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Abstract

In a recent article [AZ15], Alishahi and Zamani discuss the spherical ensem-
ble, a rotationally invariant determinantal point process on S

2. In this paper
we extend this process in a natural way to the 2d–dimensional sphere S

2d.
We prove that the expected value of the Riesz s-energy associated to this de-
terminantal point process has a reasonably low value compared to the known
asymptotic expansion of the minimal Riesz s-energy.
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1. Introduction

Determinantal point processes (DPPs) are becoming a standard tool for
generating random points on a set X. One of the main properties of these
processes is that some statistical properties of the generated points can be
described in terms of a kernel K(x, y), x, y ∈ X, which generally turns out
to be the reproducing kernel of a finite dimensional subspace of L2(X). The
complete theory of DPPs can be found in the excellent book [HKPV09]; see
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Beltrán)

Preprint submitted to Journal of Mathematical Analysis and Applications March 5, 2019



also [BE18] for a brief (yet, sufficient for many purposes) introduction and
explanation of the main concepts.

We are interested in using DPPs for generating points on the sphere S
d

that are well distributed in some sense. For this aim, it is essential to find
subspaces of L2(Sd) whose kernels preserve the properties of the structure of
the sphere. In [BMOC16] a DPP using spherical harmonics (i.e. associated
to the subspace of L2(Sd) given by the span of bounded degree real–valued
spherical harmonics) is described. The random configurations coming from
that point process are called the harmonic ensemble, that turns out to be
optimal in the sense that it minimizes Riesz 2-energy (see Sec. 5) among
a certain class of DPPs obtained from subspaces of real–valued functions
defined in Sd.

However in the very special case of the sphere of dimension two, there
exists another DPP, the so–called spherical ensemble, that corresponds to
a subspace of L2(S2) coming from a weighted space of polynomials in the
complex plane. The spherical ensemble produces low–energy configurations
that are indeed better than those of the harmonic ensemble, see [AZ15]. A
fundamental property of the spherical ensemble proved in [Kri09] is that it
is equivalent to computing the generalized eigenvalues of pairs of matrices
(A,B) with complex Standard Gaussian entries. Generalized eigenvalues live
naturally in the complex projective space P(C2) which is by the Riemann
sphere model equivalent to the 2–sphere.

In [BE18] a generalization of the spherical ensemble to the general pro-
jective space P(Cd) was presented and called the projective ensemble. Its
natural lift to the odd dimensional sphere in C

d+1 ≡ R
2d+2 was proved to

have lower energy (for a family of energies) than those coming from the
harmonic ensemble.

In this paper we generalize the spherical ensemble to the case of spheres of
even dimension. We are also able to compute a bound for the expected value
of the Riesz s-energy of a set of N points coming for this generalization. In
order to obtain this bound we prove an inequality regarding the incomplete
beta function that we have not found in the literature.

The structure of the paper is as follows. In section 2 we discuss the
properties that a reproducing kernel on the sphere might have. In section 3
we present briefly the spherical ensemble in the 2−dimensional sphere. In
section 4 we describe our generalization to the 2d−dimensional sphere. We
state our main result bounding the Riesz s-energy of this DPP in section
5 and in section 6 we prove an inequality regarding the incomplete beta
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function. Finally, in section 7 we give the proofs of the theorems.
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2. Homogeneous vs isotropic kernels

The symmetries of the sphere suggests what type of properties the “good
kernels” should satisfy. As a final goal, we would like the kernels to be
invariant under the isometry group of the sphere, but weaker statements
could also be useful. A lot of adjectives describing kernels can be found in
the literature; we now state our terminology in aims of clarity.

Definition 2.1. A DPP of N points on Sd has isotropic associated repro-
ducing kernel K(p, q) if there exists a function f : [0, 2] −→ [0,∞) such
that

|K(p, q)| = f(||p− q||)
for all p, q ∈ S

d.

When the kernel is isotropic, we say that the DPP is rotationally invari-
ant. A weaker property will be that of homogeneous intensity.

Definition 2.2. A DPP of N points on S
d has homogeneous associated

reproducing kernel if K(p, p) is constant for all p ∈ S
d.

Actually, the value of this constant is determined by the volume of the
sphere:

Vol(Sn) =
2π

n+1
2

Γ
(
n+1
2

) . (1)

Proposition 2.3. If a DPP of N points on S
2d has homogeneous associated

reproducing kernel, then

K(p, p) =
N

Vol(S2d)
=

NΓ
(
d+ 1

2

)
2πd+ 1

2

, ∀p ∈ S
2d.
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The proof follows the definition of first intensity function (see [HKPV09,
Definition 1.2.2.]). Given a DPP of N points with kernel K(p, q) in S

d then
the average number of points contained in the subset A ⊂ S

d is given by∫
A

ρ1dp =

∫
A

K(p, p)dp = Vol(A)K(p, p),

where ρ1 is the first intensity joint function. Note that if we have a homo-
geneous kernel then the expected number of points contained on any Borel
subset depends only on its volume.

3. An isotropic projection kernel in the 2–sphere

In [AZ15] Alishahi and Zamani study the energy of the spherical ensemble.
A brief description of this point process is as follows: let A,B be N × N
matrices with complex Standard Gaussian entries, that is, each of the entries
of A and B is independently and identically distributed by choosing its real
and imaginary parts according to the real Gaussian distribution with mean
0 and variance 1/2. Then, the spherical ensemble is obtained by sending the
generalized eigenvalues λ1, . . . , λN ∈ C of the matrix pencil (A,B) to the
sphere via the stereographic projection. Note that these λi are the complex
numbers λ such that det(λA − B) = 0 and there are (for generic A,B) N
solutions to this equation. Equivalently, one can search for the generalized
eigenvalues of (A,B) in the complex projective space, i.e. for points (α, β) ∈
C

2 such that det(αB − βA) = 0, consider them as points in the Riemann
sphere and send them to the unit sphere through an homothety. These two
processes are equivalent.

It has been shown by Krishnapur in [Kri09, Theorem 3] that this process
is determinantal and the kernel comes from the projection kernel of the N -
dimensional subspace of L2(C,C) with basis

{√
N

π

(
N − 1

k

)
zk

(1 + |z|2)N+1
2

: 0 ≤ k ≤ N − 1

}
,

where we are taking the usual Lebesgue measure μ in C which makes this
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basis orthonormal. The projection kernel is then given by

K(z, w) =
N−1∑
k=0

N

π

(
N − 1

k

)
(zw)k

(1 + |z|2)N+1
2 (1 + |w|2)N+1

2

=
N

π

(1 + zw)N−1

(1 + |z|2)N+1
2 (1 + |w|2)N+1

2

.

The push–forward projection DPP in S
2 given by the stereographic projection

Π : S2 −→ C (see [BE18, Proposition 2.5]) has kernel:

K(N)
∗ (p, q) = K(N)

∗ (Π−1(z),Π−1(w)) =
N

4π

(1 + zw)N−1

(1 + |z|2)N−1
2 (1 + |w|2)N−1

2

.

This point process has a number of nice properties, including K
(N)
∗ (p, p) =

N/(4π) (i.e. the process is homogeneous) and even more, following the equal-
ity ||p−q||2 = 2(1− 〈p, q〉) for points on S

2 one can easily check that the kernel
is, in fact, isotropic:

∣∣K(N)
∗ (p, q)

∣∣ = N

4π

(
1 + 〈p, q〉

2

)N−1
2

.

From this fact, the expected s–energy (as well as other interesting quantities)
of random configurations drawn from this DPP can be computed, see [AZ15].

4. A homogeneous projection kernel in the 2d–sphere

It is not a trivial task to generalize the spherical ensemble to high–
dimensional spheres. Here is the reason: the most natural approach is to
take the subspace of L2(Cd,C) spanned by the family

Id,L =

{√
CL

α1,...,αd

zα1
1 . . . zαd

d

(1 + ‖z‖2) d+L+1
2

: α1 + . . .+ αd ≤ L

}
, (2)

where CL
α1,...,αd

is a constant that makes the basis orthonormal. See [Ber14,
BL15] for a more general construction coming from the same subspace (2).
From [BE18, Definition 3.1] we know that the reproducing kernel of the space
spanned by Id,L is

K(z, w) =
Nd!

πd

(1 + 〈z, w〉)L
(1 + ||z||2) d+L+1

2 (1 + ||w||2) d+L+1
2

. (3)
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Then it is tempting to just map the associated reproducing kernel into
the sphere S2d by the stereographic projection. It turns out that the resulted
associated DPP in S

2d is not isotropic nor even homogeneous, and thus it
does not satisfy the most basic properties required in a “good” kernel.
In order to avoid this problem, we will modify the corresponding DPP on S

2d

by a weight function. Consider the stereographic projection from S
2d to C

d:

Π = Πd : S
2d −→ C

d ≡ R
2d

(p1, . . . , p2d+1) → 1
1−p2d+1

(p1, . . . , p2d)(
2y1

‖y‖2+1
, . . . , 2y2d

‖y‖2+1
, ‖y‖

2−1
‖y‖2+1

)
← (y1, . . . y2d)

(4)

where the identification C
d ≡ R

2d is given by

(z1, . . . , zd) ≡ (Re(z1), Im(z1), . . . ,Re(zd), Im(zd)) .

Definition 4.1. Let g : (0,∞) −→ (0,∞) be an increasing C1 function such
that lim

x→0
g(x) = 0 and lim

x→∞
g(x) = ∞. Now, we define the associated function

ϕ = ϕg : R
2d \ {0} −→ R

2d \ {0}.
x → g(‖x‖) x

‖x‖

Note that ϕ is bijective and its inverse is given by ϕ−1(y) = g−1(‖y‖)
‖y‖ y.

Let Id,L be as in equation (2). Then for all N of the form N =
(
d+L
d

)
there exists a projection DPP of N points XH in C

d. Let us consider the
map φ = Π−1d ◦ ϕg : Cd −→ S

2d for any fixed g : (0,∞) → (0,∞) as in
Definition 4.1. Then there exists a push–forward projection DPP in S

2d (see

[BE18, Proposition 2.5]). We denote this process by X
(N,d,g)
∗ .

Proposition 4.2. Let d ≥ 1, let g : (0,∞) → (0,∞) be as in Definition 4.1

and let N be of the form N =
(
d+L
d

)
. Then, X

(N,d,g)
∗ is a DPP in S

2d with
associated kernel

K(N,d,g)
∗ (p, q) =

Nd!(1 + 〈z, w〉)LR(‖z‖)R(‖w‖)
πd22d

, (5)

where z = ϕ−1g (Πd(p)), w = ϕ−1g (Πd(q)) and

R(t) =
(g(t)2 + 1)dtd−

1
2√

g′(t)g(t)d−
1
2 (1 + t2)

d+L+1
2

.
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We now describe how to choose g in such a way that the kernelK
(N,d,g)
∗ (p, q)

is homogeneous for all N =
(
d+L
d

)
.

Proposition 4.3. Let d ≥ 1. There exists a unique function g = gd = g(t)

satisfying the conditions of Definition 4.1 that makes K
(N,d,g)
∗ (p, p) constant

for all N of the form N =
(
d+L
d

)
. Moreover, g satisfies

I g2

1+g2

(d, d) =

(
t2

1 + t2

)d

,

where I g2

1+g2

(d, d) is the incomplete beta function (see equation (9) for a defi-

nition).

We denote simply by K
(N)
∗ (p, q) and X

(N)
∗ the associated kernel and pro-

jection DPP, dropping in the notation the dependence on d. Note that for
d = 1 we have

I g2

1+g2

(1, 1) =
g(t)2

1 + g(t)2
=

t2

1 + t2
⇒ g(t) = t,

hence ϕg : R
2 → R

2 is the identity function and we recover the original
spherical ensemble. The plot of g for some values of d can be seen in Figure
1.

Proposition 4.3 leads us to the following statement, which shows our
generalization of the spherical ensemble to even dimensional spheres.

Theorem 4.4 (Main result 1). Let d ≥ 1 and let N be of the form N =
(
d+L
d

)
.

Then, X
(N)
∗ is a homogeneous projection DPP in S

2d with kernel

K(N)
∗ (p, q) =

N

Vol(S2d)

(1 + 〈z, w〉)L
(1 + ‖z‖2)L

2 (1 + ‖w‖2)L
2

where z = ϕ−1g (Πd(p)), w = ϕ−1g (Πd(q)).

5. The expected Riesz s-energy of the generalized spherical ensem-
ble

The Riesz s–energy of a set of points ωN = {x1, . . . , xN} on the sphere
S
d with s > 0 is

Es(ωN) =
∑
i �=j

1

‖xi − xj‖s .
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Figure 1: The function g for different values of d: from top to bottom, d = 2, 3, 4, 5, 6, 7
and 8.

An interesting problem regarding this energy consists in looking for the
minimal value that the energy can reach for a set of N points on a sphere of
dimension d. The asymptotic behavior (for N → ∞) has been extensively
studied. In [Bra06,KS98] it was proved that for d > 2 and 0 < s < d there
exist constants c > C > 0 (depending only on d and s) such that

min
ωN

(Es(ωN)) ≤ Vs(S
d)N2 − CN1+ s

d + o(N1+ s
d ), (6)

min
ωN

(Es(ωN)) ≥ Vs(S
d)N2 − cN1+ s

d + o(N1+ s
d ),

where Vs(S
d) is the continuous s-energy for the normalized Lebesgue measure,

Vs(S
d) =

1

Vol(Sd)2

∫
p,q∈Sd

1

‖p− q‖sdpdq = 2d−s−1
Γ
(
d+1
2

)
Γ
(
d−s
2

)
√
πΓ
(
d− s

2

) .

Finding precise bounds for the constants in (6) is an important open problem
and has been addressed by several authors, see [BHS14,BS18] for some very
precise conjectures and [BG15] for a survey paper. A strategy for the upper
bound is to take collections of random points in S

d coming from DPPs and
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then compute the expected value of the energy (which is of course greater
than or equal to the minimum possible value). This was done in the case
of the harmonic ensemble (see [BMOC16, Theorem 2]), obtaining the best
bounds known until date for general s and even d. Namely,

min
ωN

(Es(ωN)) ≤Vs(S
d)N2 − 2s−

s
dVs(S

d)dΓ
(
1 + d

2

)
Γ
(
1+s
2

)
Γ
(
d− s

2

)
√
πΓ
(
1 + s

2

)
Γ
(
1 + s+d

2

)
(d!)1−

s
d

N1+ s
d

+ o(N1+ s
d ).

(7)

In the case of odd-dimensional spheres, the best bound is obtained from
a point process that is not determinantal but follows from a DPP (the pro-
jective ensemble described above), see [BE18]. For example the expression
for the 2-energy that one gets with this process is:

min
ωN

(E2(ωN)) ≤ V2(S
d)N2−

31−
2

2d+1 (2d− 1)1−
2

2d+1 (2d+ 1)Γ
(
d− 1

2

)2− 2
2d+1

24−
2

2d+1 (d!)2−
4

2d+1

N1+ 2
d + o(N1+ 2

d ).
(8)

For the generalized spherical ensemble, our result can be written as follows.

Theorem 5.1 (Main result 2). Let N be of the form N =
(
d+L
d

)
, d ≥ 1 and

0 < s < 2d, then

E
x∼X(N)

∗
[Es(ωN)] ≤ Vs(S

2d)N2

−
Vol(S2d−1)

(
(2d−s)(1− 1

d)
2e

)d− s
2

(2d− s)Vol(S2d))(d!)1−
s
2d

⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠N1+ s

2d + o(N1+ s
2d ).

If we compare our result with that from (7), we note that our bound is
worst (see figure 2). Nevertheless, the points coming from this generalized
spherical ensemble do respect the asymptotic of the minimal energy, getting
the correct exponent 1 + s/d for the second term in the expansion.

The technical version of Theorem 5.1 is a bound of the expected value of
Riesz s-energy for points drawn from X

(N)
∗ .
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Figure 2: Difference between the 6-energy of the harmonic ensemble (blue solid line) and
the 6-energy of the generalized spherical ensemble (red dashed line) in S

8. The harmonic
ensemble shows a better behavior regarding energy asymptotics.

Theorem 5.2. Let d ≥ 1 and let N be of the form N =
(
d+L
d

)
. Then, for

τ > 0 such that τ < 1− 1/
√
d we have:

E
x∼X(N)

∗
[Es(ωN)] ≤ N2Vs(S

2d)− N2Vol(S2d−1)
(2d− s)Vol(S2d)

×

(
1− τ 2

4

)d−1
τ 2d−s

⎛
⎜⎝1− τ 2

(1 + τ 2)2

1−
(

1√
d
+ τ

)2
⎞
⎟⎠

L⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠

Theorem 5.1 will follow from Theorem 5.2 by choosing the optimal value
for τ .

6. An inequality regarding the incomplete Beta function

In order to prove Theorem 5.1 we will need an inequality regarding Euler’s
incomplete Beta function. This inequality, which is sharp and might be of
independent interest, is stated and proved in this section. Let us recall the
definition of Euler’s incomplete Beta function (and its regularized version).
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Let x ∈ [0, 1], a, b ∈ C such that Re(a) > 0 and Re(b) > 0, then the Euler’s
incomplete Beta function is

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt, Ix(a, b) =
Bx(a, b)

B(a, b)
, (9)

which satisfies I1(a, b) = 1.

Theorem 6.1. Let d ≥ 1 and s ∈ [0, 1]. Then,

dBs(d, d)

√
1− (Is(d, d))

1
d ≥ sd(1− s)d,

with an equality if and only if s ∈ {0, 1}.
Before proving Theorem 6.1 we state a technical lemma:

Lemma 6.2. Let d ≥ 1, then the function

f(s) = dBs(d, d) + sd(1− s)d
(
d− 2ds−

√
d2(1− 2s)2 + 1 + 2d

)
satisfies f(s) ≥ 0 for s ∈ (0, 1).

Proof. We note that f(0) = 0 and we compute f ′(s) = dsd−1(1 − s)d−1h(s)
where

h(s) = 1 + (1− 2s)
(
d− 2ds−

√
d2(1− 2s)2 + 1 + 2d

)
+

s(1− s)

(
−2 +

2d(1− 2s)√
d2(1− 2s)2 + 1 + 2d

)
.

It suffices to prove that h(s) ≥ 0 for s ∈ (0, 1). Denoting u(s) = d2(1−2s)2+
1 + 2d we have

h(s) = 1 + d(1− 2s)2 − 2s(1− s) + (1− 2s)
√
u(s)

(
2ds(1− s)− u(s)

u(s)

)
.

Since 2ds(1 − s) < u(s) for all s ∈ (0, 1) we conclude that if s > 1/2 then

the terms 1 + d(1 − 2s)2 − 2s(1 − s) and (1 − 2s)
√
u(s)

(
2ds(1−s)−u(s)

u(s)

)
are

positive and h(s) ≥ 0. It remains to prove h(s) ≥ 0 for s ∈ (0, 1/2). Then,
the claim is equivalent to

(
1 + d(1− 2s)2 − 2s(1− s)

)2 ≥ (1− 2s)2u(s)

(
2ds(1− s)− u(s)

u(s)

)2

,

11



that is

u(s)
(
1 + d(1− 2s)2 − 2s(1− s)

)2 − (1− 2s)2(2ds(1− s)− u(s))2 ≥ 0.

Expanding the terms, the last expression equals

s2(1− s)2(4 + 8d) ≥ 0,

which trivially holds, thus proving the lemma.

6.1. Proof of Theorem 6.1

Some elementary algebraic manipulations show that the inequality of the
theorem is equivalent to:

u(s) ≥ 1

B(d, d)
, u(s) = Q(s) (1−Q(s)2A(s))d

where Q(s) = Bs(d, d)
−1 and A(s) = s2d(1− s)2d/d2. Now, note that

u(1) =
1

B(d, d)
,

and hence it suffices to show that u is a non–increasing function. We compute
the derivative

u′(s) = (1−Q(s)2A(s))d−1
(
Q′(s)− (1 + 2d)Q′(s)Q(s)2A(s)− dQ(s)3A′(s)

)
.

The first factor is positive since sd(1 − s)d ≤ dBs(d, d), as it can be easily
seen by comparing the derivatives of these two terms. Hence it suffices to see
that

Q′(s)− (1 + 2d)Q′(s)Q(s)2A(s)− dQ(s)3A′(s) ≤ 0, s ∈ (0, 1),

or equivalently we just have to see that

dA′(s)Bs(d, d) + sd−1(1− s)d−1(Bs(d, d)
2 − (1 + 2d)A(s)) ≥ 0, s ∈ (0, 1).

Computing the derivative A′(s) and simplifying, this last inequality is equiv-
alent to

Bs(d, d)
2 + 2sd(1− s)d(1− 2s)Bs(d, d)− 1 + 2d

d2
s2d(1− s)2d ≥ 0,
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and hence also to

(
Bs(d, d) + sd(1− s)d(1− 2s)

)2 ≥ s2d(1−s)2d(1−2s)2+
1 + 2d

d2
s2d(1−s)2d

= s2d(1− s)2d
(
(1− 2s)2 +

1 + 2d

d2

)
,

which follows from Lemma 6.2 after taking square roots. Theorem 6.1 now
follows.

7. Proofs of the main results

In order to prove the results presented in this paper, we will define two
more functions.

Definition 7.1. Let θ : Cd → S
2d be the mapping defined by θ(x) = (x,1)

‖(x,1)‖ .
We denote by φ(x) = (θ ◦ ϕ−1 ◦ Π)(x), where ϕ−1 and Π are defined in
Definition 4.1.

Note that φ maps S2d into its upper half.

7.1. Derivatives of the stereographic projection and other mappings

In this section we state an elementary lemma with the computation of
the derivatives of the stereographic projection and other mappings.

Let n = (0, . . . , 0, 1) ∈ S
2d be the north pole and let p ∈ S

2d, p �= ±n.
It is useful to consider an orthonormal basis {ṗ1, . . . , ṗ2d−1, ṗ2d} of tangent
space of the sphere at p such that ṗi ⊥ n for 1 ≤ i ≤ 2d− 1 and

ṗ2d =
n− p2d+1p√
1− p22d+1

.

Lemma 7.2. Let Π be the stereographic projection (4), let ϕg be as defined
in Definition 4.1 and let θ be as defined in Definition 7.1. Let ṗ be a point
in the tangent space to S

2d at the point p, ẏ a point in the tangent space to
R

2d\{0} at the point y and ẋ a point in the tangent space to C
d at the point

x. Then, for all p ∈ S
2d, y ∈ R

2d\{0} and x ∈ C
d we have
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DΠ(p)ṗ =

[
ṗ1

1− p2d+1

+
p1ṗ2d+1

(1− p2d+1)2
, . . . ,

˙p2d
1− p2d+1

+
p2dṗ2d+1

(1− p2d+1)2

]
,

Dϕ−1g (y)ẏ =(g−1)′(‖y‖)y�(〈y, ẏ〉)‖y‖2 + g−1(‖y‖)
ẏ‖y‖ − y�(〈y,ẏ〉)‖y‖

‖y‖2 ,

Dθ(x)ẋ =
(ẋ, 0)‖(x, 1)‖ − (x, 1)�(〈(x,1),(ẋ,0)〉)‖(x,1)‖

‖(x, 1)‖2 .

Here we are denoting by �(z) the real part of a complex number z.

Proof. From the definition of the derivative,

Dθ(x)ẋ =
d

dt

∣∣∣∣
t=0

θ(x+ tẋ) =
d

dt

∣∣∣∣
t=0

(x+ tẋ, 1)

||(x+ tẋ, 1)||

=
(ẋ, 0)‖(x, 1)‖ − (x, 1)�(〈(x,1),(ẋ,0)〉)‖(x,1)‖

‖(x, 1)‖2 .

The two other cases can be done in a similar way.
�

Corollary 7.3. The Jacobian determinants of Π and ϕ−1g satisfy:

JacΠ(p) =
1

(1− p2d+1)2d
=

(
1 + ‖Π(p)‖2

2

)2d

,

Jacϕ−1g (y) =(g−1)′(‖y‖)
(
g−1(‖y‖)

‖y‖
)2d−1

.

Proof. Let p �= ±n and let ṗ1, . . . , ṗ2d−1, ṗ2d be the basis described at the
beginning of this section. Then, it is clear from Lemma 7.2 that DΠ(p)
preserves the orthogonality of the basis and a little algebra shows that it is
an homothetic transformation with ratio (1− p2d+1)

−1, hence

JacΠ(p) =
1

(1− p2d+1)2d
.

Noting that

‖Π(p)‖2 = 1 + p2d+1

1− p2d+1

⇒ p2d+1 =
‖Π(p)‖2 − 1

‖Π(p)‖2 + 1
,
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the first claim of the corollary follows.
For the second Jacobian, given y ∈ C

d ≡ R
2d we consider an orthonor-

mal basis v̇1, . . . , v̇2d whose last vector is y/‖y‖. Then, Dϕ−1g preserves the
orthogonality of this basis and hence we have

Jacϕ−1g (y) = ‖Dϕ−1g (y)(y/‖y‖)‖ ·
2d−1∏
i=1

‖Dϕ−1g (y)v̇i‖,

which from Lemma 7.2 equals

(g−1)′(‖y‖) ·
2d−1∏
i=1

g−1(‖y‖)
‖y‖ ,

and the corollary follows.

7.2. Proof of Proposition 4.2

The push-forward of a projection DPP is a DPP, see [BE18, Proposition

2.5] for a proof. So X
(N,d,g)
∗ is a DPP in S

2d, and from the same proposition
and equation (3), we know that its associated kernel is

K(N,d,g)
∗ (p, q) =

Nd!

πd

(1 + 〈z, w〉)L
√
|Jac(ϕ−1g ◦ Π)(z)Jac(ϕ−1g ◦ Π)(z)|

(1 + ‖z‖2) d+L+1
2 (1 + ‖w‖2) d+L+1

2

, (10)

where z = ϕ−1g (Π(p)), w = ϕ−1g (Π(q)). Now, from the chain rule,

Jac(ϕ−1g ◦ Π)(p) = Jac(ϕ−1g )(Π(p))JacΠ(p).

From Corollary 7.3, this last equals

(g−1)′(‖Π(p)‖)
(
g−1(‖Π(p)‖)

‖Π(p)‖
)2d−1(

1 + ‖Π(p)‖2
2

)2d

.

Now, ‖Π(p)‖ = ‖ϕg(z)‖ = g(‖z‖) and thus we have:

Jac(φ−1)(p) = (g−1)′(g(‖z‖))
( ‖z‖
g(‖z‖)

)2d−1(
1 + g(‖z‖)2

2

)2d

,

namely:

Jac(φ−1)(p) =
1

g′(‖z‖)
( ‖z‖
g(‖z‖)

)2d−1(
1 + g(‖z‖)2

2

)2d

, (11)

and the same holds changing p to q and z to w. Putting together (10) and
(11) we get Proposition 4.2.
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7.3. Proof of Proposition 4.3

During this proof, we denote by K∗ the kernel K
(N,d,g)
∗ . From Proposition

4.2:

K∗(p, p) =
Nd!

πd22d
(g(‖z‖)2 + 1)2d‖z‖2d−1

g′(‖z‖)g(‖z‖)2d−1(1 + ‖z‖2)d+1
.

From Proposition 2.3, if the DPP associated to K∗ is homogeneous then
K∗(p, p) = N/Vol(S2d) for all p ∈ S

2d. Thus, in order for the process to be
homogeneous one must have:

Nd!

πd22d
(g(t)2 + 1)2dt2d−1

g′(t)g(t)2d−1(1 + t2)d+1
=

N

Vol(S2d)
=

NΓ
(
d+ 1

2

)
2πd+ 1

2

, t ∈ (0,∞),

namely,

g′(t)g(t)2d−1

(g(t)2 + 1)2d
=

√
πd!

22d−1Γ
(
d+ 1

2

) t2d−1

(1 + t2)d+1
= dB(d, d)

t2d−1

(1 + t2)d+1
, (12)

where we have used Legendre’s duplication formula for the Gamma function
(see [NIST:DLMF, Formula 5.5.5]),

Γ(z) Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z) . (13)

Now we compute primitives in (12) in both sides. On one hand,

∫
dB(d, d)

t2d−1

(1 + t2)d+1
dt =

B(d, d)

2

t2d

(1 + t2)d
.

On the other hand,

∫
g2d−1

(g2 + 1)2d
dg =

1

2

[
B(d, d)− B 1

1+g2
(d, d)

]
,

where Bx denotes Euler’s incomplete Beta function (see equation (9) for a
definition). We thus have (using the regularized incomplete Beta function):

1− I 1
1+g2

(d, d) =
t2d

(1 + t2)d
,
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where the chosen integration constant is the unique with the property that
g(0) = 0. Recall that Ix(a, b) = 1− I1−x(b, a) (see for example [NIST:DLMF,
Formula 8.17.4 ]). Hence, the function g we are looking for must satisfy:

I g2

1+g2

(d, d) =

(
t2

1 + t2

)d

.

Note that g is well–defined since the regularized Beta function is bijective in
the range [0, 1] and for all t ∈ (0,∞), 0 < t2

1+t2
< 1.

We also check that g satisfies the claimed properties:

• g is an increasing function: g satisfies the differential equation (12)
and thus its derivative is positive.

• g(0) = 0 since we have chosen the correct integration constant.

• lim
t→∞

g(t) = ∞: we have lim
t→∞

I g2

1+g2

(d, d) = lim
t→∞

(
t2

1+t2

)d
= 1.

Now if lim
t→∞

I g2

1+g2

(d, d) = 1 ⇒ lim
t→∞

g2

1+g2
= 1 ⇒ lim

t→∞
g = ±∞. Since g is

increasing and g(0) = 0, the only possible solution is lim
t→∞

g = ∞.

• g is C∞: since t →
(

t2

1+t2

)d
is C∞ and so is the inverse regularized

incomplete Beta function, we conclude that t → s(t) = g(t)2

1+g(t)2
is C∞.

Then we can solve g =
√

s
1−s , so in the interval s ∈ (0, 1), g is a

composition of C∞ functions whose denominator does not vanish and
thereby is C∞.

�

7.4. Proof of Theorem 4.4

We only have to replace the expression for g′(t) given in equation (12) to
compute R(t) from Proposition 4.2:

R(t) =
1√

dB(d, d)(1 + t2)L/2
.

We then have:

K(N)
∗ (p, q) =

Nd!

πd22ddB(d, d)

(1 + 〈z, w〉)L
(1 + ‖z‖2)L

2 (1 + ‖w‖2)L
2

.

The expression for the constant N/Vol(S2d) follows using (13) and (1).
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7.5. Proof of Theorem 5.2

It is well known (see [BMOC16, Proposition 1] that follows from [HKPV09,
Formula 1.2.2.]) that the expected value of the Riesz energy of a set of N

points coming from X
(N)
∗ satisfies (recall that K

(N)
∗ (p, p) = N

Vol(S2d)
):

E
x∼X(N)

∗
[Es(x1, . . . , xN)] =

∫
S2d×S2d

K
(N)
∗ (p, p)2 − |K(N)

∗ (p, q)|2
‖p− q‖s dpdq

=
N2

Vol(S2d)2

∫
S2d×S2d

1−
(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
‖p− q‖s dpdq

= N2Vs(S
2d)− N2

Vol(S2d)2

∫
S2d×S2d

(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
‖p− q‖s dpdq.

Bounding the integral in the last term is a non–trivial task. We will do it in
several steps.

Proposition 7.4. Let p, q be points of S2d, then(
|K(N)

∗ (p, q)|
K

(N)
∗ (p, p)

)2

≥ max
{
(1− ‖φ(p)− φ(q)‖2)L, 0}

where φ was defined in Definition 7.1.

Proof. It is obvious that
(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
≥ 0. We will use the fact that for every

unit vectors x, y ∈ C
a, for every a ∈ N, we have

| 〈x, y〉 |2 ≥ �(〈x, y〉)2 =
(
1− ‖x− y‖2

2

)2

≥ 1− ‖x− y‖2.

Then,
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(
|K(N)

∗ (p, q)|
K

(N)
∗ (p, p)

)2

=

( |1 + 〈z, w〉 |2
(1 + ‖z‖2)(1 + ‖w‖2)

)L

=

∣∣∣∣∣ 〈(z, 1), (w, 1)〉√
1 + ‖z‖2√1 + ‖w‖2

∣∣∣∣∣
2L

=

=

∣∣∣∣
〈

(z, 1)

‖(z, 1)‖ ,
(w, 1)

‖(w, 1)‖
〉∣∣∣∣

2L

≥
(
1−

∥∥∥∥ (z, 1)

‖(z, 1)‖ − (w, 1)

‖(w, 1)‖
∥∥∥∥
2
)L

=

=

(
1−

∥∥∥∥ (ϕ−1(Π(p)), 1)
‖(ϕ−1(Π(p)), 1)‖ − (ϕ−1(Π(q)), 1)

‖(ϕ−1(Π(q)), 1)‖
∥∥∥∥
2
)L

=

= (1− ‖φ(p)− φ(q)‖2)L.
�

Lemma 7.5. Let p, q ∈ S
2d, then the following inequality holds.

‖φ(p)− φ(q)‖ ≤ (‖p− q‖+ ‖p− q‖3) sup ‖Dφ(x)‖,
where the supremum is taken for x in the geodesic from p to q.

Proof. Given two points p, q ∈ S
2d, let α = dS2d(p, q) where dS2d is the distance

in the sphere, and let γ be the geodesic segment from p to q. Then we have

‖φ(p)− φ(q)‖ =‖φ(γ(0))− φ(γ(α))‖ ≤
∥∥∥∥
∫ α

0

Dφ(γ(t))γ̇(t)dt

∥∥∥∥
≤
∫ α

0

‖Dφ(γ(t))γ̇(t)‖ dt ≤ α sup ‖Dφ(x)‖.

where x lies on the geodesic from p to q. We now note that

α = dS2d(p, q) = 2 arcsin

(‖p− q‖
2

)
≤ ‖p− q‖+ ‖p− q‖3,

the last since 2 arcsin(x/2) ≤ x + x3 for 0 ≤ x ≤ 2 (a simple exercise left to
the reader). The lemma follows.

�

Proposition 7.6. Let n = (0, . . . , 0, 1) ∈ S
2d be the north pole and let p ∈

S
2d, p �= n. Let ṗ1, . . . , ṗ2d be the orthonormal basis of the tangent space of the
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sphere at p defined in Section 7.1. Then, Dφ(p) preserves the orthogonality
of the basis and we have

∥∥Dφ(p)ṗi
∥∥ =

g−1
(√

1+p2d+1

1−p2d+1

)
√

1− p22d+1

√
1 +

(
g−1

(√
1+p2d+1

1−p2d+1

))2 , 1 ≤ i ≤ 2d− 1,

and ∥∥Dφ(p)ṗ2d
∥∥ =

(g−1)′
(√

1+p2d+1

1−p2d+1

)
(
1 + g−1

(√
1+p2d+1

1−p2d+1

)2)
(1− p2d+1)

.

In particular, ‖Dφ(p)‖ is the supremum of these two quantities.

Proof. We recall that φ(p) = (θ ◦ ϕ−1 ◦ Π)(p).
Using the chain rule,

Dφ(p)ṗ = D(θ ◦ ϕ−1 ◦ Π)(p)ṗ = Dθ(ϕ−1(Π(p)))Dϕ−1(Π(p))DΠ(p)ṗ.

From Lemma 7.2, after some algebra we get for 1 ≤ i ≤ 2d− 1:

Dθ(ϕ−1(Π(p)))Dϕ−1(Π(p))DΠ(p)ṗi =
g−1

(√
1+p2d+1

1−p2d+1

)
√

1− p22d+1

√
1 +

(
g−1

(√
1+p2d+1

1−p2d+1

))2 ṗi,

while for ṗ2d we get

Dθ(ϕ−1(Π(p)))Dϕ−1(Π(p))DΠ(p)
n− p2d+1p√
1− p22d+1

=

(g−1)′
(√

1+p2d+1

1−p2d+1

)
√
1− p22d+1(1− p2d+1)

√
1 +

(
g−1

(√
1+p2d+1

1−p2d+1

))23
⎛
⎜⎜⎜⎝

p1
. . .
p2d

−g−1
(√

1+p2d+1

1−p2d+1

)√
1− p22d+1

⎞
⎟⎟⎟⎠ .

Both the preservation of the orthogonality of the basis through Dφ(p) and
the formulas for the norm of Dφ(p)ṗi follow, and the proposition is proved.

�
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We need to compute the supremum among the two quantities of Propo-
sition 7.6, which is a nontrivial task. Following the same notation we have:

Lemma 7.7. Fix any d ≥ 1. The two following claims are equivalent:

1. For all p = (p1, . . . , p2d+1) ∈ S
2d we have

∥∥Dφ(p)ṗi
∥∥ ≥

∥∥∥∥∥∥Dφ(p)
n− p2d+1p√
1− p22d+1

∥∥∥∥∥∥ .
(Here, ṗi, 1 ≤ i ≤ 2d− 1, are as in Proposition 7.6.)

2. For all s ∈ (0, 1) we have

dBs(d, d)

√
1− (Is(d, d))

1
d ≥ sd(1− s)d.

Proof. The claim is the result of a lengthy computation obtained by working
on the expressions from Proposition 7.6 using the definition of g given in
Proposition 4.3, which can be written as:

g−1(s) =

⎛
⎝ I s2

1+s2
(d, d)1/d

1− I s2

1+s2
(d, d)1/d

⎞
⎠

1/2

. (14)

�
From Lemma 7.7 and Theorem 6.1 we readily have:

Proposition 7.8. For all d ≥ 1 and all p ∈ S
2d

∥∥Dφ(p)ṗi
∥∥ ≥

∥∥∥∥∥∥Dφ(p)
n− p2d+1p√
1− p22d+1

∥∥∥∥∥∥ ,
where ṗi, 1 ≤ i ≤ 2d− 1, are as in Proposition 7.6.

Corollary 7.9. Let p, q ∈ S
2d, ‖p−q‖ ≤ τ and p2d+1 < ε where 0 < ε+τ < 1.

Then, for every x ∈ S
2d in the geodesic segment from p to q we have

‖Dφ(x)‖ ≤
g−1

(√
1+(τ+ε)
1−(τ+ε)

)
√
1− (τ + ε)2

√
1 +

(
g−1

(√
1+(τ+ε)
1−(τ+ε)

))2 ≤ 1√
1− (τ + ε)2

=: Mε,τ .

(15)
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Proof. The second inequality is trivial. For the first one, note that from
propositions 7.6 and 7.8, for x as in the hypotheses we have

‖Dφ(x)ẋ‖ ≤
g−1

(√
1+x2d+1

1−x2d+1

)
√
1− x2

2d+1

√
1 +

(
g−1

(√
1+x2d+1

1−x2d+1

))2 (14)
=

√√√√ I
1/d
1+x2d+1

2

1− x2
2d+1

.

It is clear that the right-side term is an increasing function of x2d+1. The
claim of the proposition follows noting that p2d+1 ≤ ε and ‖p−q‖ ≤ τ implies
|x2d−1 − p2d+1| ≤ τ and hence x2d+1 ≤ τ + ε.

�

Proposition 7.10. If τ, ε > 0 and 0 < τ + ε < 1, then for all p, q ∈ S
2d we

have

∫
p,q∈S2d

(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
‖p− q‖s dpdq ≥

W (ε)Vol(S2d−1)
(2d− s)

(
1− τ 2

4

)d−1
τ 2d−s

(
1− τ 2

(1 + τ 2)2

1− (ε+ τ)2

)L

,

where W (ε) is the volume of the set of p ∈ S
2d such that p2d+1 ≤ ε.

In order to prove Proposition 7.10, we present Lemma 7.11 (that follows from
the change of variables formula applied to the projection from the cylinder
to the sphere).

Lemma 7.11. If f : Sm → R satisfies f(q) = g(〈p, q〉), for some p ∈ S
m and

some g : [−1, 1] −→ R, then∫
p∈Sm

f(p)dp = Vol(Sm−1)
∫ 1

−1
g(t)(1− t2)

m
2
−1,

assuming that f is integrable or f is measurable and non–negative.

Proof (Proof of Proposition 7.10). From lemmas 7.4 and 7.5 and Corollary
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7.9, τ, ε > 0 and 0 < τ + ε < 1 we have:

∫
S2d×S2d

(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
‖p− q‖s dpdq ≥

∫
‖p−q‖≤τ,p2d+1≤ε

(
|K(N)
∗ (p,q)|

K
(N)
∗ (p,p)

)2
‖p− q‖s dpdq ≥

∫
‖p−q‖≤τ,p2d+1≤ε

(
1− (1+τ2)2‖p−q‖2

1−(ε+τ)2

)L
‖p− q‖s dpdq.

We apply Fubini’s theorem and Lemma 7.11, transforming the last inte-
gral into:

∫
p2d+1≤ε

⎡
⎢⎣∫

‖p−q‖≤τ

(
1− (1+τ2)2‖p−q‖2

1−(ε+τ)2

)L
‖p− q‖s dq

⎤
⎥⎦ dp =

=

∫
p2d+1≤ε

⎡
⎢⎣∫√

2−2〈p,q〉≤τ

(
1− (1+τ2)2

1−(ε+τ)2
(2− 2〈p, q〉)

)L
√

2− 2〈p, q〉 s dq

⎤
⎥⎦ dp =

= Vol(S2d−1)
∫ 1

1− τ2

2

(
1− (1+τ2)2

1−(ε+τ)2
(2− 2t)

)L
√
2− 2t

s (1− t2)d−1dt
∫
p2d+1≤ε

dp. (16)

Then, (16) equals:

W (ε)Vol(S2d−1)
2

s
2

∫ 1

1− τ2

2

(
1− (1+τ2)2

1−(ε+τ)2
(2− 2t)

)L
√
1− t

s (1− t2)d−1dt.

where W (ε) is the volume of the set of points of S2d such that their last
coordinate is less or equal to ε. With the change of variables u = 1 − t and
using 1− t2 = (1− t)(1 + t) we have proved that:

∫
S2d×S2d

(
|K(n)
∗ (p,q)|

K
(n)
∗ (p,p)

)2
‖p− q‖s dpdq ≥

W (ε)Vol(S2d−1)
2

s
2

(
2− τ 2

2

)d−1 ∫ τ2

2

0

(
1− 2

(1 + τ 2)2

1− (ε+ τ)2
u

)L

ud−1− s
2du. (17)
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Since u ≤ τ2

2
,
(
1− 2 (1+τ2)2

1−(ε+τ)2
u
)L

≥
(
1− τ 2 (1+τ2)2

1−(ε+τ)2

)L
and so

∫
S2d×S2d

(
|K(n)
∗ (p,q)|

K
(n)
∗ (p,p)

)2
‖p− q‖s dpdq ≥

W (ε)Vol(S2d−1)
2

s
2

(
2− τ 2

2

)d−1(
1− τ 2

(1 + τ 2)2

1− (ε+ τ)2

)L ∫ τ2

2

0

ud−1− s
2du. (18)

We then have proved the following lower bound for the integral in the propo-
sition:

W (ε)Vol(S2d−1)
(2d− s)

(
1− τ 2

4

)d−1
τ 2d−s

(
1− τ 2

(1 + τ 2)2

1− (ε+ τ)2

)L

.

The proof is now complete.
�

7.5.1. Proof of Theorem 5.2

First we are going to give a bound for W (ε).

Proposition 7.12. Let r > 0 and let ϑ
(
π
2
+ r
)
be the volume of the spherical

cap of radius π
2
+ r in S

n+1, then

ϑ
(π
2
+ r
)
≥ Vol(Sn+1)

(
1− e

−r2n
2

2

√
1 +

1

n

)
.

Proof. As in [MS86, Corollary 2.2] we consider the normalized measure of
ϑ
(
π
2
+ r
)
,

ϑ
(
π
2
+ r
)

Vol(Sn+1)
=

∫ r
−π
2
cosn θdθ∫ π

2
−π
2

cosn θdθ
.

The same result shows that

1− ϑ
(
π
2
+ r
)

Vol(Sn+1)
≤ e

−r2n
2

√
π
2

2
√
nIn

,

where In =
∫ π

2

0
cosn θdθ =

√
πΓ(n

2
+ 1

2)
2Γ(n

2
+1)

. Applying Gautschi’s inequality (see

[Luk16, Theorem 1]) we obtain that
Γ(n

2
+ 1

2)
Γ(n

2
+1)

≥
√

2
n+1

so
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1− ϑ
(
π
2
+ r
)

Vol(Sn+1)
≤ e

−r2n
2

2

√
1 +

1

n

and Proposition 7.12 is proved.
�
Now, taking n = 2d− 1 in Proposition 7.12,

W

(
1√
d

)
≥ ϑ

(
π

2
+

1√
d

)
≥ Vol(S2d)

⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠

hence we can substitute in the formula from Proposition 7.10 obtaining

E
x∼X(N)

∗
[Es(ωN)] ≤ N2Vs(S

2d)− N2Vol(S2d−1)
(2d− s)Vol(S2d)

×

(
1− τ 2

4

)d−1
τ 2d−s

⎛
⎜⎝1− τ 2

(1 + τ 2)2

1−
(

1√
d
+ τ

)2
⎞
⎟⎠

L⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠ ,

where 0 < τ < 1− 1/
√
d. This finishes the proof of Theorem 5.2.

�

7.6. Proof of Theorem 5.1

From Theorem 5.2,

E
x∼X(N)

∗
[Es(ωN)]−N2Vs(S

2d)

N1+ s
2d

≤ −N1− s
2dVol(S2d−1)

(2d− s)Vol(S2d)
×

(
1− τ 2

4

)d−1
τ 2d−s

⎛
⎜⎝1− τ 2

(1 + τ 2)2

1−
(

1√
d
+ τ

)2
⎞
⎟⎠

L⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠ .

Fix any C > 0 and let τ =
√

C/L (which satisfies τ < 1 − 1√
d
for large

enough L). Then, the expression above equals

−N1− s
2dVol(S2d−1)

Vol(S2d)(2d− s)Ld− s
2

Cd− s
2

e
dC
d−1

⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠QL,
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where QL is a sequence with limL→∞QL = 1.
We recall that N =

(
d+L
d

)
, which implies

Ld

d!
≤ (L+ d) · · · (L+ 1)

d!
=

(
d+ L

d

)
= N.

We then have proved:

E
x∼X(N)

∗
[Es(ωN)]−N2Vs(S

2d)

N1+ s
2d

≤

− N1− s
2dVol(S2d−1)

Vol(S2d)(2d− s)(Nd!)1−
s
2d

Cd− s
2

e
dC
d−1

⎛
⎝1− e−1+

1
2d

2
√
1− 1

2d

⎞
⎠QL,

which is valid for all C > 0. The optimal C is easily computed:

C = d− 1− d− 1

2d
s.

The theorem follows substituting this value of C in the formula above.
�
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