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In this paper we study the generalized Buckley-Leverett equation with nonlocal
regularizing terms. One of these regularizing terms is diffusive, while the other one
is conservative. We prove that if the regularizing terms have order higher than one
(combined), there exists a global strong solution for arbitrarily large initial data.
In the case where the regularizing terms have combined order one, we prove the
global existence of solution under some size restriction for the initial data. Moreover,
in the case where the conservative regularizing term vanishes, regardless of the
order of the diffusion and under a certain hypothesis on the initial data, we also
prove the global existence of a strong solution, and we obtain some new entropy
balances. Finally, we provide numerics suggesting that, if the order of the diffusion
is 0 < α < 1, a finite time blow up of the solution is possible. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4945786]

I. INTRODUCTION

In this paper we study the case of the Buckley-Leverett equation with generalized regularizing
terms provided by fractional powers of the laplacian (−∆)α/2 = Λα

∂tu + ∂x


u2

u2 + M(1 − u)2

= −νΛαu − µΛβ∂tu, x ∈ Ω, t > 0, (1)

with initial data

0 ≤ u(x,0) = u0(x) ≤ 1,

and where M > 0 is a fixed constant. HereΩ is eitherΩ = R orΩ = T.
Let us immediately emphasize that u0(x) ≤ 1 is not a smallness condition, since, in applica-

tions, u denotes a certain proportion (compare the following literature outline). Equation (1) is a
nonlocal regularization of the classical Buckley-Leverett equation

∂tu + ∂x


u2

u2 + M(1 − u)2

= 0, x ∈ Ω, t > 0. (2)

The nonlinearity in Equation (1) is regularized in two different ways: first, due to the diffusive term

−νΛαu,

and second due to the conservative term

−µΛβ∂tu.

Equation (2) was derived by Buckley and Leverett in Ref. 4 and it has been well studied since
then (see LeVeque27 and Mikelić and Paoli30). This equation is used to describe a two-phase flow
in a porous medium. For example, oil and water flow in soil or rock. In this situation u represents
the saturation of water and M > 0 is the water-over-oil viscosity ratio. Equation (2) is a prototype of
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conservation laws with convex-concave flux functions (see, for instance, Lax,26 Glimm,15 Hong,22

Hong and Temple,23 and Bayada et al.3). Under the effect of dynamic capillarity, (2) needs to be
modified with two regularizing terms (see Hassanizadeh and Gray20,21),

∂tu + ∂x


u2

u2 + M(1 − u)2

= ν∂2

xu + ν2τ∂2
x∂tu, x ∈ Ω, t > 0. (3)

Equation (3) has been studied by many authors. For instance, Van Duijn et al.31 derived existence
conditions for the solution of the travelling wave form. Moreover, this leads to admissible shocks for
(2), which violate the Oleinik entropy condition. In Ref. 24, Hong et al. proved the global existence
of a classical solution to (3) with u0 ∈ H1(R). Furthermore, they proved that the solution becomes
C∞((0,∞) × R). For Equation (2), Hong et al. proved that if the total variation T.V.(u0) is sufficiently
small, then there exists a solution to (2). Wang and Kao32 studied (3) on a finite interval Ω = (0,L)
and showed that the solution, uL, converges to the solution u∞ on the half-line as L → ∞.

A. Aim and outline

The purpose of this paper is to study (1). We are mainly interested in the global existence of
solutions together with their qualitative behaviour as well as in the finite time singularities.

We provide details of our results in Subsection I B. Subsection I C contains notation, including
the definition of a weak solution and certain preliminaries. Section II provides new entropy inequal-
ities for the fractional laplacian that are interesting by themselves, therefore these inequalities
are stated for an arbitrary dimension d. Sections II–VIII contain proofs of our results. Finally, in
Section IX, we provide some numerical results suggesting the existence of finite time singularities
for the cases 0 < α < 1 and µ = 0. These numerics also suggest that in the critical case α = 1 the
solution exists globally. This is in agreement with the results for the Burgers equation with frac-
tional dissipation by Kiselev et al.,25 and Dong et al.14 Let us remark that, when the term µΛβ∂tu
is added to the equation, even for α = β = 0.25 there is no evidence of blow-up. Consequently, our
numerics appear to discard a finite time blow-up scenario when µ > 0.

To the best of our knowledge, all our results are new.

B. Results

First, let us provide a result concerning the global existence of weak solutions for (1), cor-
responding to rough initial data, i.e., merely 0 ≤ u0 ≤ 1 a.e., as well as concerning new entropy
balances (that are needed in the existence part of the result, but are interesting by themselves).

Proposition 1. Let 0 ≤ u0 ≤ 1, u0 ∈ L1(Ω) ∩ L∞(Ω) be the initial data for (1) with ν > 0, 0 <
α < 2, µ = 0 and M > 0. Then there exists a global weak solution such that

u ∈ L∞(0,∞; L1(Ω) ∩ L∞(Ω)) ∩ L2(0,∞; Hα/2(Ω)).
Furthermore, if u is an L2(0,T ; H1(Ω)) solution to (1), then the following entropy inequalities hold

Ω

u(t) log(u(t))dx + ν

 t

0


Ω

Λ
αu(s) log(u(s))dxds ≤


Ω

u0 log(u0)dx, (4)

and 
Ω


u(t) + M

1 + M


log

�
u(t)2 + M(1 − u(t))2� dx (5)

− 2M1.5

1 + M


Ω

arctan
(√

M
(

1
u(t) − 1

))
dx

+ν

 t

0


Ω

Λ
αu(s)


log

�
u(s)2 + M(1 − u(s))2�

+
2(M + 1)u(s)2

u(s)2 + M(1 − u(s))2

dxds
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≤

Ω


u0 +

M
1 + M


log

�
u2

0 + M(1 − u0)2� dx

−2
M1.5

1 + M


Ω

arctan
(√

M
(

1
u0
− 1

))
dx.

Let us remark that the terms  t

0


Ω

Λ
αu(s) log(u(s))dxds

and  t

0


Ω

Λ
αu(s)


log

�
u(s)2 + M(1 − u(s))2� + 2(M + 1)u(s)2

u(s)2 + M(1 − u(s))2

dxds

will provide a L2
t bound on a fractional derivative of the solutions. The proof of Proposition 1 will

be established in Section III.
Our next results concern the qualitative behaviour of smooth solutions. In case Ω = T, we

denote the average of u0 by

⟨u0⟩ = 1
2π


T

u0(x)dx.

Proposition 2. Let u be the classical solution to (1) with initial data 0 ≤ u0 ≤ 1, where ν > 0,
0 < α ≤ 2 and M > 0. Then,

1. for Ω = T,

∥u(t)∥L∞(T) ≤ ⟨u0⟩ + (∥u0∥L∞ − ⟨u0⟩)e−
2Γ(1+α) cos((1−α)π/2)

π1+α t
.

2. for Ω = R,

∥u(t)∥L∞ ≤ ∥u0∥L∞(
1 + α Γ(1+α) cos((1−α)π/2)

2π ∥u0∥αL∞t
) 1
α

.

Our main results address the problem of global existence of smooth solutions. More precisely,
we have results for three cases, depending on the values of the parameters α and β.

1. the subcritical case: the higher space derivative is in the dissipative term, i.e., 1 < max{α, β} ≤
2. Here we show global existence of smooth solutions with no restrictions on the initial data.
Compare Theorem 1.

2. the critical case: the transport term exactly balances the regularizing terms, i.e., 1 = max{α, β}.
Here, for µ > 0 and β = 1, we prove global existence of smooth solutions without any size restric-
tion on the initial data. In the other cases we need certain smallness conditions. Namely, for
µ = 0, ν > 0 and α = 1, we obtain global existence of smooth solutions for initial data satisfying
a smallness restriction on the lower order norm L∞; this smallness restriction is explicit in terms
of ν and M . Finally, in the case µ > 0, α = 1 and 0 < β < 1, we obtain the global existence for
initial data satisfying a smallness condition in H

1+β
2 . The smallness restriction is here slightly

less explicit, but easily computable. See Theorem 2.
3. the supercritical case: the higher space derivative is in the transport term, i.e., 0 ≤ α < 1 and

µ = 0. Even here, for Ω = T, we are able to prove global existence of smooth solutions for
smooth, periodic initial data satisfying an explicit smallness restriction on the Lipschitz norm
W 1,∞.

The remaining open problems are in the critical and supercritical regime. In particular, our
results do not apply to the case where

max{α, β} < 1, µ > 0,

and there is no large data, global results for the critical case with µ = 0, ν > 0,α = 1. In the
context of the latter, let us observe that on one hand, there are certain new methods available for
nonlinear problems with nonlocal critical dissipation, like the method of moduli of continuity by
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Kiselev et al.,25 the fine-tuned DeGiorgi method by Caffarelli and Vasseur6 or the method of the
nonlinear maximum principles by Constantin and Vicol10 (see also Constantin et al.9). But on the
other hand, our nonlinearity is more complex than the typical ones.

Now, let us state the main theorems. First, we study the subcritical case max{α, β} > 1.

Theorem 1. Let 0 ≤ u0 ≤ 1, u0 ∈ H s(Ω) be the initial data for (1) with M > 0. Then (1) has a
global solution

u ∈ C([0,T],H s(Ω)) ∩ L2(0,T ; H s+α/2(Ω)) for all 0 < T < ∞.

Moreover, for t ≤ T, the solution satisfies

∥u(t)∥2
L2 + µ∥u(t)∥2

Ḣ β/2 + 2ν
 t

0
∥u(s)∥2

Ḣα/2ds = ∥u0∥2
L2 + µ∥u0∥2

Ḣ β/2,

provided

• either ν > 0,1 < α ≤ 2, µ = 0 and s ≥ 1 (purely dissipative regularization),
• or µ > 0, ν ≥ 0, 1 < max{α, β} ≤ 2 and s ≥ max{1 + β

2 } (dissipative-conservative regular-
ization).

For the critical case, let us define the following constants.

Definition 1. Let γ∗ be a constant such that

2γ∗(M + 1)
M

+
2(γ∗)2(γ∗ + M)(M + 1)2

M2 = ν,

and let γ be any fixed number such that 0 < γ < γ∗.
Next, let CS be the Sobolev’s constant corresponding to the embedding

H
1+β

2 ↩→ L∞.

We have

Theorem 2. Let 0 ≤ u0 ≤ 1, u0 ∈ H s(Ω), s ≥ 1 be the initial data for (1) with M > 0. Then (1)
has a global solution

u(t) ∈ C([0,T],H s(Ω)) ∩ L2(0,T ; H s+0.5(Ω)) ∀ T < ∞

that satisfies the energy balance

∥u(t)∥2
L2 + µ∥u(t)∥2

Ḣ β/2 + ν

 t

0
∥u(s)∥2

Ḣα/2ds = ∥u0∥2
L2 + µ∥u0∥2

Ḣ β/2.

Under the following conditions:

(i) Either ν ≥ 0, 0 ≤ α ≤ 2 and µ > 0, β = 1 (conservative regularization with no smallness
conditions on the data).

(ii) Or ν > 0, α = 1, µ = 0 and the initial data is such that

∥u0∥L∞ ≤ γ. (6)

In this case the solution satisfies the maximum principle

∥u(t)∥H0.5 ≤ ∥u0∥H0.5.

(iii) Or ν > 0, α = 1, µ > 0, 0 < β < 1 and the initial data is such that

∥u0∥2
L2 + (1 + µ)∥u0∥2

Ḣ0.5 + µ∥u0∥2

Ḣ
1+β

2
≤ (1 + µ) γ

2

C2
S

. (7)

Then, the solution satisfies the maximum principle

∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2
≤ ∥u0∥2

Ḣ0.5 + µ∥u0∥2

Ḣ
1+β

2
.
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Remark 1. The fact that



2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

L∞
≤ C(M), (8)

independently of the value of u, allows for a global result relying on a condition related to M,
ν, and µ. However, we are interested in results that deal with every possible value of the physical
parameters present in the problem.

In our opinion, there are two reasons, at least in the case µ = 0, why the smallness condition (6)
may be seen as a rather mild restriction. The first one is that the size restriction affects a lower norm,
merely L∞, keeping the higher seminorms as large as desired. The second one is that, given M and
ν, the constant γ∗ can be easily computed. For instance, if we further assume γ∗ ≤ 1, the expression
for γ∗ is explicit:

γ∗ = min



1,
−1 +


1 + 2(M + 1)ν
1 + M



.

In particular, γ∗ = O(ν) for ν ≪ 1.
The last case, namely where 0 < α < 1, is harder because the leading term in the equation is the

transport term. However, under certain conditions, we can prove the global existence of solutions.
Before we can state the relevant result, we need some notation.

Definition 2. Let γ and M be given, positive constants. Define Σ(γ) as follows:

Σ(γ) = 2γ(M + 1)
M

+
4γ(γ + M)(M + 1)2

M2 +
4γ2(γ + M)(M + 1)2

M2

+
2γ3(M + 1)3

M2 +
8γ3(γ + M)2(M + 1)3

M3 . (9)

Next, let γ∗ be a small enough constant such that

Σ(γ∗) ≤ ν
Γ(1 + α) cos((1 − α)π/2)

π
. (10)

Then we have the following.

Theorem 3. Let Ω = T and 0 ≤ u0 ≤ 1, u0 ∈ H s with s ≥ 2 be the initial data for (1), where
M > 0 and ν > 0, 0 < α < 1, µ = 0. Fix any 0 < γ < γ∗, with γ∗ in accordance with Definition 2. If
the initial data is such that

∥u0∥W 1,∞(T) ≤ γ,

then there exists a global solution

u ∈ C([0,T],H s(T)) ∩ L2(0,T ; H s+α/2(T)) ∀ T < ∞.

Furthermore, this solution satisfies the maximum principle

∥u(t)∥W 1,∞(T) ≤ ∥u0∥W 1,∞(T),

and the energy balance

∥u(t)∥2
L2 + ν

 t

0
∥u(s)∥2

Ḣα/2ds = ∥u0∥2
L2.

In the above theorem, we impose domain restrictions and stronger smallness assumptions.
These domain restrictions are due to the better behavior of the fractional laplacian in a bounded
domain. The size restrictions on data are again on a lower order norm (Lipschitz) and with a rather
explicit constant.

Finally we obtain the standard finite time blow up for certain initial data in some Hölder
seminorm.



041501-6 Burczak, Granero-Belinchón, and Luli J. Math. Phys. 57, 041501 (2016)

Proposition 3. Fix a constant M > 0 and consider µ = 0, min{ν,α} = 0. Then, there exist
0 ≤ u0 ≤ 1 ∈ H2(Ω) and T∗ < ∞ such that the corresponding solution, u(t), of Equation (2) has a
finite time singularity in Cδ for 0 < δ ≪ 1, i.e.,

lim sup
t→T ∗

∥u(t)∥Cδ = ∞.

The proof of this result is obtained by a virial-type argument. However, we remark that it
can also be obtained by means of pointwise arguments (see Castro and Córdoba7 for an appli-
cation of these pointwise arguments to prove blow up). These virial-type arguments have been
used for several transport equations even in the case of nonlocal velocities (see Córdoba et al.,12

Dong et al.,14 Li and Rodrigo,28 and Li et al.29). In this case, the transport term is highly nonlinear
and this method fails in the case of viscosity ν > 0,0 < α ≪ 1.

C. Notation and preliminaries

1. Singular integral operators

We denote the usual Fourier transform of u by û. Given a function u : Ω → R, we write
Λαu = (−∆)α/2u for the fractional laplacian, i.e.,

Λαu(ξ) = |ξ |αû(ξ).
This operator admits the kernel representation

Λ
αu(x) = Cα,d


γ∈Zd

P.V.

Td

u(x) − u(y)
|x − y − 2πγ |d+α dy, (11)

if the function is periodic and

Λ
αu(x) = Cα,d P.V.


Rd

u(x) − u(y)
|x − y |d+α dy, (12)

if the function is flat at infinity. Notice that we have

Cα,1 =
Γ(1 + α) cos((1 − α)π/2)

π
, (13)

where Γ(·) denotes the classical Γ function.

2. Functional spaces

We write H s(Ωd) for the usual L2-based Sobolev spaces with norm

∥ f ∥2
H s = ∥ f ∥2

L2 + ∥ f ∥2
Ḣ s, ∥ f ∥Ḣ s = ∥Λs f ∥L2.

The fractional Lp-based Sobolev spaces, W s,p(Ωd), are

W s,p =



f ∈ Lp(Ωd), ∂ ⌊s⌋
x f ∈ Lp(Ωd), |∂

⌊s⌋
x f (x) − ∂

⌊s⌋
x f (y)|

|x − y | dp +(s−⌊s⌋)
∈ Lp(Ωd ×Ωd)



,

with norm

∥ f ∥pW s,p = ∥ f ∥pLp + ∥ f ∥p
Ẇ s,p,

where

∥ f ∥p
Ẇ s,p = ∥∂ ⌊s⌋

x f ∥pLp +


Ωd


Ωd

|∂ ⌊s⌋
x f (x) − ∂

⌊s⌋
x f (y)|p

|x − y |d+(s−⌊s⌋)p dxdy.
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3. Entropy functionals

For a given function u ≥ 0, we define the following entropy functionals

F1[u] =

Ωd

(u(x) log(u(x)) − u(x) + 1) dx, (14)

F2[u] =

Ωd
(1 + u(x)) log(1 + u(x))dx. (15)

These two entropies have an associated Fisher information,

Iα
1 [u] =


Ωd
Λ

αu(x) log(u(x))dx, (16)

Iα
2 [u] =


Ωd
Λ

αu(x) log(1 + u(x))dx. (17)

The third entropy that we are using reads

F3[u] =

T

u(x) log
�
u(x)2 + M(1 − u(x))2� dx, (18)

with its Fisher information

Iα
3 [u] =


T

Λ
αu log

�
u2 + M(1 − u)2� dx + 2(M + 1)


T

Λαuu2

u2 + M(1 − u)2 dx. (19)

4. Notation

Recall that we denote the mean of a function by

⟨u⟩ = 1
2π


T

u(y)dy.
Let us introduce f and a as follows:

f (u(x, t)) = u(x, t)2
u(x, t)2 + M(1 − u(x, t))2 (20)

and

a(u(x, t)) = df
du
=

2u(x, t)M(1 − u(x, t))
(u(x, t)2 + M(1 − u(x, t))2)2 . (21)

Finally, let us introduce the notation for the mollifiers. For ϵ > 0, we write Jϵ for the heat kernel at
time t = ϵ and define

Jϵ ∗ f = Jϵ f .

5. Weak solutions to (1) and their local existence

We start this section with

Definition 3. Let µ, ν ≥ 0 and 0 < T < ∞ be a fixed positive parameter. The function

u ∈ L∞([0,T) ×Ω)
is a (very weak) solution of (1) if T

0


Ω

[∂tφ − νΛαφ + µΛβ∂tφ]u + ∂xφ


u2

u2 + M(1 − u)2

=


Ω

[µΛβ∂tφ + φ]|t=0 u0,

for every test function φ(x, t) ∈ C∞c ([0,T) ×Ω).
If a solution u verifies the previous definition for every 0 < T < ∞, it is called a global solution.

Lemma 1. Let u0 ∈ H s, s ≥ 2 be the initial data for (1) with µ, ν ≥ 0 and 0 ≤ α, β ≤ 2. Then
there exist T(u0,M) and the unique solution
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u ∈ C([0,T(u0,M)],H s(Ω))
to (1). The maximal time of existence T(u0,M) is characterized by

lim sup
t→T (u0,M )

∥u(t)∥Ẇ 1,∞(Ω) = ∞.

Proof. Using the same ideas as in Ref. 24 (Theorem 3.1), we can construct solutions to the
regularized problem

∂tuϵ,δ + ∂x



u2
ϵ,δ

u2
ϵ,δ + M(1 − uϵ,δ)2


= −νΛαuϵ,δ − µΛβ∂tuϵ,δ + ϵ∂

2
xuϵ,δ + δ∂2

x∂tuϵ,δ,

with initial data uϵ,δ(0) = u0. Standard energy estimates give us uniform bounds. Then we can pass
to the limits ϵ, δ → 0. The proof of the continuation criteria can be obtained by energy methods. �

II. THE ENTROPY INEQUALITIES

In this section we provide the proof of three entropy inequalities that, in our opinion, may be of
independent interest.

Proposition 4. Let u be a given function and 0 < α < 2, 0 < ϵ < α/2 be two fixed constants.
Then

∥u∥2
Ẇα/2−ϵ,1 ≤ C(α,d, ϵ)∥u∥L1Iα

i [u], (22)

∥u∥2
Ḣα/2 ≤

4
Cα,d

∥u∥L∞Iα
i [u], (23)

provided that the right hand sides are meaningful.

Proof. Let us fix i = 1. First, we symmetrize

Iα
1 [u] = Cα,d


γ∈Zd


Td

P.V.

Td

u(x) − u(y)
|x − y − 2πγ |d+α log(u(x))dydx

= −Cα,d

γ∈Zd


Td

P.V.

Td

u(x) − u(y)
|x − y − 2πγ |d+α log(u(y))dydx

=
Cα,d

2


γ∈Zd


Td

P.V.

Td

u(x) − u(y)
|x − y − 2πγ |d+α log

(
u(x)
u(y)

)
dydx

≥ 0.

Furthermore, since (a − b) log
�
a
b

�
≥ 0, every term in the series is positive, i.e., for every γ ∈ Zd, we

have 
Td

P.V.

Td

u(x) − u(y)
|x − y − 2πγ |d+α log

(
u(x)
u(y)

)
dydx ≥ 0.

In particular

Iα
1 [u] ≥ Cα,d

2


Td

P.V.

Td

u(x) − u(y)
|x − y |d+α log

(
u(x)
u(y)

)
dydx. (24)

Let us consider first the case 0 ≤ u ∈ L1. We have

∥u∥Ẇα/2−ϵ,1 =


Td


Td

|u(x) − u(y)|
|x − y |d+ α

2 −ϵ
dxdy

=


Td


Td

 1

0

 |u(x) − u(y)|
|x − y |d+ α

2 −ϵ
|x − y |− d

2 +ϵ

|x − y |− d
2 +ϵ
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× |su(x) + (1 − s)u(y)|1/2

|su(x) + (1 − s)u(y)|1/2


dsdxdy

≤ I0.5
1 I0.5

2 ,

with

I1 =


Td


Td

 1

0

|u(x) − u(y)|2
|x − y |d+α

1
|su(x) + (1 − s)u(y)| dsdxdy,

I2 =


Td


Td

 1

0

|su(x) + (1 − s)u(y)|
|x − y |d−2ϵ dsdxdy.

This latter integral is similar to the Riesz potential. Due to the positivity of u, we have

I2 =


Td


Td

 1

0

su(x) + (1 − s)u(y)
|x − y |d−2ϵ dsdxdy = C(ϵ)∥u∥L1,

with

C(ϵ) =

Td

1
|y |d−2ϵ dy.

We have

I1 =


Td

P.V.

Td

u(x) − u(y)
|x − y |d+α log

(
u(x)
u(y)

)
dydx.

Consequently, we get

∥u∥2
Ẇα/2−ϵ,1 ≤ 2

C(ϵ)
Cα,d

∥u∥L1Iα
1 [u].

The case 0 ≤ u ∈ L∞ was first proved by Bae and Granero-Belinchón.2 For the sake of complete-
ness, we include here a sketch of the proof. Using (24), we have

Iα
1 [u] ≥ Cα,d

2
1

2∥u∥L∞

Td


Td

|u(x) − u(y)|2
|x − y |d+α dxdy,

so

∥u∥2
Ḣα/2 ≤

4
Cα,d

∥u∥L∞Iα
1 [u].

The proof for the case i = 2 is similar. �

III. PROOF OF PROPOSITION 1: WEAK SOLUTIONS

We prove the result for Ω = T, but the same proof can be adapted to deal with Ω = R. We
consider the regularized problems

∂tuϵ + ∂x


u2
ϵ

u2
ϵ + M(1 + ϵ − uϵ)2


= −νΛαuϵ + ϵ∂

2
xuϵ, x ∈ T, t > 0, (25)

with the regularized initial data

uϵ(x,0) = Jϵ ∗ u0(x) + ϵ,
and ϵ ≤ 1/2. These approximate problems have global classical solution due to the Theorem 3.1
in Ref. 24. Consequently, we focus on obtaining the appropriate ϵ-uniform bounds. By assumption
0 ≤ u(x,0) ≤ 1. We apply the same technique as Córdoba and Córdoba11 (see also Refs. 1, 2, 5, 7, 8,
13, and 16–19 for more details and application to other partial differential equations), i.e., we track

∥uϵ(t)∥L∞ = uϵ( xt, t) =Mϵ(t)
and

min
x∈Ω

uϵ(x, t) = uϵ( xt, t) = Mϵ(t).
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Due to smoothness of uϵ, we have thatMϵ(t),Mϵ(t) are Lipschitz, and consequently almost every-
where differentiable. Hence, using

M ′
ϵ(t) = d

dt
∥u(t)∥L∞ = d

dt
(u( xt, t)), M

′
ϵ(t) = d

dt
(uϵ( xt, t)),

together with the kernel expression for Λα, we have the ϵ-uniform bounds

0 ≤ ϵ ≤ uϵ(x, t) ≤ 1.5.

By space integration of (25), we get

∥uϵ(t)∥L1 = ∥uϵ(0)∥L1 ≤ ∥u0∥L1 + π.

We compute

d
dt
F1[uϵ] =


T

∂tuϵ log(uϵ)dx =

T

uϵ∂xuϵ

u2
ϵ + M(1 + ϵ − uϵ)2 dx − νIα

1 [uϵ] − ϵI2
1 [uϵ].

We have

∂x log
�
u2
ϵ + M(1 + ϵ − uϵ)2� = 2uϵ∂xuϵ(1 + M) − 2M(1 + ϵ)∂xuϵ

u2
ϵ + M(1 + ϵ − uϵ)2 ,

and as a consequence
T


uϵ∂xuϵ

u2
ϵ + M(1 + ϵ − uϵ)2


dx =

M(1 + ϵ)
M + 1


T

∂xuϵ

u2
ϵ + M(1 + ϵ − uϵ)2 dx

=
M(1 + ϵ)

M + 1


T

∂xuϵ

u2
ϵ

1

1 + M
(

1+ϵ−uϵ
uϵ

)2 dx

=
−M

M + 1


T

∂x


1+ϵ−uϵ
uϵ



1 + M
(

1+ϵ−uϵ
uϵ

)2 dx

=
−
√

M
M + 1


T

∂x


arctan

(√
M

(
1 + ϵ − uϵ

uϵ

))
dx

= 0.

Thus, we conclude

F1[uϵ(t)] + ν

 t

0
Iα

1 [uϵ(s)]ds + ϵ
 t

0
I2

1 [uϵ(s)]ds = F1[uϵ(0)].
As

F1[uϵ(0)] ≤ C,

we get a ϵ-uniform estimate. Now we apply (23) from Proposition 4 and uϵ(x, t) ≤ 1.5 to get t

0
∥uϵ(s)∥2

Hα/2ds ≤ C.

Consequently, we have ϵ-uniform bounds

uϵ(t) ∈ L∞(0,∞; L∞) ∩ L2(0,∞; Hα/2)
and the first entropy inequality (4). For the second entropy inequality (5), we compute

d
dt
F3[u] =


T

∂tu log
�
u2 + M(1 − u)2� dx +


T

2
u2∂tu + uM(1 − u)(−∂tu)

u2 + M(1 − u)2 dx = I1 + I2.

We are going to handle both integrals separately. We have

I1 =


T

u2

u2 + M(1 − u)2
2u∂xu + 2M(1 − u)(−∂xu)

u2 + M(1 − u)2 dx

−ν

T

Λ
αu log

�
u2 + M(1 − u)2� dx
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=


T

2u∂xu
u2 + M(1 − u)2 dx − ν


T

Λ
αu log

�
u2 + M(1 − u)2� dx

= −ν

T

Λ
αu log

�
u2 + M(1 − u)2� dx,

where in the second term we have used
2u∂xu + 2M(1 − u)(−∂xu)

(u2 + M(1 − u)2)2 = −∂x
(

1
u2 + M(1 − u)2

)
.

The second integral reads

I2 = −2ν(M + 1)

T

Λαuu2

u2 + M(1 − u)2 dx − M

T

2u∂tu
u2 + M(1 − u)2 dx.

Now we compute

d
dt


T

log
�
u2 + M(1 − u)2� dx = 2


T

(1 + M)u∂tu − M∂tu
u2 + M(1 − u)2 dx,

so 
T

2u∂tu
u2 + M(1 − u)2 dx =

1
1 + M


d
dt


T

log
�
u2 + M(1 − u)2� dx

−2
√

M
d
dt


T

arctan
(√

M
(

1
u
− 1

))
dx


.

Collecting all these computations we get

F3[u(t)] + ν

 t

0
Iα

3 [u(s)]ds +
M

1 + M


T

log
�
u(t)2 + M(1 − u(t))2� dx

−2
√

M

T

arctan
(√

M
(

1
u(t) − 1

))
dx



= F3[u0] + M
1 + M


T

log
�
u2

0 + M(1 − u0)2� dx

−2
√

M

T

arctan
(√

M
(

1
u0
− 1

))
dx


.

IV. PROOF OF PROPOSITION 2: DECAY ESTIMATES

Let us prove first the periodic case. The L1 norm is preserved. Consequently, the mean propa-
gates. We again apply the technique of trackingM(t) andM(t). Recall

∥u(t)∥L∞ = u( xt, t) =M(t).
The smoothness needed to proceed withM(t)′ is, for this proposition, an assumption.

Since x, y ∈ T, |x − y |1+α ≤ (2π)1+α. Hence, using (11) and (13), we get

Λ
αu( xt) ≥ 2Γ(1 + α) cos((1 − α)π/2)

(2π)1+α (u( xt, t) − ⟨u0⟩).
Consequently,

M ′(t) = d
dt

(u( xt, t) − ⟨u0⟩) = −Λαu( xt) ≤ −2Γ(1 + α) cos((1 − α)π/2)
(2π)1+α (u( xt, t) − ⟨u0⟩).

Integrating this ODI, we have

∥u(t)∥L∞(T) ≤ ⟨u0⟩ + (∥u0∥L∞ − ⟨u0⟩)e−
2Γ(1+α) cos((1−α)π/2)

(2π)1+α t
.

Let us turn our attention to the flat at infinity case. Again the L1 norm propagates. We take a positive
number r > 0 (that will be specified below) and define
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U1 = {η ∈ B(0,r) s.t . u( xt) − u( xt − η) > u( xt, t)/2}
andU2 = B(0,r) −U1. We have

∥u0∥L1 =


R

|u( xt − y)|dy ≥

U2

u( xt − y)dy ≥ u( xt)
2

|U2|,

so (for u( xt) > 0),

−
2∥u0∥L1

u( xt) ≤ −|U2|, (26)

Λ
αu( xt) = c(α)P.V.


R

u( xt) − u( xt − y)
|y |1+α dy

≥ c(α)P.V.

U1

u( xt) − u( xt − y)
|y |1+α dy

≥ c(α)u( xt)
2r1+α

(
2r −

2∥u0∥L1

u( xt)
)
.

We choose now

r =
2∥u0∥L1

u( xt) ,

thus, recalling (13), we have that

Λ
αu( xt) ≥ Cα,121+α

u( xt)1+α
∥u0∥αL1

,

for both u( xt) > 0 and u( xt) = 0. With the same argument as in the periodic case, we get

d
dt

∥u(t)∥L∞ ≤ − Cα,121+α

∥u(t)∥1+α
L∞

∥u0∥αL1

,

thus, using explicit value of Cα,1 we arrive at

∥u(t)∥L∞ ≤ ∥u0∥L∞(
1 + α Γ(1+α) cos((1−α)π/2)

21+απ

∥u0∥αL∞
∥u0∥α

L1
t
) 1
α

.

V. PROOF OF THEOREM 1: GLOBAL SOLUTIONS FOR max{α, β} > 1

Equipped with the Lemma 1 and its proof, we can focus on the appropriate energy estimates
that ensures global existence (rigorously, we should do this on the level of the regularized problem)

Notice that we also have a global bound

∥u(t)∥2
L2 + µ∥u(t)∥2

Ḣ β/2 + 2ν
 t

0
∥u(s)∥2

Ḣα/2ds ≤ ∥u0∥L2 + µ∥u0∥2
Ḣ β/2. (27)

We split the proof in three parts: the first one is devoted to the proof of the purely parabolic
case µ = 0. Then, in step 2 and 3 we consider the cases µ > 0, β < 1 < α and µ > 0, α < 1 < β,
respectively.

Step 1: Case µ = 0. We perform the estimates for s = 1, the case s > 1 being analogous.
Testing (1) against Λu and using the self-adjointness, we have that

1
2

d
dt

∥u∥2
Ḣ0.5 = I1 + I2, (28)

with

I1 = −

Ω

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xuΛudx, (29)
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I2 = −ν∥u∥2

Ḣ
1+α

2
. (30)

Due to Hölder’s inequality

I1 ≤ ∥u∥2
Ḣ1



2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

L∞
. (31)

Using interpolation

∥ f ∥Ḣ1 ≤ c∥ f ∥1− 1
α

Ḣ0.5∥ f ∥ 1
α

Ḣ
1+α

2
,

and (8) we have

I1 ≤ ∥u∥2− 2
α

Ḣ0.5∥u∥
2
α

Ḣ
1+α

2
c(u0,M) ≤ ∥u∥2

H0.5c(u0,M, ν) + ν∥u∥2

Ḣ
1+α

2
.

We conclude

∥u(t)∥H0.5 ≤ ∥u0∥H0.5ec(u0,M,ν)t . (32)

Testing (1) against −∂2
xu and integrating, we have

1
2

d
dt

∥u∥2
Ḣ1 = I3 + I4, (33)

with

I3 = −

Ω

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xu∂2

xudx, (34)

I4 = −ν∥u∥2

Ḣ
1+ α2

. (35)

We have the bounds

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

L2

≤ c(u0,M)∥u∥L2,


*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

H1

≤ c(u0,M)∥u∥H1,

(36)

so, using interpolation, we have

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

H1−α/2

≤ c(u0,M)∥u∥H1−α/2.

We use the duality pairing H1−α/2 − Hα/2−1 together with Moser’s inequality and embeddings to
obtain

I3 ≤

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xu

H1−α/2

∥∂2
xu∥Hα/2−1

≤ c

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

L∞
∥∂xu∥H1−α/2∥u∥H1+α/2

+ c

*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

H1−α/2

∥∂xu∥L∞∥u∥H1+α/2

≤ c(u0,M, ν)ec(u0,M,ν)t +
ν

2
∥u∥2

H1+α/2.

Notice that the above estimate can be also derived using the Kato-Ponce inequality. As a conse-
quence,

∥u(t)∥2
H1 +

ν

2

 t

0
∥u(s)∥2

H1+α/2ds ≤ c(u0,M, ν)ec(u0,M,ν)t .
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Step 2: Case µ > 0, β > 1 (and 0 ≤ α ≤ 2). We consider the case s = 1+β
2 , the other cases

(s > 1+β
2 ) being analogous. Using (27) together with β > 1, we have

∥u(t)∥L∞ ≤ C∥u(t)∥H β/2 ≤ C(β, µ,M,u0).
Now we test (1) against Λu. Due to (29)-(31) with (8), we obtain

1
2

d
dt

(
∥u(t)∥2

Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2

)
+ 2ν∥u(t)∥2

Ḣ
1+α

2
≤ C(β, µ,M,u0)∥u∥2

Ḣ1.

Integrating, we obtain

∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2
+

 t

0
2ν∥u(s)∥2

Ḣ
1+α

2
ds ≤ C∥u0∥2

H
1+β

2
eC(β,µ,M,u0)t .

Testing against −∂2
xu we can perform energy estimates as in Step 1. We obtain

1
2

d
dt

(
∥u(t)∥2

Ḣ1 + µ∥u(t)∥2

Ḣ
1+ β

2

)
+ ν∥u(t)∥2

Ḣ
1+ α2
≤ C(β, µ,M,u0)∥∂xu(t)∥3

L3.

We use the interpolation inequality

∥ f ∥L4 ≤ C∥ f ∥0.5
H β/2∥ f ∥0.5

L2 ,

so

C∥∂xu(t)∥3
L3 ≤ C∥∂xu∥2

L4∥∂xu∥L2 ≤ C∥u∥H1+β/2∥u∥2
H1 ≤

µ

4
∥u∥2

H1+β/2 + C(µ,u0)eC(β,µ,M,u0)t .

Now we can use Gronwall’s inequality to obtain

∥u(t)∥2
Ḣ1 +

µ

2
∥u(t)∥2

Ḣ
1+ β

2
+ 2ν

 t

0
∥u(s)∥2

Ḣ
1+ α2

ds ≤ C(β, µ,M,u0)eC(β,µ,M,u0)t .

Step 3: Case µ > 0, 0 < β < 1 and ν > 0, 1 < α ≤ 2. As before, we test (1) against Λu. Using (8),
we obtain

1
2

d
dt

(
∥u(t)∥2

Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2

)
+ ν∥u(t)∥2

Ḣ
1+α

2
≤ C(M)∥u∥2

Ḣ1.

Now we use the interpolation

∥u(t)∥Ḣ1 ≤ C∥u0∥
α−1

1+α−β
H β/2 ∥u(t)∥

2−β
1+α−β

Ḣ
1+α

2
.

For α > 1 we have that
2 − β

1 + α − β
< 1,

hence

∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2
+ 2ν

 t

0
∥u(s)∥2

Ḣ
1+α

2
ds ≤ eC(M )t∥u0∥2

Ḣ
1+β

2
.

Now, we test against −∂2
xu. We can conclude as in Step 1. We obtain

∥u(t)∥2
Ḣ1 + µ∥u(t)∥2

Ḣ
1+ β

2
+ ν

 t

0
∥u(s)∥2

Ḣ
1+ α2

ds ≤ eC(M )t∥u0∥2

Ḣ
1+ β

2
.

VI. PROOF OF THEOREM 2: GLOBAL SOLUTION FOR max{α, β} = 1

Step 1: Case ν > 0, α = 1, µ = 0.
We do the case s = 1, the other cases being analogous. Testing (1) against Λu and using the

self-adjointness, we have Equations (28)–(31). Notice that under the hypothesis

∥u0∥L∞ ≤ γ.
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Since ∥u(t)∥L∞ ≤ ∥u0∥L∞, we have that



2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

L∞
≤ 2γ(M + 1)

M
+

2γ2(γ + M)(M + 1)2
M2 .

Using that

2γ(M + 1)
M

+
2γ2(γ + M)(M + 1)2

M2 < ν,

we conclude

∥u(t)∥Ḣ0.5 + δ

 t

0
∥u(s)∥2

Ḣ1ds ≤ ∥u0∥Ḣ0.5, (37)

for a small enough 0 < δ. Notice that this δ only depends on M,u0, and ν.
Next, testing (1) against −∂2

xu and integrating by parts, we get (33)–(35). If we integrate by
parts in (34), we get

I3 ≤ c(u0,M)∥u∥H1∥∂xu∥2
L4 ≤ c(u0,M, ν)∥u∥4

Ḣ1 +
ν

2
∥u∥2

Ḣ1.5 + c. (38)

The first inequality above uses also (36) and the second the interpolation

∥ f ∥L4 ≤ C∥ f ∥0.5
H0.5∥ f ∥0.5

L2 .

Using (38) in (33), we obtain

d
dt

∥u(t)∥2
Ḣ1 + ν∥u(t)∥2

Ḣ1.5 ≤ c(u0,M, ν)∥u∥4
Ḣ1 + c,

and, due to Gronwall’s inequality together wit (37), we obtain

∥u∥2
H1 + ν

 t

0
∥u(s)∥2

H1.5ds ≤ c(u0,M, ν)ec(u0,M,ν)t .

This ends the proof of case (ii) of our thesis.
Step 2: Case ν > 0,α = 1,µ > 0,β < 1. In this case we cannot use the pointwise methods, so

we cannot get immediately ∥u(t)∥L∞ ≤ ∥u0∥L∞. Estimate (27) implies a global bound in Hβ/2, but
this bound is too weak to give us a pointwise estimate for u. However, as

∥u0∥L∞ ≤ CS∥u0∥
H

1+β
2
≤ γ,

testing (1) against Λu and using the definition of γ and γ∗, we have, as in step 1,

1
2

d
dt

(
∥u(t)∥2

Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2

)
+ δ∥u(t)∥2

Ḣ1 ≤ 0.

As a consequence, we obtain the global bound

∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ
1+β

2
+ δ

 t

0
∥u(s)∥2

Ḣ1ds ≤ ∥u0∥2
Ḣ0.5 + µ∥u0∥2

Ḣ
1+β

2
.

Now we test against −∂2
xu and we conclude as in Step 1. Case (iii) is proved.

Step 3: Case ν ≥ 0,µ > 0, β = 1. In this case, (27) implies a global bound in H0.5. Then,
testing (1) against Λu and using (8), we have

1
2

d
dt

(∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ1

)
+ ν∥u(t)∥2

Ḣ
1+α

2
≤ C(M)∥u(t)∥2

Ḣ1.

As a consequence, we can apply Gronwall’s inequality to get a global bound

∥u(t)∥2
Ḣ0.5 + µ∥u(t)∥2

Ḣ1 + ν

 t

0
∥u(t)∥2

Ḣ
1+α

2
≤ C(µ,M)eC(M )t∥u0∥2

H1.

Now we test against −∂2
xu and we conclude as in Step 1. Case (i) is proved.
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VII. PROOF OF THEOREM 3: GLOBAL SOLUTION IF 0 < α < 1 AND µ = 0

We consider the case s = 2, the other cases being similar. Let us write x̃t for the point where
∂xu reaches its maximum, i.e.,

∂xu(x̃t, t) = max
x

(∂xu(x, t)) = M1(t) > 0.

With a similar argument as in the proof of Proposition 2 (see also Ref. 11), we have

d
dt

M1(t) = −∂x *
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xu

����x=x̃t
− νΛα∂xu

����x=x̃t
.

Due to the kernel expressions (11) and (13), we have

−νΛα∂xu(x̃t) ≤ −νCα,1∂xu(x̃t).
Due to the smallness choice (10) and ∥u(t)∥L∞ ≤ ∥u0∥L∞, we have

A=
������
∂x *

,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-

������
≤ Σ(γ∗)
≤ νCα,1.

Consequently,

d
dt

M1(t) ≤

−∂x *

,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
− νCα,1


∂xu ≤ 0.

Let us write x̃t for the point where ∂xu reaches its minimum, i.e.,

∂xu( x̃t, t) = min
x

∂xu(x, t) = m1(t).
As before, due to the kernel expression (11) and (13), we have

−νΛα∂xu( x̃t) ≥ −νCα,1∂xu( x̃t).
Consequently, with the same argument, we have (for negative ∂xu( x̃t, t))

d
dt

m1(t)= −∂x *
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xu

����x=x̃
− νΛα∂xu( x̃t)

≥ −∂xu( x̃t)

∂x *

,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
+ νCα,1


≥ 0.

Hence

∥u(t)∥W 1,∞(T) ≤ ∥u0∥W 1,∞(T). (39)

We test Equation (1) against ∂4
xu and integrate by parts. We have

1
2

d
dt

∥u∥2
Ḣ2 = I5 + I6, (40)

with

I5 = −

T

∂2
x


*
,

2u
u2 + M(1 − u)2 −

u2(2u − 2M(1 − u))
(u2 + M(1 − u)2)2

+
-
∂xu


∂2
xudx (41)

I6 = −ν∥u∥2

Ḣ
2+ α2

. (42)

Using (39), we have

I5 ≤ c(u0,M)∥u∥2
Ḣ2,

thus, applying Gronwall’s inequality, we have



041501-17 Burczak, Granero-Belinchón, and Luli J. Math. Phys. 57, 041501 (2016)

∥u(t)∥2
H2 + 2ν

 t

0
∥u(s)∥2

Ḣ
2+ α2

ds ≤ ∥u0∥2
H2e

c(u0,M )t .

VIII. PROOF OF PROPOSITION 3: FINITE TIME SINGULARITIES

First, we study the case ν = 0. Let us take u0 such that

u0 ≥ 0, u0(0) = 0,

and

J0 =

 0

−1

u0(x)
|x |δ dx < ∞. (43)

We argue by contradiction: assume that we have u(t) a global C2 solution corresponding to u0.
Recalling the expression a(x) given in (21) we define the characteristic curve y(t), solution to

y ′(t) = a(u(y(t), t)), y(0) = 0 (44)

and

v(x, t) = u(x + y(t), t).
Notice that, due to (1),

d
dt

u(y(t), t) = 0.

Thus

u(y(t), t) = u0(y(0)) = 0 = v(0, t).
Now we have

∂tv(x) = ∂tu(x + y(t), t) + ∂xv(x)a(v(0)) = ∂xv(x)(a(v(0)) − a(v(x))) = −∂x ( f (v(x))) , (45)

with f given by (20). For a fixed 0 < δ < 1, we define

φ(x) = |x |−δ1[−1,0]
and

J(t) =

R

(v(x, t) − v(0, t))φ(x)dx. (46)

Notice that if J(t) blows up, due to the inequality

J(t) =
 0

−1

v(x, t) − v(0, t)
|x |δ dx ≤ ∥v(t)∥Cδ = ∥u(t)∥Cδ,

the solution forms a singularity.
Testing Equation (45) against φ(x), we have

d
dt

 0

−1
v(x)φ(x)dx = −

 0

−1
∂x ( f (v(x))) φ(x)dx

=

 0

−1
f (v(x))∂xφ(x)dx + f (v(−1))φ(−1)

= δ

 0

−1
f (v(x)) 1

|x |1+δ dx + f (v(−1))

= δ

 0

−1
f (v(x))φ(x)2 |x |2δ

|x |1+δ dx + f (v(−1))

≥ δ

1 + M

 0

−1
(v(x)φ(x))2dx

≥ δ

1 + M

( 0

−1
v(x)φ(x)dx

)2

,

where we have used the positivity of the solution and Jensen’s inequality.
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We obtain the ODI
d
dt

J(t) ≥ δ

1 + M
J(t)2,

and the blow up of J(t) in finite time T∗ = T∗(δ,u0,M).
We have proved the case ν = 0, but the proof of the case 0 < ν and α = 0 is analogous and can

be easily adapted from here.

IX. NUMERICAL SIMULATIONS

In this section we present our numerical simulations suggesting a finite time blow up in the
case ν > 0, 0 < α < 1. To approximate the solution, we discretize using the fast fourier transform
with N = 214 spatial nodes. The main advantage of this numerical scheme is that the differential
operators are multipliers on the Fourier side. Once the spatial part has been discretized, we use a
Runge-Kutta scheme to advance in the time variable.

In our simulations, we consider the initial data

u0(x) = 1 − e−x
2
(
1 − x2

π2

)
(47)

and values M = ν = 0.5 and µ = 0. Then, we approximate the solution for (1) for different values of
the parameter 0 < α ≤ 1. In particular, we study four cases,

1. α = 0.25,
2. α = 0.5,
3. α = 0.75,
4. α = 1.

Qualitatively, the evolution in the cases α = 0.25, α = 0.5, and α = 0.75 looks alike. The nu-
merics suggests that a blow up of the derivative appears in finite time in the cases α = 0.25, α = 0.5,
and α = 0.75 (see Figures 1 and 3)

lim sup
t→Tmax

∥∂xu(t)∥L∞ = ∞.

However, in the case α = 1, the solution seems to exists globally (see Figure 2).
In Figure 3, we plot the evolution of ∥∂xu(t)∥L∞. This figure shows that in the critical case

α = 1, the derivative may grow for a short time, even if it remains globally bounded for large times.
Next, we add the term µΛβ∂tu. We consider the same initial data (47) and values M = ν = µ =

0.5. Then, we approximate the solution for (1) for different values of the parameters 0 < α, β < 1.
In particular, we study three cases

FIG. 1. Evolution in the case α = 0.25, ν =M = 0.5, µ = 0.



041501-19 Burczak, Granero-Belinchón, and Luli J. Math. Phys. 57, 041501 (2016)

FIG. 2. Evolution in the case α = 1, ν =M = 0.5, µ = 0.

FIG. 3. Evolution of ∥∂xu(t)∥L∞, ν =M = 0.5, µ = 0.

FIG. 4. Evolution of ∥∂xu(t)∥L∞, ν =M = µ = 0.5.

1. α = β = 0.25,
2. α = β = 0.5,
3. α = β = 0.75.

Interestingly, we observe (see Figure 4) that even for small values of α and β, in the case with
µ > 0, there is not evidence of finite time singularities.
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