 7 TeV, while

the PDF uncertainty is reduced.
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7 Summary

Associated production of W bosons with charm quarks in
proton–proton collisions at

√
s = 13 TeV is measured using

the data collected by the CMS experiment in 2016 and cor-
responding to an integrated luminosity of 35.7 fb−1. The
W boson is detected via the presence of a high-pT muon
and missing transverse momentum, suggesting the pres-
ence of a neutrino. The charm quark is identified via the
full reconstruction of the D∗(2010)± meson decaying to
D0 + π±

slow → K∓ + π± + π±
slow. Since in W+c produc-

tion the W boson and the c quark have opposite charge,
contributions from background processes, mainly c quark
production from gluon splitting, are largely removed by sub-
tracting the events in which the charges of the W boson and
of the D∗(2010)± meson have the same sign. The fiducial
cross sections are measured in the kinematic range of the
muon transverse momentum pμ

T > 26 GeV, pseudorapidity
|ημ| < 2.4, and transverse momentum of the charm quark
pc

T > 5 GeV. The fiducial cross section of W+D∗(2010)±
production is measured in the kinematic range pμ

T > 26 GeV,
|ημ| < 2.4, transverse momentum of the D∗(2010)± meson
pD∗

T > 5 GeV and |ηD∗ | < 2.4, and compared to the Monte
Carlo prediction. The measurements are performed inclu-
sively and in five bins of |ημ|.

The obtained values for the inclusive fiducial W+c cross
section and for the cross section ratio are:

σ(W+c) = 1026 ± 31 (stat)+76−72 (syst) pb, (9)

σ(W++c)

σ (W−+c)
= 0.968 ± 0.055 (stat)+0.015−0.028 (syst). (10)

The measurements are in good agreement with the theoreti-
cal predictions at next-to-leading order (NLO) for different
sets of parton distribution functions (PDF), except for the
one using the ATLASepWZ16nnlo PDF. To illustrate the
impact of these measurements in the determination of the
strange quark distribution in the proton, the data is used in
a QCD analysis at NLO together with inclusive DIS mea-
surements and earlier results from CMS on W+c produc-
tion and the lepton charge asymmetry in W boson produc-
tion. The strange quark distribution and the strangeness sup-
pression factor rs(x, μ2

f ) = (s + s)/(u + d) are determined
and agree with earlier results obtained in neutrino scattering
experiments. The results do not support the hypothesis of an
enhanced strange quark contribution in the proton quark sea
reported by ATLAS [14].
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