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Abstract. We address a spectral problem for the Dirichlet-Laplace operator
in a waveguide Πε. Πε is obtained from an unbounded two-dimensional strip Π

which is periodically perforated by a family of holes, which are also periodically

distributed along a line, the so-called “perforation string”. We assume that the
two periods are different, namely, O(1) and O(ε) respectively, where 0 < ε� 1.

We look at the band-gap structure of the spectrum σε as ε → 0. We derive

asymptotic formulas for the endpoints of the spectral bands and show that σε

has a large number of short bands of length O(ε) which alternate with wide

gaps of width O(1).

1. Introduction. In this paper we consider a spectral problem for the Laplace
operator in an unbounded strip Π ≡ (−∞,∞)×(0, H) ⊂ R2 periodically perforated
by a family of holes, which are also periodically distributed along a line, the so-
called “perforation string”. The perforated domain Πε is obtained by removing
the double periodic family of holes ωε from the strip Π, cf. Figure 1,a), (4)-(6).
The diameter of the holes and the distance between them in the string is O(ε),
while the distance between two perforation strings is 1. ε � 1 is a small positive
parameter. A Dirichlet condition is prescribed on the whole boundary ∂Πε. We
study the band-gap structure of the essential spectrum of the problem as ε→ 0.
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We provide asymptotic formulas for the endpoints of the spectral bands and
show that these bands collapse asymptotically at the points of the spectrum of the
Dirichlet problem in a rectangle obtained by gluing the lateral sides of the periodicity
cell. These formulas show that the spectrum has spectral bands of length O(ε) that
alternate with gaps of width O(1). In fact, there is a large number of spectral gaps
and their number grows indefinitely when ε→ +0.

It should be emphasized that waveguides with periodically perturbed boundaries
have been the subject of research in the last decade: let us mention e.g. [34], [21],
[22], [2] and [3] and the references therein. However the type of singular perturbation
that we study in our paper has never been addressed. We consider a waveguide
perforated by a periodic perforation string, which implies using a combination of
homogenization methods and spectral perturbation theory.

As usual in waveguide theory, we first apply the Gelfand transform (cf. [6], [30],
[33], [26], [11] and (11)) to convert the original problem, cf. (7), into a family of
spectral problems depending on the Floquet-parameter η ∈ [−π, π] posed in the
periodicity cell $ε (cf. (13)-(16) and Fig. 1, b). Each one of these problems has
a discrete spectrum, cf. (18), which describe the spectrum σε as the union of the
spectral bands, cf. (20) and (9). One of the main distinguishing features of this
paper is that each problem constitutes itself a homogenization problem with one
perforation string. As a consequence, in the stretched coordinates, cf. (30), there
appears a boundary value problem in an unbounded strip Ξ which contains the unit
hole ω (cf. (2), (31)-(33) and Fig. 2).

The above mentioned homogenization spectral problems have different boundary
conditions from those considered in the literature (cf. [5], [14] and [16] for an
extensive bibliography). Obtaining convergence for their spectra, correcting terms
and precise bounds for discrepancies (cf. (10)), as ε → 0, prove essential for our
analysis. We use matched asymptotic expansions methods, homogenization theory
and basic techniques from the spectral perturbation theory.

1.1. Formulation of the problem. Let

Π = {x = (x1, x2) : x1 ∈ R, x2 ∈ (0, H)} (1)

be a strip of width H > 0. Let ω be a domain in the plane R2 which is bounded by
a simple closed contour ∂ω which, for simplicity, we assume to be of class C∞, and
that has the compact closure

ω = ω ∪ ∂ω ⊂ $0, (2)

where $0 is a rectangle, the “limit periodicity” cell in Π,

$0 = (−1/2, 1/2)× (0, H) ⊂ Π. (3)

We also introduce the strip Πε (see Figure 1,a) perforated by the holes

ωε(j, k) =
{
x : ε−1(x1 − j, x2 − εkH) ∈ ω

}
with j ∈ Z, k ∈ {0, . . . , N − 1}, (4)

where ε = 1/N is a small positive parameter, and N ∈ N is a big natural number
that we will send to ∞. The period of the perforation along the x1-axis in the
domain

Πε = Π \
⋃
j∈Z

N−1⋃
k=0

ωε(j, k) (5)



ASYMPTOTIC STRUCTURE OF THE SPECTRUM 3

is made equal to 1 by rescaling, and similarly, the period is made equal to εH in
the x2-direction. The periodicity cell in Πε takes the form

$ε = $0 \
N−1⋃
k=0

ωε(0, k),

(see b) in Figure 1). For brevity, we shall denote by ωε the union of all the holes in
(4), namely,

ωε =
⋃
j∈Z

N−1⋃
k=0

ωε(j, k), (6)

while ω is referred to as the “unit hole”, cf. (2).

Figure 1. a) The perforated strip Πε is obtained by removing the
double periodic family of holes ωε from the strip Π ≡ (−∞,∞) ×
(0, H). The periodicities 1 and εH come from the width of he
periodicity cell $ε and the distance between two consecutive holes
in the perforation string. b) The periodicity cell $ε is obtained by
removing a periodic family of holes of diameter O(ε) from $0 ≡
(−1/2, 1/2)× (0, H). It contains one perforation string.

In the domain (5) we consider the Dirichlet spectral problem{
−∆uε(x) = λεuε(x), x ∈ Πε,
uε(x) = 0, x ∈ ∂Πε.

(7)

The variational formulation of problem (7) refers to the integral identity

(∇uε,∇v)Πε = λε (uε, v)Πε ∀v ∈ H1
0 (Πε), (8)

where (·, ·)Πε is the scalar product in the space L2(Πε), and H1
0 (Πε) denotes the

completion, in the topology of H1(Πε), of the space of the infinitely differentiable
functions which vanish on ∂Πε and have a compact support in Πε. Since the bi-linear
form on the left of (8) is positive, symmetric and closed in H1

0 (Πε), the problem
(8) is associated with a positive self-adjoint unbounded operator Aε in L2(Πε) with
domain H1

0 (Πε) ∩H2(Πε) (see Ch. 10 in [1]).
Problem (7) gets a positive cutoff value λε† and, therefore, its spectrum σε ⊂

[λε†,∞) (cf. (20) and Remark 5). It is known, see e.g. [30], [33], [11] and [26], that
σε has the band-gap structure

σε =
⋃
n∈N

Bεn, (9)

where Bεn are closed connected bounded segments in the real positive axis. The
segments Bεn and Bεn+1 may intersect but also they can be disjoint so that a spectral
gap becomes open between them. Recall that a spectral gap is a non empty interval
which is free of the spectrum but has both endpoints in the spectrum.
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1.2. On the results and structure of the paper. In Section 2 we address
the setting of the Floquet parametric family of problems (13)-(16), obtained by
applying the Gelfand transform (11) to the original problem (7). They are homo-
genization spectral problems in a perforated domain, the periodicity cell $ε, with
quasi-periodicity conditions (15)-(16) on the lateral sides of $ε. Obviously, each
problem of the parametric family (13)-(16) depends on the Floquet-parameter η, cf.
(11), (19) and (20). For a fixed η ∈ [−π, π], the problem has the discrete spectrum
Λεi (η), i = 1, 2, · · · , cf. (18). Section 2.2 contains a first approach to the eigenpairs
(i.e., eigenvalues and eigenfunctions) of this problem via the homogenized problem,
cf. (27). To get this homogenized problem, we use the energy method combined
with techniques from the spectral perturbation theory. We show that its eigenva-
lues Λ0

i , i = 1, 2, · · · do not depend on η, since they constitute the spectrum of the
Dirichlet problem in υ = (0, 1)× (0, H), cf. (24). In particular, Theorem 2.1 shows
that

Λεi (η)→ Λ0
i as ε→ 0, ∀η ∈ [−π, π], i = 1, 2, · · · .

However, this result does not give information on the spectral gaps.
Using the method of matched asymptotic expansions for the eigenfunctions of

the homogenization problems (cf. Section 4) we are led to the unit cell boundary
value problem (31)-(33), the so-called local problem, that is, a problem to describe
the boundary layer phenomenon. Section 3 is devoted to the study of this statio-
nary problem for the Laplace operator, which is independent of η and it is posed
in an unbounded strip Ξ which contains the unit hole ω. Its two solutions, with
a polynomial growth at the infinity, play an important role when determining cor-
rectors for the eigenvalues Λεi (η), i = 1, 2, · · · . Further specifying, the definition
and the properties of the so-called polarization matrix p(Ξ), which depend on the
“Dirichlet hole” ω, cf. (38) and Section 3.1, are related with the first term of the
Fourier expansion of certain solutions of the unit cell problem (cf. (39) and (42)).
The correctors εΛ1

i (η) depend on the polarization matrix and the eigenfunctions of
the homogenized problem, and we prove that for sufficiently small ε,

|Λεi (η)− Λ0
i − εΛ1

i (η)| ≤ ciε3/2 (10)

with some ci > 0 independent of η. These bounds are obtained in Section 5, see
Theorems 5.1 and 5.2 depending on the multiplicity of the eigenvalues of (24).
Λ1
i (η) is a well determined function of η (see formulas (61), (62), (68), (69), (71)

and Remarks 3 and 4); it is identified by means of matched asymptotic expansions
in Section 4.

As a consequence, we deduce that the bands Bεi = {Λεi (η), η ∈ [−π, π]} are
contained in intervals[

Λ0
i + εBi− − ciε3/2 , Λ0

i + εBi+ + ciε
3/2
]
,

of length O(ε), where Bi−, B
i
+ are also well determined values for each eigenvalue Λ0

i

of (24) (cf. Corollaries 1 and 2 depending on the multiplicity). All of this together
gives that for each i such that Λ0

i < Λ0
i+1, cf. (23), the spectrum σε opens a gap of

width O(1) between the corresponding spectral bands Bεi and Bεi+1.
Dealing with the precise length of the band, we note that the results rely on the

fact that the elements of the antidiagonal of the polarization matrix do not vanish
(cf. (70)-(75)), but this is a generic property for many geometries of the unit hole
ω (see, e.g., (47) and (51)). Also note, that for simplicity, we have considered that
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ω has a smooth boundary but most of the results hold in the case where ω has a
Lipschitz boundary or even when ω is a vertical crack, cf. Section 3.1.

Summarizing, Section 2 addresses some asymptotics for the spectrum of the
Floquet-parameter family of spectral problems; Section 3 considers the unit cell
problem; Section 4 deals with the asymptotic expansions; in Section 5.1, we formu-
late the main asymptotic results of the paper, while the proofs are performed in
Section 5.2.

2. The Floquet-parameter family of spectral problems. In this section, we
deal with the setting of the Floquet-parameter dependent spectral problems and
the limit behavior of their spectra, cf. Sections 2.1 and 2.2, respectively.

2.1. The model problem on the periodicity cell. The Floquet-Bloch-Gelfand
transform (FBG-transform, in short)

uε(x)→ Uε(x; η) =
1√
2π

∑
n∈Z

e−inηuε(x1 + n, x2) (11)

see [6] and, e.g., [30], [33], [11], [26] and [4], converts problem (7) into a η-parametric
family of spectral problems in the periodicity cell

$ε = {x ∈ Πε : |x1| < 1/2} (12)

see Figure 1,b. Note that x ∈ Πε on the left of (11), while x ∈ $ε on the right. For
each η ∈ [−π, π], the spectral problem of the family is defined by the equations

−∆Uε(x; η) = Λε(η)Uε(x; η), x ∈ $ε, (13)

Uε(x; η) = 0, x ∈ Γε, (14)

Uε(1/2, x2; η) = eiηUε(−1/2, x2; η), x2 ∈ (0, H), (15)

∂Uε

∂x1
(
1

2
, x2; η) = eiη

∂Uε

∂x1
(−1

2
, x2; η), x2 ∈ (0, H), (16)

where Γε = ∂$ε ∩ ∂Πε, η is the dual variable, i.e., the Floquet-parameter, while
Λε(η) and Uε(·; η) denote the spectral parameter and an eigenfunction, respectively.
If no confusion arises, they can be denoted by Λε and Uε, respectively. Conditions
(15)-(16) are the quasi-periodicity conditions on the lateral sides {± 1

2} × (0, H) of
$ε.

The variational formulation of the spectral problem (13)-(16) reads:

(∇Uε,∇V )$ε = Λε (Uε, V )$ε V ∈ H1,η
per($

ε; Γε), (17)

where H1,η
per($

ε; Γε) is a subspace of H1($ε) of functions which satisfy the quasi-
periodicity condition (15) and vanish on Γε. In view of the compact embedding
H1($ε) ⊂ L2($ε), the positive, self-adjoint operator Aε(η) associated with the
problem (17) has the discrete spectrum constituting the monotone unbounded se-
quence of eigenvalues

0 < Λε1(η) ≤ Λε2(η) ≤ · · · ≤ Λεm(η) ≤ · · · → ∞ (18)

which are repeated according to their multiplicities (see Ch. 10 in [1] and Ch. 13
in [30]). The eigenfunctions are assumed to form an orthonormal basis in L2($ε).

The function
η ∈ [−π, π] 7→ Λεm(η) (19)

is continuous and 2π-periodic (see, e.g., Ch. 7 of [9]). Consequently, the sets

Bεm = {Λεm(η) : η ∈ [−π, π]} (20)
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are closed, connected and bounded intervals of the real positive axis R+. Results (9)
and (20) for the spectrum of the operator Aε(η) and the boundary value problem
(7) are well-known in the framework of the FBG-theory (see the above references).
As a consequence of our results, we show that in our problem, depending on the
geometry of the unit hole, and for certain lower frequency range of the spectrum,
the spectral band (20) does not reduce to a point (cf. (72), (47), (70) and (74)).

2.2. A homogenization result. A first approach to the asymptotics for eigenpairs
of (13)-(16) is given by the following convergence result, that we show adapting
standard techniques in homogenization and spectral perturbation theory: see, e.g.,
Ch. 3 in [27] for a general framework and [14] for its application to spectral problems
in perforated domains with different boundary conditions. Let us recall $0 which
coincides with $ε at ε = 0 (cf. (12), and (3)) and contains the perforation string

ωε(0, 0), . . . , ωε(0, N − 1) ⊂ $0. (21)

Theorem 2.1. Let the spectral problem (13)-(16) and the sequence of eigenvalues
(18). Then, for any η ∈ [−π, π], we have the convergence

Λεm(η)→ Λ0
m, as ε→ 0, (22)

where
0 < Λ0

1<Λ0
2 ≤ · · · ≤ Λ0

m ≤ · · · → ∞, as m→∞, (23)

are the eigenvalues, repeated according to their multiplicities, of the Dirichlet pro-
blem

−∆U0(x) = Λ0U0(x), x ∈ υ, υ ≡ (0, 1)× (0, H)
U0(x) = 0, x ∈ ∂υ. (24)

Proof. First, for each fixed m, we show that there are two constants C,Cm such
that

0 < C ≤ Λεm(η) ≤ Cm ∀η ∈ [−π, π]. (25)

To obtain the lower bound in (25), it suffices to consider (17) for the eigenpair
(Λε, Uε) with Λε ≡ Λε1(η) and apply the the Poincaré inequality in H1($0) once
that Uε is extended by zero in ωε. To get Cm in (25) we use the minimax principle,

Λεm(η) = min
Eεm⊂H

1,η
per($ε;Γε)

max
V ∈Eεm,V 6=0

(∇V,∇V )$ε

(V, V )$ε
,

where the minimum is computed over the set of subspaces Eεm of H1,η
per($

ε; Γε) with
dimension m. Indeed, let us take a particular Eεm that we construct as follows.
Consider the eigenfunctions corresponding to the m first eigenvalues of the mixed
eigenvalue problem in the rectangle (1/4, 1/2) × (0, H), with Neumann condition
on the part of the boundary {1/2} × (0, H), and Dirichlet condition on the rest of
the boundary. Extend these eigenfunctions by zero for x ∈ [0, 1/4]× (0, H), and by
symmetry for x ∈ [−1/2, 0] × (0, H). Finally, multiplying these eigenfunctions by
eiηx1 gives Eεm and the rigth hand side of (25).

Hence, for each η and m, we can extract a subsequence, still denoted by ε such
that

Λεm(η)→ Λ0
m(η), Uεm(·; η) ⇀ U0

m(·; η) in H1($0)− weak, as ε→ 0, (26)

for a certain positive Λ0
m(η) and a certain function U0

m(·; η) ∈ H1,η
per($

0), both of

which, in principle, can depend on η. Obviously, U0
m(·; η) vanish on the lower and

upper bases of $0. Also, we use the Poincaré inequality in $0 ⊃ ω, cf. (3),

‖U ;L2($0 \ ω)‖ ≤ C‖∇U ;L2($0 \ ω)‖ ∀U ∈ H1($0 \ ω), U = 0 on ∂ω,
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and we deduce

ε−1‖Uεm(·; η);L2({|x1| ≤ ε/2} ∩$0)‖2 ≤ Cε‖∇Uεm(·; η);L2({|x1| ≤ ε/2} ∩$0)‖2.
Now, taking limits as ε → 0, we get U0

m(·, η) = 0 on {0} × (0, H) (cf., e.g., [16]
and (25)). Hence, we identify (Λ0

m(η), U0
m(·; η)) with an eigenpair of the following

problem:

−∆U0
m(x; η) = Λ0

m(η)U0
m(x; η), x1 ∈ {(−1/2, 0) ∪ (0, 1/2)}, x2 ∈ (0, H),

U0
m(x; η) = 0 for x2 ∈ {0, H}, x1 ∈ (−1/2, 1/2) and x1 = 0, x2 ∈ (0, H),

U0
m(1/2, x2; η) = eiηU0

m(−1/2, x2; η), x2 ∈ (0, H),
∂U0

m

∂x1
(1/2, x2; η) = eiη

∂U0
m

∂x1
(−1/2, x2; η), x2 ∈ (0, H),

(27)

where the differential equation has been obtained by taking limits in the variational
formulation (17) for V ∈ C∞0 ((−1/2, 0)× (0, H)) and for V ∈ C∞0 ((0, 1/2)× (0, H)).

Now, from the orthonormality of Uεm(·; η) in L2($ε), we get the orthonormality
of U0

m(·, η) in L2($0). Also, an argument of diagonalization (cf., e.g., Ch. 3 in [27])
shows the convergence of the whole sequence of eigenvalues (18) towards those of
(27) with conservation of the multiplicity, and that the set {U0

m(·; η)}∞m=1 forms a
basis of L2($0).

In addition, extending by η-quasiperiodicity the eigenfunctions U0
m(·; η),

u0
m(x; η) =

{
U0
m(x; η), x1 ∈ (0, 1/2),

eiηU0
m(x1 − 1, x2; η), x1 ∈ (1/2, 1),

(28)

we obtain a smooth function in the rectangle υ, and moreover that the pair (Λ0
m(η),

U0
m(·, η)) satisfies (24). In addition, the orthogonality of {U0

m(·; η)}∞m=1 in L2($0)
implies that the extended functions {u0

m(·; η)}∞m=1 in (28) form an orthogonal basis
in L2(υ), cf. also (55), and we have proved that Λ0

m(η) coincides with Λ0
m in the

sequence (23) for any η ∈ [−π, π]. Consequently, the result of the theorem holds.

Remark 1. Note that the eigenpairs of (24) can be computed explicitly

Λ0
np = π2

(
n2 +

p2

H2

)
, U0

np(x) =
2√
H

sin(nπx1) sin(pπx2/H), p, n ∈ N. (29)

The eigenvalues Λ0
np are numerated with two indexes and must be reordered in the

sequence (23); the corresponding eigenfunctions U0
np are normalized in L2(υ). Also,

we note that if H2 is an irrational number all the eigenvalues are simple.

3. The unit cell problem and the polarization matrix. In this section, we
study the properties of certain solutions of the boundary value problem in the
unbounded strip Ξ, cf. (31)-(33) and Figure 2. This problem, the so-called unit cell
problem, is involved with the homogenization problem (13)-(16) and the periodical
distribution of the openings in the periodicity cell $ε, but it remains independent
of the Floquet-parameter.

In order to obtain a corrector for the approach to the eigenpairs of (13)-(16)
given by Theorem 2.1, we introduce the stretched coordinates

ξ = (ξ1, ξ2) = ε−1(x1, x2−εkH). (30)

which transforms each opening of the string ωε(0, k) into the unit opening ω. Then,
we proceed as usual in two-scale homogenization when boundary layers arise (cf.,
e.g. [28], [18], [32] and [24]): assuming a periodic dependence of the eigenfunctions
on the ξ2-variable, cf. (34), we make the change (30) in (13)-(16), and take into
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Figure 2. The strip Ξ with the hole ω. Ξ is involved with the
unit cell for the homogenization problem (13)-(16).

account (22), to arrive at the unit cell problem. This problem consists of the Laplace
equation

−∆ξW (ξ) = 0, ξ ∈ Ξ, (31)

with the periodicity conditions

W (ξ1, H) = W (ξ1, 0),
∂W

∂ξ2
(ξ1, H) =

∂W

∂ξ2
(ξ1, 0), ξ1 ∈ R, (32)

and the Dirichlet condition on the boundary of the hole ω

W (ξ) = 0, ξ ∈ ∂ω. (33)

Regarding (31)-(33), it should be noted that, for any Λε ≤ C, we have

∆x + Λε = ε−2(∆ξ + ε2Λε),

and ε2Λε ≤ Cε2 while the main part ∆ξ is involved in (31). Also, the boundary
condition (33) is directly inherited from (14), while the periodicity conditions (32)
have no relation to the original quasi-periodicity conditions (15)-(16), but we need
them to support the standard asymptotic ansatz

w(x2)W (ε−1x), (34)

for the boundary layer. Here, w is a sufficiently smooth function in x2 ∈ [0, H] and
W is H-periodic in ξ2 = ε−1x2.

It is worth recalling that, according to the general theory of elliptic problems in
domains with cylindrical outlets to infinity, cf., e.g., Ch. 5 in [26], problem (31)-(33)
has just two solutions with a linear polynomial growth as ξ1 → ±∞. Here, we
search for these two solutions W±(ξ) by setting ±1 for the constants accompanying
ξ1 (cf. Proposition 1). In order to do it, let us consider a fixed positive R such that

ω ⊂ (−R,R)× (0, H) (35)

and define the cut-off functions χ± ∈ C∞(R) as follows

χ±(y) =

{
1, for ± y > 2R,
0, for ± y < R,

(36)

where the subindex ± represent the support in ±ξ1 ∈ [0,∞).

Proposition 1. There are two normalized solutions of (31)-(33) in the form

W±(ξ) = ±χ±(ξ1)ξ1 +
∑
τ=±

χτ (ξ1)pτ± + W̃±(ξ), ξ ∈ Ξ, (37)
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where the remainder W̃±(ξ) gets the exponential decay rate O(e−|ξ1|2π/H), and the
coefficients pτ± ≡ pτ±(Ξ), with τ = ±, which are independent of R and compose a
2× 2-polarization matrix

p(Ξ) =

(
p++(Ξ) p+−(Ξ)
p−+(Ξ) p−−(Ξ)

)
. (38)

Proof. The existence of two linearly independent normalized solutions W± of (31)-
(33) with a linear polynomial behavior ±ξ1 + p±±, as ±ξ1 → ∞, is a consequence
of the Kondratiev theory [10] (cf. Ch. 5 in [26] and Sect. 3 [20]). Each solution
has a linear growth in one direction and stabilizes towards a constant p∓± in
the other direction. In addition, it lives in an exponential weighted Sobolev space
which guarantees that, substracting the linear part, the remaining functions have a
gradient in (L2(Ξ))2.

Let us consider the functions

Ŵ±(ξ) = W±(ξ)∓ χ±(ξ1)ξ1, (39)

which, obviously, satisfy (32), (33) and

−∆ξŴ
±(ξ) = F±(ξ), ξ ∈ Ξ, (40)

with F±(ξ) = F±(ξ1) = ±∆(χ±(ξ1)ξ1) = ±(∂2
ξ1
χ± ξ1 + 2∂ξ1χ±). By construction,

F± has a compact support in ±ξ1 ∈ [R, 2R].
Let C∞c per(Ξ) be the space of the infinitely differentiable H-periodic functions,

vanishing on ∂ω, with compact support in Ξ. Let us denote by H the completion
of C∞c per(Ξ) in the norm

‖W,H‖ = ‖∇yW ;L2(Ξ)‖.

The variational formulation of (40), (32) and (33) reads: to find Ŵ± ∈ H sa-
tisfying the integral identity(

∇yŴ±,∇yV
)

Ξ
=
(
F±, V

)
Ξ

∀V ∈ H. (41)

Since supp(F±) is compact, we can apply the Poincaré inequality to the elements
of {V ∈ H1([−2R, 2R])× (0, H)) : V |∂ω = 0}, to derive that the right hand side of
(41) defines a linear continuous functional on H. In addition, the left-hand side of
the integral identity (41) implies a norm in the Hilbert space H, and consequently,
the Riesz representation theorem assures that the problem (41) has a unique solution

Ŵ ∈ H satisfying (41).

In addition, since for each τ , τ = ±, function Ŵ τ (ξ) in (39) is harmonic for
|ξ1| > 2R with gradient in L2((−∞,−2R) × (0, H)) ∩ L2((2R,+∞) × (0, H)), the
Fourier method (cf., e.g. [13] and [26]) ensures that

Ŵ τ (ξ) = cτ± +O(e−(±ξ1)2π/H) as ± ξ1 → +∞,
where the constants cτ± are defined by

cτ± = lim
T→∞

1

H

∫ H

0

Ŵ τ (±T, ξ2)dξ2= lim
T→∞

1

H

∫ H

0

(W τ (±T, ξ2)− τδτ,±T )dξ2. (42)

Obviously, c+± (c−± respectively) are independent of R and they provide all the con-
stants appearing in (37); namely, cτ± = pτ±(Ξ). Hence, the result of the proposition
holds.
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3.1. Properties of the polarization matrix. In this section, we detect certain
properties of the matrix p(Ξ). This matrix represent an integral characteristics of
the “Dirichlet hole” ω in the strip Π. Its definition is quite analogous to the classical
polarization tensor in the exterior Dirichlet problem, see Appendix G in [29]. Let
us refer to [23] for further properties of matrix p(Ξ) as well as for examples on its
dependence on the shape and dimensions of the hole.

Proposition 2. The matrix p(Ξ) + R I is symmetric and positive, where I stands
for the 2× 2 unit matrix and R given in (35).

Proof. We represent (37) in the form

W±(ξ) = W±0 (ξ) +

{
±ξ1 −R ,±ξ1 > R,

0 ,±ξ1 < R.
(43)

The function W±0 still satisfies the periodicity condition of (32) and the homogene-
ous Dirichlet condition (33) but remains harmonic in Ξ \Υ±(R), Υ±(R) = {ξ ∈ Ξ :
±ξ1 = R}, and its derivative has a jump on the segment Υ±(R), namely

[W±0 ]±(ξ2) = 0,

[
∂W±0
∂|ξ1|

]
±

(ξ2) = −1, ξ2 ∈ (0, H),

where [φ]±(ξ2) = φ(±R± 0, ξ2)− φ(±R∓ 0, ξ2).
In what follows, we write the equations for τ = ±. Since ∆W±0 = 0, we multiply

it with W τ
0 and apply the Green formula in (Ξ \Υ±(R)) ∩ {|ξ1| < T}. Finally, we

send T to +∞ and get∫ H

0

W τ
0 (±R, ξ2)dξ2 = −

∫ H

0

W τ
0 (±R, ξ2)

[
∂W±0
∂|ξ1|

]
±

(ξ2)dξ2

= −
(
∇ξW τ

0 ,∇ξW±0
)

Ξ
. (44)

On the other hand, on account of (43) and the definition of W τ , we have

W τ
0 (±R, ξ2) = W τ (±R, ξ2) and

[
∂W τ

∂|ξ1|

]
±

(ξ2) = 0.

Consequently, we can write∫ H

0

W τ
0 (±R, ξ2)dξ2 = −

∫ H

0

W τ (±R, ξ2)

[
∂W±0
∂|ξ1|

]
±

(ξ2)dξ2

=

∫ H

0

(
W τ (±R, ξ2)

[
∂W±0
∂|ξ1|

]
±

(ξ2)−W±0 (±R, ξ2)

[
∂W τ

∂|ξ1|

]
±

(ξ2)

)
dξ2,

and using again the Green formula for W τ and W±0 , in a similar way to (44) we get∫ H

0

W τ
0 (±R, ξ2)dξ2

= + lim
T→∞

∫ H

0

(
W τ (τT, ξ2)

∂W±0
∂|ξ1|

(τT, ξ2)−W±0 (τT, ξ2)
∂W τ

∂|ξ1|
(τT, ξ2)

)
dξ2

= −H (pτ±(Ξ) + δτ,±R) . (45)

Here, we have used the following facts: ∂/∂|ξ1| is the outward normal derivative at
the end of the truncated domain {ξ ∈ Ξ : |ξ1| < R}, the function W τ

0 is smooth
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near Υ±(R), the derivative ∂W±0 /∂|ξ1| decays exponentially and, according to (37)
and (43), the function W±0 admits the representation when ±ξ1 > 2R (cf. (37))

W±0 (ξ) = χ±(ξ1) (p±± +R) + χ∓(ξ1)p∓± + W̃±(ξ).

Considering (44) and (45) we have shown the equality for the Gram matrix(
∇ξW τ

0 ,∇ξW±0
)

Ξ
= H (pτ±(Ξ) + δτ,±R) ,

which gives the symmetry and the positiveness of the matrix p(Ξ) +R I .

Let us note that our results above apply for Lipschitz domains or even cracks as
it was pointed out in Section 2.1. Now, we get the following results in Propositions
3 and 4 depending on whether ω is an open domain in the plane with a positive
measure mes2(ω), or it is a crack with mes2(ω) = 0.

Proposition 3. Let ω be such that mes2(ω) > 0. Then, the coefficients of the
polarization matrix p(Ξ) satisfy

H (2p+− − p++ − p−−) > mes2(ω).

Proof. We consider the linear combination

W0(ξ) = W+(ξ)−W−(ξ)−ξ1 = χ+(ξ1) (p++ − p+−)−χ−(ξ1) (p−− − p−+)+W̃0(ξ).

It satisfies

−∆ξW0(ξ) = 0, ξ ∈ Ξ, W0(ξ) = −ξ1, ξ ∈ ∂ω,
with the periodicity conditions in the strip, and W̃0(ξ) = W̃+(ξ) − W̃−(ξ) gets
the exponential decay rate O(e−|ξ1|2π/H). Considering the equations ∆W0 = 0 and
∆(W0 + ξ1) = 0 in Ξ ∩ {|ξ1| < T}, and ∆ξ1 = 0 in ω, we apply the Green formula
taking into account the boundary condition for W0. Then, taking limits as T →∞,
we have

0 < ‖∇W0;L2(Ξ)‖2 +mes2(ω) = −
∫
∂ω

ξ1∂ν(ξ1)dν +

∫
∂ω

W0∂ν(W0(ξ))dν

= −
∫
∂ω

ξ1∂ν(ξ1 +W0(ξ))dν =

∫
∂ω

(∂νξ1(ξ1 +W0(ξ))− ξ1∂ν(ξ1 +W0(ξ))) dν

= − lim
T→∞

∑
±
±
∫ H

0

W0(±T, ξ2)dξ2 = −H (p++ + p−− − p+− − p−+) .

Remark 2. We observe that for a hole ω, which is symmetric with respect to
the x1-axis, the matrix p(Ξ) becomes symmetric with respect to the anti-diagonal,
namely,

p++ = p−− . (46)

Indeed, this is due to the fact that each one of the two normalized solutions in
(37) are related with each other by symmetry. Also, we note that, on account of
Proposition 2, the symmetry p+− = p−+ holds for any shape of the hole ω.

Proposition 4. Let ω be the crack ω = {ξ ∈ R2 : ξ1 = 0, ξ2 ∈ (h,H − h)}, where
h < H/2. Then,

p+− = p−+ > 0. (47)

In addition, p−− = p++ = p−+ = p+−.
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Proof. First, let us note that due to the symmetry W+(ξ1, ξ2) = W−(−ξ1, ξ2), and
the construction (43) when R = 0 reads

W−(ξ1, ξ2) =

{
−ξ1 +W ∗(−ξ1, ξ2), ξ1 < 0,

W ∗(ξ1, ξ2), ξ1 > 0.
(48)

where W ∗(ξ1, ξ2) is the function defined in Π+ = {ξ : ξ1 > 0, ξ2 ∈ (0, H)} satisfying
the periodicity condition (32) and equations

−∆ξW
∗(ξ) = 0, for ξ ∈ Π+

W ∗(0, ξ2) = 0, for ξ2 ∈ (h,H − h),
−∂ξ1W ∗(0, ξ2) = 1/2, for ξ2 ∈ (0, h) ∪ (H − h,H).

(49)

Indeed, denoting by W̃ ∗ the extension of W ∗ to Π− = {ξ : ξ1 < 0, ξ2 ∈ (0, H)},
in order to verify the representation (48), it suffices to verify that the jump of W̃ ∗

and its the derivative of through Υ(0) = {ξ ∈ Ξ : ξ1 = 0} is given by

[W̃ ∗](0, ξ2) = 0,

[
∂W̃ ∗

∂ξ1

]
(0, ξ2) = −1,

and hence, the function on the right hand side of (48) is a harmonic function in Ξ.
Now, considering (49), integrating by parts on (0, T )× (0, H), and taking limits

as T → +∞ provide

∫
Υ(0)

W ∗(0, ξ2)dξ2 = lim
T→∞

H∫
0

W ∗(T, ξ2)dξ2 = Hp−+(Ξ).

Similarly, from (49), we get

0 = −
∫

Π+

W ∗(ξ)∆ξW
∗(ξ)dξ =

∫
Π+

|∇ξW ∗(ξ)|2dξ −
1

2

∫
Υ(0)

W ∗(0, ξ2)dξ2.

Therefore, we deduce

H

2
p−+(Ξ) =

∫
Π+

|∇ξW ∗(ξ)|2dξ > 0 (50)

and from the symmetry of p(Ξ) (cf. Proposition 2), we obtain (47).
Also, from the definition (48), we have p−−(Ξ) = p−+(Ξ), and (cf. (46)) all

the elements of the polarization matrix p(Ξ) coincide. Thus, the proposition is
proved.

From Proposition 4, note that when ω is a vertical crack, the inequality in Pro-
position 3 must be replaced by H (2p+− − p++ − p−−) = mes2(ω) = 0. Also, we
observe that in order to get property (47) for a domain ω with a smooth boundary,
we may apply asymptotic results on singular perturbation boundaries (cf. [7], Ch.
3 in [8] and Ch. 5 in [17]) which guarantee that for thin ellipses

ω = {ξ : (δ−2ξ2
1 + (ξ2 −H/2)2 ≤ τ2}, τ = H/2− h, (51)

(47) holds true, for a small δ > 0.
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4. Asymptotic analysis in the periodicity cell $ε. In this section we construct
asymptotic expansions for the eigenpairs (Λεm(η), Uεm(·; η)) of problem (13)-(16) on
the periodicity cell $ε. The parameters m ∈ N and η ∈ [−π, π] are fixed in this
analysis. In Sections 4.1-4.2 we consider the case in which the eigenvalue Λ0

m of
(24) is simple. Note that for many values of H, all the eigenvalues are simple (cf.
Remark 1). Section 4.3 contains the asymptotic ansatz for the eigenpairs case where
Λ0
m is an eigenvalue of (24) of multiplicity κm ≥ 2.

4.1. Asymptotic ansätze. Let Λ0
m be a simple eigenvalue in sequence (23) and

let U0
m be the corresponding eigenfunction of problem (24) normalized in L2(υ).

Then, on account of the Theorem 2.1, for the eigenvalue Λεm of problem (13)-(16)
we consider the asymptotic ansätze

Λεm = Λ0
m + εΛ1

m(η) + · · · . (52)

To construct asymptotics of the corresponding eigenfunctions Uεm(x; η), we employ
the method of matched asymptotic expansions, see, e.g., the monographs [35] and
[8], and the papers [32], [18] and [24] where this method has been applied to homo-
genization problems. Namely, we take

Uεm(x; η) = U0
m(x; η) + εU1

m(x; η) + · · · (53)

as the outer expansion, and

Uεm(x; η) = ε
∑
±
wm± (x2; η)W±

(x
ε

)
+ · · · , (54)

as the inner expansion near the perforation string, cf. (4) and (21),
Above, U0

m(x; η) is built from the eigenfunction U0
m of (24) by formula

U0
m(x; η) =

{
U0
m(x), x1 ∈ (0, 1/2),

e−iηU0
m(x1 + 1, x2), x1 ∈ (−1/2, 0),

(55)

W± are the solutions (37) to problem (31)-(33), while the functions U1
m, wm± and the

number Λ1
m(η) are to be determined applying matching principles, cf. Section 4.2.

Note that near the perforation string, cf. (4), (21), the Dirichlet condition satisfied
by U0

m(x; η) implies that the term accompanying ε0 in the inner expansion vanishes
(see, e.g., [24]); this is why the first order function in (54) is ε. Also, above and
in what follows, the ellipses stand for higher-order terms, inessential in our formal
analysis.

4.2. Matching procedure. First, let us notice that U0
m ∈ C∞(υ), and the Taylor

formula applied in the outer expansion (53) yields

Uεm(x; η) = 0 + x1
∂U0

m

∂x1
(0, x2) + εU1

m(+0, x2; η) + · · · , x1 > 0,

Uεm(x; η) = 0 + x1e
−iη ∂U

0
m

∂x1
(1, x2) + εU1

m(−0, x2; η) + · · · , x1 < 0,
(56)

where, for second formula (56), we have used (55).
The inner expansion (54) is processed by means of decompositions (37). We have

Uεm(x; η) = εwm+ (x2; η)(ξ1 + p++) + εwm− (x2; η)p−+ + · · · , ξ1 > 0,
Uεm(x; η) = εwm− (x2; η)(−ξ1 + p−−) + εwm+ (x2; η)p+− + · · · , ξ1 < 0.

(57)
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Recalling relationship between x1 and ξ1, we compare coefficients of ε and x1 =
εξ1 on the right-hand sides of (56) and (57). As a result, we identify wm± by

wm+ (x2; η) =
∂U0

m

∂x1
(0, x2), wm− (x2; η) = −e−iη ∂U

0
m

∂x1
(1, x2), (58)

and also obtain the equalities

U1
m(+0, x2; η) =

∑
τ=±

wmτ (x2; η)pτ+, U1
m(−0, x2; η) =

∑
τ=±

wmτ (x2; η)pτ−. (59)

Formulas (58) define coefficients of the linear combination (54) while formulas (59)
are the boundary conditions for the correction term in (53). Moreover, inserting
ansätze (52) and (53) into (13)-(14), we derive that{

−∆xU
1
m(x; η)− Λ0

mU
1
m(x; η) = Λ1

m(η)U0
m(x; η), x ∈ $0, x1 6= 0,

U1
m(x1, H; η) = U1

m(x1, 0; η) = 0, x1 ∈ (−1/2, 0) ∪ (0, 1/2),
(60)

and the quasi-periodic conditions with η (cf. (15)-(16)).
Since U0

m(x; η) is defined by (55), (Λ0
m, U

0
m(x)) is an eigenpair of (24), and

‖U0
m;L2(υ)‖ = ‖U0

m(·; η);L2($0)‖ = 1, we multiply by U0
m(x; η) in the differen-

tial equation of (60), integrate by parts and obtain∫
$0

Λ1
m(η)U0

m(x; η)U0
m(x; η)dx

=

H∫
0

U1
m(−0, x2; η)

∂U0
m

∂x1
(−0, x2; η)dx2 −

H∫
0

U1
m(+0, x2; η)

∂U0
m

∂x1
(+0, x2; η)dx2.

Thus, by (55) and (59), the only compatibility condition in (60) (recall that Λ0
m is

a simple eigenvalue) converts into

Λ1
m(η) = −

H∫
0

Bm(x2; η) · p(Ξ)Bm(x2; η)dx2 (61)

where

Bm(x2; η) =

(
∂U0

m

∂x1
(0, x2),−e−iη ∂U

0
m

∂x1
(1, x2)

)T
∈ C2, (62)

and it determines uniquely the second term of the ansatz (52). Here and in what
follows, the top index T indicates the transpose vector.

Also, from (53), (54) and (57) the composite expansion approaching Uεm(x; η) in
the whole domain $0 reads

Uεm(x; η) ≈ U0
m(x; η) + εU1

m(x; η) + ε
∑
τ=±

wmτ (x2; η)W τ
(x
ε

)
−
(
εwm± (x2; η)(ε−1|x1|+ p±±) + εwm∓ (x2; η)p∓±

)
, ±x1 ≥ 0. (63)

4.3. The case of a multiple eigenvalue Λ0
m. We address the case where Λ0

m is an
eigenvalue of (24) with multiplicity κm ≥ 2. Let us consider Λ0

m = · · · = Λ0
m+κm−1

in the sequence (23) and the corresponding eigenfunctions U0
m, · · · , U0

m+κm−1 which

are orthonormal in L2(υ). On account of Theorem 2.1 there are κm eigenvalues of
problem (13)-(16), which we denote by Λεm+l(η), l = 0, · · · , κm − 1, satisfying

Λεm+l(η)→ Λ0
m+l as ε→ 0, for l = 0, · · · , κm − 1. (64)
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Let Uεm+l(·; η), l = 0, · · · , κm − 1, be the corresponding eigenfunctions among the

set of the eigenfunctions which form an orthonormal basis in L2($ε), cf. (17).
Following Section 4.1, for each l = 0, · · · , κm−1, we take the ansatz for Λεm+l(η)

Λεm+l = Λ0
m + εΛ1

m+l(η) + · · · , (65)

the outer expansion for Uεm+l(·; η)

Uεm+l(x; η) = U0
m+l(x; η) + εU1

m+l(x; η) + · · · , (66)

and the inner expansion

Uεm(x; η) = ε
∑
±
wm+l
± (x2; η)W±

(x
ε

)
+ · · · , (67)

where the terms Λ1
m+l(η), U1

m+l(x; η) and wm+l
± (x2; η) have to be determined by the

matching procedure, cf. Section 4.2, while U0
m+l(x; η) is constructed from U0

m+l(x)

replacing U0
m by U0

m+l in formula (55), and W± are the solutions (37) to problem
(31)-(33).

By repeating the reasoning in Section 4.2, we obtain formulas for the above
mentioned terms in (65), (66) and (67) by replacing index m by m + l in (56)-
(62), while we realize that the compatibility condition for each Λ1

m+l(η) is satisfied.

Indeed, multiplying by U0
m+l′(x; η), l′ = 0, · · · , κm − 1 in the partial differential

equation satisfied by U1
m+l′(x; η) (cf. (60))

−∆xU
1
m+l(x; η)− Λ0

mU
1
m+l(x; η) = Λ1

m+l(η)U0
m+l(x; η), x ∈ $0, x1 6= 0,

and integrating by parts, we obtain∫
$0

Λ1
m+l(η)U0

m+l(x; η)U0
m+l′(x; η)dx

= −
H∫

0

(
∂U0

m+l′

∂x1
(0, x2),−eiη

∂U0
m+l′

∂x1
(1, x2)

)
· p(Ξ)

×
(
∂U0

m+l

∂x1
(0, x2),−e−iη

∂U0
m+l

∂x1
(1, x2)

)T
dx2.

Since the eigenfunctions U0
m+l and U0

m+l′ have been computed (cf. the explicit
formulas (29) in Remark 1), we conclude now that

H∫
0

∂U0
m+l′

∂x1
(x∗1, x2)

∂U0
m+l

∂x1
(x∗1, x2)dx2 = 0, with x∗1 ∈ {0, 1}, l 6= l′,

and, hence, for each l = 0, · · · , κm − 1, the κm compatibility conditions to be
satisfied by the pairs (Λ1

m+l(η), U1
m+l(x; η)), cf. (60), provide Λ1

m+l(η) given by

Λ1
m+l(η) = −

H∫
0

Bm+l(x2; η) · p(Ξ)Bm+l(x2; η)dx2, (68)

where Bm+l(x2; η) is defined by

Bm+l(x2; η) =

(
∂U0

m+l

∂x1
(0, x2),−e−iη

∂U0
m+l

∂x1
(1, x2)

)T
. (69)
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Therefore we have determined completely all the terms in the asymptotic ansätze
(65), (66) and (67) for l = 0, · · · , κm − 1.

5. Justification of asymptotics. In this section, we justify the results obtained
by means of matched asymptotic expasions in Section 4. Since the case in which all
the eigenvalues of the Dirichlet problem (24) are simple can be a generic property,
we first consider this case, cf. Theorem 5.1 and Corollary 1, and then the case in
which these eigenvalues have a multiplicity greater than 1, cf. Theorem 5.2 and
Corollary 2. We state the results in Section 5.1 while we perform the proofs in
Section 5.2.

5.1. Asymptotics of eigenvalues: the results.

Theorem 5.1. Let m ∈ N, let Λ0
m be a simple eigenvalue of the Dirichlet problem

(24), and let Λ1
m(η) be defined in (61) and (62). There exist positive εm and cm

independent of η such that, for any ε ∈ (0, εm], the eigenvalue Λεm(η) of problem
(13)-(16) meets the estimate

|Λεm(η)− Λ0
m − εΛ1

m(η)| ≤ cmε3/2 (70)

and there are no other different eigenvalues in the sequence (18) satisfying (70).

Theorem 5.1 shows that εΛ1
m(η) provides a correction term for Λεm(η) improving

the approach to λ0
m shown in Theorem 2.1. In particular, it justifies the asymptotic

ansatz (52) and formula (61). This corrector depends on the polarization matrix
p(Ξ), which is given by the coefficients pτ± ≡ pτ±(Ξ), with τ = ±, in the decom-
position (37), and on the eigenfunction U0

m of problem (24), which corresponds to
Λ0
m and is normalized in L2(υ) (cf. (61) and (62)).
In order to detect the gaps between consecutive spectral bands (20) it is worthy

writing formulas

Λ1
m(η) = B0(m) +B1(m) cos(η), with (71)

B0(m) =

H∫
0

(
p++

∣∣∣∣∂U0
m

∂x1
(0, x2)

∣∣∣∣2 + p−−

∣∣∣∣∂U0
m

∂x1
(1, x2)

∣∣∣∣2
)
dx2,

B1(m) = 2p+−

H∫
0

∂U0
m

∂x1
(0, x2)

∂U0
m

∂x1
(1, x2)dx2,

which are obtained from (61) and (62). Formula (29) demonstrates that

B0(m) = (p++ + p−−)

H∫
0

∣∣∣∣∂U0
m

∂x1
(0, x2)

∣∣∣∣2 dx2,

and that the integral in B1(m) does not vanish. We note that B1(m) = 0 only in
the case when p+− = 0; if so, p(Ξ) is diagonal and the solutions of (37), W±, decay
exponentially when ξ1 → ∓∞, respectively. However, we have given examples of
cases where p+− 6= 0 (cf. (47) and (51)).

Remark 3. Let us consider that the eigenvalue Λ0
m coincides with Λ0

nq in formula
(29) for certain natural n and q. Then, we obtain

B0(m) = 2 (p++ + p−−)n2π2, B1(m) = (−1)n4p+−n
2π2,
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and, consequently,

Λ1
m(η) = 2 (p++ + p−−)n2π2 + (−1)n4p+−n

2π2 cos(η). (72)

Corollary 1. Under the hypothesis of Theorem 5.1, the endpoints Bε±(m) of the
spectral band (20) satisfy the relation

|Bε±(m)− Λ0
m − ε(B0(m)±|B1(m)|)| ≤ cmε3/2. (73)

Hence, the length of the the band Bεm is 2ε|B1(m)|+O(ε3/2).

Note that for the holes such that the polarization matrix (38) satisfies p+− 6= 0,
asymptotically, the bands Bεm have the precise length 2ε|B1(m)| + O(ε3/2) and
they cannot reduce to a point, namely to the point Λ0

m + εB0(m) (cf. (71) and
Remark 3). Also note that if p+− = 0, Theorem 5.1 still provides a correction term
for Λεm(η) which however does not depend on η (cf. (70), (71) and Remark 3), the
width of the band being O(ε3/2). Although the length of the band is shorter than
in the cases where p+− 6= 0, bounds in Corollary 1 may not be optimal (cf. Remark
3) and further information on the corrector depending on η can be obtained by
constructing higher-order terms in the asymptotic ansatz (53).

Theorem 5.2. Let m ∈ N, let Λ0
m be an eigenvalue of the Dirichlet problem (24)

with multiplity κm > 1. Let Λ1
m+l(η) defined in (68) and (69) for l = 0, · · · , κm−1.

There exist positive εm and cm independent of η such that, for any ε ∈ (0, εm], and
for each l = 0, · · · , κm − 1, at least one eigenvalue Λεm+l0

(η) of problem (13)-(16)
satisfying (64) meets the estimate

|Λεm+l0(η)− Λ0
m − εΛ1

m+l(η)| ≤ cmε3/2. (74)

In addition, when l ∈ {0, 1, · · · , κm − 1}, the total multiplicity of the eigenvalues
in (18) satisfying (74) is κm.

Corollary 2. Under the hypothesis in Theorem 5.2, the spectral bands Bεm+l asso-
ciated with Λεm+l(η), for l = 0, · · · , κm − 1, cf. (20), are contained in the interval

[Λ0
m + ε min

0 ≤ l ≤ κm − 1
η ∈ [−π, π]

Λ1
m+l(η)− cmε3/2,Λ0

m + ε max
0 ≤ l ≤ κm − 1
η ∈ [−π, π]

Λ1
m+l(η) + cmε

3/2].

(75)
Hence, the length of the the bands Bεm+l are O(ε) but they may not be disjoint.

Remark 4. Under the hypothesis of Theorem 5.2, it may happen that for l =
0, · · · , κm− 1 only the eigenvalue Λεm+l0

(η) in the sequence (18) satisfies (74). This
depends on the polarization matrix p(Ξ). As a matter of fact, it can be shown by
contradiction under the assumption that for two different l the functions Λ1

m+l(η)
do not intersect at any point η, cf. (71) and (72). For instance, this follows for ω
with p+−(Ξ) = 0.

Remark 5. Notice that the positive cutoff value λε† such that the spectrum σε ⊂
[λε†,∞) is bounded from above by a positive constant, cf. (9), (20) and (25). In

addition, from Theorem 5.2 (cf. Remark 1), we have proved that λε† → π2(1+H−2)
as ε→ 0.
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5.2. The proofs. In this section we prove the results of Theorems 5.1 and 5.2 and
their respective corollaries.

Proof of Theorem 5.1. Let us fix η in [−π, π]. Let us endow the space H1,η
per($

ε; Γε),
with the scalar product 〈Uε, V ε〉 = (∇Uε,∇V ε)$ε + (Uε, V ε)$ε , and the positive,
symmetric and compact operator T ε(η),

〈T ε(η)Uε, V ε〉 = (Uε, V ε)$ε ∀Uε, V ε ∈ H1,η
per($

ε; Γε). (76)

The integral identity (17) for problem (13)-(16) can be rewritten as the abstract
equation

T ε(η)Uε(·; η) = τε(η)Uε(·; η), in H1,η
per($

ε; Γε),

with the new spectral parameter

τε(η) = (1 + Λε(η))−1. (77)

Since T ε(η) is compact (cf. e.g, Section I.4 in [31] and III.9 in [1]), its spectrum
consists of the point τ = 0, the essential spectrum, and of the discrete spectrum
{τεm(η)}m∈N which, in view of (18) and (77), constitutes the infinitesimal sequence
of positive eigenvalues {

τεm(η) = (1 + Λεm(η))−1
}
m∈N .

For the point

tεm(η) = (1 + Λ0
m + εΛ1

m(η))−1 (78)

cf. (52) and (61), we construct a function Uεm ∈ H1,η
per($

ε; Γε) such that

‖Uεm;H1,η
per($

ε; Γε)‖ ≥ cm, (79)

‖T ε(η)Uεm − tεm(η)Uεm;H1,η
per($

ε; Γε)‖ ≤ Cmε3/2, (80)

where cm and Cm are some positive constants independent of ε ∈ (0, εm], with
εm > 0. These inequalities imply the estimate for the norm of the resolvent operator
(T ε(η)− tεm(η))−1

‖(T ε(η)− tεm(η))−1;H1,η
per($

ε; Γε)→ H1,η
per($

ε; Γε)‖ ≥ c−1
m ε−3/2,

with cm = c−1
m Cm > 0. According to the well-known formula for self-adjoint ope-

rators

dist(tεm(η), σ(T ε(η)) = ‖(T ε(η)− tεm(η))−1;H1,η
per($

ε; Γε)→ H1,η
per($

ε; Γε)‖−1

supported by the spectral decomposition of the resolvent (cf., e.g., Section V.5 in
[9] and Ch. 6 in [1]), we deduce that the closed segment

[tεm(η)− cmε
3/2, tεm(η) + cmε

3/2]

contains at least one eigenvalue τεp (η) of the operator T ε(η). Since the eigenvalues
of T ε(η) satisfy (77) and we get the definition (78), we derive that∣∣(1 + Λεp(η))−1 − (1 + Λ0

m + εΛ1
m(η))−1

∣∣ ≤ cmε
3/2. (81)

Then, simple algebraic calculations (cf. (81) and (25)) show that, for a εm > 0, the
estimate ∣∣Λεp(η)− Λ0

m − εΛ1
m(η)

∣∣ ≤ Cmε3/2, (82)

is satisfied with a constant Cm independent of ε ∈ (0, εm]. Due to the convergence
with conservation of the multiplicity (22), p = m in (82) and this estimate becomes
(70).



ASYMPTOTIC STRUCTURE OF THE SPECTRUM 19

To conclude with the proof of Theorem 5.1, there remains to present a function
Uεm ∈ H1,η

per($
ε; Γε) enjoying restrictions (79) and (80). In what follows, we construct

Uεm using (63) suitably modified with the help of cut-off functions with “overlapping
supports”, cf. [19], Ch. 2 in [17] and others. We define

Vεmout(x; η) = U0
m(x; η) + εU1

m(x; η), (83)

with U0
m satisfying (55) and U1

m is the solution of (60) satisfying the boundary
conditions (15)-(16) and (59). Similarly, we define

Vεmin (x; η) = ε
∑
±
wm± (x2; η)W±(ε−1x), (84)

and

Vεmmat(x; η) = εwm± (x2; η)(ε−1|x1|+ p±±) + εwm∓ (x2; η)p∓±, ±x1 > 0, (85)

with wm± defined in (58), and W± and matrix p(Ξ) in Proposition 1. Finally, we set

Uεm(x; η) = Xε(x1)Vεmout(x; η) + X (x1)Vεmin (x; η)−Xε(x1)X (x1)Vεmmat(x; η), (86)

where Xε and X are two cut-off functions, both smoothly dependent on the x1

variable, such that

Xε(x1) =

{
1, for |x1| > 2Rε,
0, for |x1| < Rε,

and X (x1) =

{
1, for |x1| < 1/6,
0, for |x1| > 1/3.

(87)

Note that (85) takes into account components in both expressions (83) and (84), but
the last subtrahend in Uεm compensates for this duplication. In further estimations,
term (85) will be joined to either Vεmout or Vεmin in order to obtain suitable bounds.

First, let us show that Uεm ∈ H1,η
per($

ε; Γε). Indeed, the function defined in (86)
enjoys the conditions (15)-(16) and (14). This is due to the fact that Uεm = Vεmout
near the sides {x1 = ±1/2, x2 ∈ (0, H)} and the quasi-periodicity conditions (15)-
(16) are verified by both terms in (83). Also, Uεm = Vεmin near the hole string (21)
so that the Dirichlet condition are fulfilled on boundary of the perforation string
Γε ∩ $0 because W± satisfy (33). Finally, formulas (58) and (29) assure that
wm± (H; η) = wm± (0; η) = 0 and hence the Dirichlet condition is met on Γε ∩ ∂$0 as
well.

First of all, we recall (83) and (87) to derive

‖Uεm;H1,η
per($

ε; Γε)‖
≥
∥∥Uεm;L2(1/3, 1/2)× (0, H))

∥∥ = ‖Vεmout;L2(1/3, 1/2)× (0, H))‖
≥
∥∥U0

m;L2(1/3, 1/2)× (0, H))
∥∥− ε‖U1

m;L2(1/3, 1/2)× (0, H))‖ ≥ c > 0,

for a small ε > 0. Thus, (79) is fulfilled.
Using (76) and (78), we have

‖T ε(η)Uεm − tεm(η)Uεm;H1,η
per($

ε; Γε)‖ = sup |〈T ε(η)Uεm − tεm(η)Uεm,Wε〉|
= (1 + Λ0

m + εΛ1
m(η))−1 sup

∣∣(∇Uεm,∇Wε)$ε − (Λ0
m + εΛ1

m(η))(Uεm,Wε)$ε
∣∣ (88)

where supremum is computed over all Wε ∈ H1,η
per($

ε; Γε) such that

‖Wε;H1,η
per($

ε; Γε)‖ ≤ 1.
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Taking into account the Dirichlet conditions on ∂ωε we use the Poincaré and Hardy
inequalities, namely, for a fixed T such that ω ⊂ ΠT ≡ Π ∩ {y1 < T},∫

ΠT \ω
|U |2 dy ≤ CT

∫
ΠT \ω

|∇yU |2dy ∀U ∈ H1(ΠT \ ω), U = 0 on ∂ω,

where CT is a constant independent of U , and∫ ∞
0

1

t2
z(t)2 dt ≤ 4

∫ ∞
0

∣∣∣∣dzdt (t)

∣∣∣∣2 dt ∀z ∈ C1[0,∞), z(0) = 0.

Then, we have

‖(ε+ |x1|)−1Wε;L2($ε)‖ ≤ c‖∇Wε;L2($ε)‖ ≤ c. (89)

Clearly, from (71), (1 + Λ0
m + εΛ1

m(η))−1 ≤ 1 for a small ε > 0 independent of η,
and there remains to estimate the last supremum in (88). We integrate by parts,
take the Dirichlet ans quasi-periodic conditions into account and observe that∣∣(∇Uεm,∇Wε)$ε − (Λ0

m + εΛ1
m(η))(Uεm,Wε)$ε

∣∣
=
∣∣(∆Uεm + (Λ0

m + εΛ1
m(η))Uεm,Wε)$ε

∣∣ .
On the basis of (83)-(86) we write

∆Uεm + (Λ0
m + εΛ1

m(η))Uεm
= Xε

(
∆U0

m + Λ0
mU

0
m + ε(∆U1

m + Λ0
mU

1
m + Λ1

mU
0
m) + ε2Λ1

mU
1
m

)
+ [∆, Xε](Vεmout − Vεmmat) + X (∆Vεmin −Xε∆Vεmmat) + [∆,X ](Vεmin − Vεmmat)
+ (Λ0

m + εΛ1
m)X (Vεmin −XεVεmmat) =: Sε1 + Sε2 + Sε3 + Sε4 + Sε5 . (90)

Here, [∆, χ] = 2∇χ · ∇ + ∆χ is the commutator of the Laplace operator with a
function χ, and the equality [∆, XεX ] = [∆,X ] + [∆, Xε], which is valid due to the
position of supports of functions in (87), is used when distributing terms originated
by the last subtrahend in (86). Let us estimate the scalar products (Sεk,Wε)$ε for
Sεk in (90).

Considering Sε1 , because of (27), (60), (87) and (71), we have that in fact Sε1 =
ε2XεΛ1

mU
1
m, hence

|(Sε1 ,Wε)$ε | ≤ ε2Λ1
m(η)‖U1

m;L2($ε)‖‖Wε;L2($ε)‖ ≤ Cmε2.

As regards Sε2 , we take into account that the supports of the functions ∂x1X
ε

and ∆Xε belong to the adherence of the thin domain $ε
εR = {x ∈ $ε : |x1| ∈

(εR, 2εR)}, cf. (87). Thus, the error in the Taylor formula up to the second term,
and relations (58), (59) and (85) provide

|Vεmout(x; η)− Vεmmat(x; η)| ≤ c(|x1|2 + ε|x1|),∣∣∣∣∂Vεmout∂x1
(x; η)− ∂Vεmmat

∂x1
(x; η)

∣∣∣∣ ≤ c(|x1|+ ε), ±x1 ∈ [εR, 2εR].

Above, we have also used the smoothness of the function U1
m which holds on account

that V = U1
me
−iηy1 is a periodic function in the y1 variable, solution of an elliptic

problem with constant coefficients (cf. (60), (15)-(16) and (91)), and therefore it is
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smooth. Then, we make use of the weighted inequality (89) and write

|(Sε2 ,Wε)$ε | ≤ ‖Sε2 ;L2($ε
εR)‖‖Wε;L2($ε

εR)‖ ≤ cε‖(ε+ |x1|)−1Wε;L2($ε)‖

×

(
H∫
0

2εR∫
εR

(
1
ε2

∣∣∣Vεmout∂x1
− V

εm
mat

∂x1

∣∣∣2 + 1
ε4 |V

εm
out − Vεmmat|

2

)
d|x1|dx2

) 1
2

≤ c
(

1
ε2 ε

2 + 1
ε4 ε

4
) 1

2 (mes2$
ε
εR)

1
2 ε‖(ε+ |x1|)−1Wε;L2($ε)‖ ≤ cε 3

2 .

Dealing with Sε3 , we match the definitions of the cut-off functions χ± and Xε

such that Xε(x1) = χ±(x1/ε) for ±x1 > 0 (cf. (36)). Recalling formulas (37), (84)
and (85), we write

∆Vεmin (x; η)−Xε(x1)∆Vεmmat(x; η)

= 2
∑
±

∂wm±
∂x2

(x2; η)
∂W±

∂ξ2
(y) + ε

∑
±

∂2wm±
∂x2

2

(x2; η)W̃±(y),

when ±x1 > 0, respectively. Note that W± are harmonics and both, ∂W±/∂ξ2 and

W̃± decay exponentially as |ξ1| → ∞, see Proposition 1. Thus,

|(Sε3 ,Wε)$ε | ≤

c

(∥∥∥∥(ε+ |x1|)
∂W±

∂ξ2
;L2($ε)

∥∥∥∥+ ε
∥∥∥(ε+ |x1|)W̃±;L2($ε)

∥∥∥)∥∥∥∥ 1

ε+ |x1|
Wε;L2($ε)

∥∥∥∥
≤ c

 1/2∫
0

(ε+ t)2e−2δt/εdt


1
2

‖∇Wε;L2($ε)‖ ≤ cε 3
2 .

Above, obviously, we take the positive constant δ to be 2π/H, cf. Proposition 1,
and we note that the last integral has been computed to obtain the bound. With
the same argument on the exponential decay of Vεmin −XεVεmmat, one derives that

|(Sε5 ,Wε)$ε | ≤ cε
3
2 .

Moreover, the supports of the coefficients ∂x1X and ∆X in the commutator [∆,X ]
are contained in the set $ε ∩ {1/6 < |x1| < 1/3} while the above-mentioned decay
brings the estimate

|(Sε4 ,Wε)$ε | ≤ ce−2δ/(3ε).

Revisiting the obtained estimates we find the worst bound cε3/2, and this shows
(80).

The fact that the constants εm and cm of the statement of the theorem are inde-
pendent of η follows from the independence of η of the above inequalities throughout
the proof. Indeed, we use formulas (55) and (71) for the boundedness of U0

m and
Λ1
m(η), while we note that ‖U1

m;H1($ε)‖ is bounded by a constant independent of
η follows from the definition of the solution of (60) with the quasi-periodic boun-
dary conditions (15)-(16). Further specifying, the change V = U1

me
−iηy1 converts

the Laplacian into the differential operator

−
( ∂

∂y1
+ iη

)( ∂

∂y1
+ iη

)
− ∂2

∂y2
2

, (91)

and therefore, performing this change in (60), gives the solution V ∈ H1
per($

0).
Then, as a consequence of the variational formulation of the problem for V in the
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set of spaces L2($0) ⊂ H1
per($

0), the bound of ‖U1
m;H1($ε)‖ independently of

η ∈ [−π, π] holds true. Hence, the proof of Theorem 5.1 is completed. �

Proof of Corollary 1. Due to the continuity of the function (19), the maximum and
minimum of Λεm(η) for η ∈ [−π, π] are achieved at two points η±ε,m ∈ [−π, π]. Thus,

the endpoints Bε±(m) of the spectral band (20) are given by Bε±(m) = Λεm(η±ε,m).

In order to show (73) for the maximum Bε+(m), we consider η = η+ to be π
or −π in such a way that Λ1(η+) = B0(m) + |B1(m)|. Since (70) is satisfied for
η = η±ε,m and for η = ±π, we write

Λ0
m + εB0(m) + ε|B1(m)| − cmε3/2 ≤ Λεm(η+) ≤ Λ0

m + εB0(m) + ε|B1(m)|+ cmε
3/2

and

Λ0
m + εΛ1

m(η+
ε,m)− cmε3/2 ≤ Λεm(η+

ε,m) ≤ Λ0
m + εΛ1

m(η+
ε,m) + cmε

3/2.

Consequently, from (71), we derive

Λ0
m + εB0(m) + ε|B1(m)| − cmε3/2 ≤ Λεm(η+) ≤ Λεm(η+

ε,m)

≤ Λ0
m + εB0(m) + ε|B1(m)|+ cmε

3/2,

which gives (73) for Bε+(m).
We proceed in a similar way for the minimum Bε−(m) and η = η− such that

Λ1(η−) = B0(m)−|B1(m)| and we obtain (73). Obviously, this implies that Bε±(m)
belong to the interval[

Λ0
m + εB0(m)− ε|B1(m)| − cmε3/2 , Λ0

m + εB0(m) + ε|B1(m)|+ cmε
3/2
]

Therefore, the whole band Bεm is contained in the interval above whose length is
2ε|B1(m)|+O(ε3/2) and the corollary is proved. �

Proof of Theorem 5.2. This proof holds exactly the same scheme of Theorem 5.1.
Indeed, for each l = 0, · · · , κm − 1 we follow the reasoning in (76)-(82) and we
deduce (cf. (81) and (25)) that for each l, and for a εm,l > 0, the estimate∣∣Λεp(η)− Λ0

m − εΛ1
m+l(η)

∣∣ ≤ Cm,lε3/2 (92)

is satisfied for a certain natural p≡ p(l) and Cm,l independent of ε ∈ (0, εm,l]. Due to
the convergence with conservation of the multiplicity (64), the only possible eigen-
values Λεp(η) of problem (13)-(16) satisfying (92) are the set {Λεm+l(η)}l=0,··· ,κm−1.
Then, it suffices that there are κm linearly independent eigenfunctions associated
with the eigenvalues {Λεp(l)(η)}l=0,··· ,κm−1 in (92), to deduce the result of the theo-
rem.

We use a classical argument of contradiction (cf. [15] and [25]). We consider
the set of functions {Uεm+l(x; η)}l=0,··· ,κm−1, constructed in (86), and we verify that
they satisfy almost orthogonality conditions

‖Uεm+l;H
1,η
per($

ε; Γε)‖ ≥ c̃m and
∣∣〈Uεm+l , Uεm+l′〉

∣∣ ≤ C̃mε1/2, with l 6= l′ ,
(93)

for certain constants c̃m and C̃m. Indeed, the first inequality above is a consequence
of (79), for l = 0, · · · , κm − 1, while the second one follows from the orthogonality
of the set of eigenfunctions {U0

m+l(x, η)}l=0,··· ,κm−1 and the definitions (83)-(87).

Then, we define Ũεm+l = Uεm+l ‖Uεm+l;H
1,η
per($

ε; Γε)‖−1 and consider Wε
m+l the

projection of T ε(η)Ũεm+l − tεm(η)Ũεm+l in the space of the eigenfunctions of T ε(η)
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associated with all the eigenvalues {Λεp(l)(η)}l=0,··· ,κm−1 in (92) for certain constants

Cm,l, and more precisely, satisfying∣∣∣(1 + Λεp(l)(η))−1 − (1 + Λ0
m + εΛ1

m+l(η))−1
∣∣∣ ≤ c̃mε

3/2. (94)

for a constant c̃m that we shall set later in the proof, cf. (81) and definitions
(76)-(78) for the operator T ε(η) and the “almost eigenvalue” tεm(η). Then, we show∥∥∥ W̃ε

m+l − Ũεm+l;H
1,η
per($

ε; Γε)
∥∥∥ ≤ C̃m, (95)

where W̃ε
m+l = Wε

m+l‖Wε
m+l;H

1,η
per($

ε; Γε)‖−1, and C̃m = 2c̃−1
m max0≤l≤κm−1 Cl,m.

This is due to the fact that∥∥∥ Ũεm+l −Wε
m+l;H

1,η
per($

ε; Γε)
∥∥∥ ≤ c̃−1

m max
0≤l≤κm−1

Cl,m,

and some straightforward computation (cf., eg., Lemma 1 in Ch. 3 of [27]). Now,
from (93) and (95) and straightforward computations we obtain∣∣∣〈W̃ε

m+l , W̃ε
m+l′〉

∣∣∣ ≤ 5C̃m with l 6= l′ , (96)

and this allows us to assert that set {W̃ε
m+l}l=0,··· ,κm−1 defines κm linearly inde-

pendent functions. Indeed, to prove it, we proceed by contradiction, by assuming
that there are constants αεl different from zero such that

κm−1∑
l=0

αεl W̃ε
m+l = 0.

Let us consider α∗,ε = max0≤l≤κm−1 |αεl | and assume, without any restriction that
α∗,ε = αε0. Then, we write

〈W̃ε
m, W̃ε

m〉 ≤
κm−1∑
l=1

∣∣∣∣αεlαε0
∣∣∣∣ ∣∣∣〈W̃ε

m+l, W̃ε
m〉
∣∣∣ ≤ (κm − 1)5C̃m.

Now, setting (κm − 1)5C̃m < 1 gives a contradiction, since the left hand side takes
the value 1, cf. (96). In this way, we also have fixed c̃m in (94).

Thus, {W̃ε
m+l}l=0,··· ,κm−1 define κm linearly independent functions, which obvi-

ously implies that they are associated with κm eigenvalues; hence the set of eigenva-
lues {Λεp(l)(η)}l=0,··· ,κm−1 coincides with {Λεm+l(η)}l=0,··· ,κm−1 and this concludes

the proof of the theorem. �
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[6] I.M. Gelfand, Expansion in characteristic functions of an equation with periodic coefficients
(Russian), Doklady Akad. Nauk SSSR, 73 (1950), 1117-1120.

[7] A.M. Ilin, A boundary value problem for the elliptic equation of second order in a domain

with a narrow slit. 1. The two-dimensional case, Math. USSR-Sb., 28:4 (1976), 459-480.
[8] A.M. Ilin, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems,

Translations of Mathematical Monographs, 102. American Mathematical Society, Providence,
RI, 1992.

[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

[10] V.A. Kondratyev, Boundary value problems for elliptic equations in domains with conic and
corner points, Transactions Moscow Matem. Soc., 16 (1967), 227-313.

[11] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser Verlag, Basel,
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