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Abstract— A semi-analytical method for the global prediction and 
understanding of the transient dynamics of oscillator circuits is 
presented. It covers both the linear and nonlinear transient stages, 
which are related with the circuit generalized eigenvalues, here 
introduced for the first time. The transient model relies on the 
application of the implicit-function theorem to the harmonic-
balance system, in order to derive a reduced-order nonlinear 
differential equation from a given observation node. This requires 
the extraction of a nonlinear admittance function, depending on 
the voltage excitation and oscillation frequency, which is done with 
a forcing auxiliary generator. The linearization of this admittance 
function for each excitation amplitude provides a sequence of 
linear ordinary differential equations, describing the system 
dynamics in the vicinity of each point of the transient trajectory, 
which can be reconstructed from the expression of the solution 
increment at each time step. The sequence of differential equations 
provides a set of generalized eigenvalues, responsible for the 
acceleration or deceleration of the oscillation growth and capable 
to detect spurious transient frequencies. The concept of escape 
time, or time required by the transient trajectory to go through a 
certain interval of amplitude values, is also introduced, for the first 
time to our knowledge. The method has been successfully applied 
to analyze the transient dynamics of several FET oscillators, 
including dual-frequency oscillators and switched oscillators. 
 

Index Terms—Frequency-domain analysis, microwave 
oscillator, transient analysis. 
 

I. INTRODUCTION 

transient dynamics is a key characteristic of the oscillator 
behavior [1]–[7] that highly influences the performance of 

the system in which it is embedded. For example, in the case of 
mobile communication devices, where the system is powered 
up and down, the time required for the oscillator to achieve the 
steady state affects the energy consumed. Moreover, anomalous 
switching transients can temporarily stress the system and/or 
cause inference. Time-domain integration is the natural choice 
to predict the oscillator transient. However, in the microwave 
range, numerical difficulties are often encountered, due to the 
common presence of distributed elements and the long transient 
duration in comparison with the solution period. On the other 
hand, the envelope-transient approach [8]–[12] relies on a 
Fourier-series representation of the circuit variables with time-
varying harmonic terms, which enables the derivation of a 
nonlinear differential equation system in these slowly varying 
terms. This system is integrated at a significantly larger time 
scale than the one required for the standard time-domain 

analysis, which enables an efficient simulation. Furthermore, 
the modeling of the distributed elements is limited to a certain 
bandwidth about the harmonic components, which is less 
demanding from a numerical viewpoint. 

At system level, compact oscillator models are used for the 
analysis of coupled oscillator  systems [13],[14], phase-locked 
loops and self-injection locked circuits, for instance. The 
oscillators are usually described with Van der Pol models [15]–
[18], which, in most cases, cannot accurately predict the 
behavior of transistor-based circuits. To address this problem, a 
reduced-order model, extracted from circuit-level harmonic-
balance (HB) simulations, was proposed in [13],[14]. The 
model is obtained by linearizing an outer-tier admittance 
function Y, calculated at a given observation node, about the 
free-running periodic solution. More specifically, it is given by 
the amplitude and frequency derivatives of this function, 
calculated through finite differences [13],[14]. As a result, its 
prediction capabilities are limited to small transient 
perturbations about the steady state.  

To extend the numerical model in order to account for the 
build-up transient, the preliminary work [19], [20] presents the 
derivation of a first-order envelope-domain equation from a 
single observation node. The model relies on a full extraction 
of an outer-tier admittance function ( , )Y V   from HB, which 

depends on the excitation amplitude V and frequency . The 
first-order envelope domain equation is obtained by considering 
a time-varying amplitude ( )V t  and applying a first-order 

Taylor series expansion of ( , )Y V   in j, for each V. Then, the 

multiplication by j gives rise to a time differentiation of the 
node voltage, in a manner similar to [21], which leads to a first-
order nonlinear differential equation.  

As stated, the numerical function ( , )Y V   enables a general 

procedure for a realistic prediction of the oscillator behavior. 
However, the first-order assumption [19], [20] will fail if the 
transient effects cannot be accurately described through a first-
order Taylor series expansion in j . To cope with this 

limitation, this work considers a general dependence on j . 

This involves a significant challenge in the resolution of the 
nonlinear differential equation because there is no explicit 
frequency dependence that can be easily associated with time 
differentiations. Two different ways to integrate the equation 
will be considered: a local linearization (LL) method [22]–[29] 
and a nonlinear iterative procedure [30].  
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The LL method is based on the discretization of the time 
variable in small intervals (tn, tn+1), in which the original 
nonlinear differential equation is approached by a linear one, 
obtained by linearizing the admittance function about the 
amplitude Vn at tn. As in all the LL methods [22]–[29], this 
resolution is exponential, in the sense that, in each time interval 
(tn, tn+1), the transient depends on the eigenvalues of the system 
Jacobian matrix, evaluated at tn. Here, these eigenvalues are 
calculated in an indirect manner, applying, under V variations, 
a series of pole-zero identification to a frequency-domain 
function, derived from the characteristic system. It is taken into 
account that all the transfer functions that can be defined in a 
linearized system share the same denominator [31]–[40], so the 
exponentials are unique up to the accuracy limits of the pole-
zero identification.  

The linearization methods are approximate and have an error 
proportional to the square of the time step [22]–[29]. However, 
the decomposition into exponential terms enables the detection 
and monitoring of spurious frequencies. In fact, the generalized 
eigenvalues evolve during the transient and are responsible for 
the onset and extinction of spurious oscillations during this 
transient stage. They also govern acceleration or deceleration of 
the oscillation growth. Thus, the new method will provide 
insight into the causes for irregular transient responses. The 
transient prediction can be refined using an iterative integration 
method, such as the backward Euler rule [30].  

The paper is organized as follows. Section II describes the 
time-frequency formulation, including the calculation of the 
nonlinear admittance function. Section III presents the 
narrowband analysis, extended with the calculation of a newly 
defined escape time. Section IV describes the wideband 
analysis, including the two different ways to solve the implicit 
envelope-domain equation. Section V presents various 
applications of the new model, with experimental 
measurements, including a dual-frequency oscillator and a 
switched oscillator. 

II. TIME-FREQUENCY FORMULATION 

Let a free-running oscillator be analyzed with the HB method 
be considered. The HB system is expressed in terms of its error 
vector as ( , ) 0H X   , where  is the unknown fundamental 

frequency and the phase of one of the state variables in X  has 
been arbitrarily set to zero, due to the autonomy of the free-
running oscillator solution. The total current is equal to zero at 
all the circuit nodes, so, when considering a particular 
observation node q , one can write the following complex 

equation at the fundamental frequency: 

  1 , , , ´ 0I V X     (1) 

where 1I   is the fundamental-frequency component of the total 

current entering the node, V  and    are the amplitude and 

phase of the first harmonic of the voltage ( )v t  at the 

observation node and 'X  is the vector containing the rest of the 

HB-system unknowns. Defining  , , ,' ´ 0VH X    as the 

subsystem composed by the remaining HB equations, the 
circuit is governed by: 

 
 1

' 0      , , , ´

, , , ´ 0        

 (a)

(b)

V X

I V X

H  

  


                 (2) 

The Implicit-Function Theorem [41] states that, if the Jacobian 
matrix of subsystem (2)(a) is not singular, it is possible to 

express 'X in terms of  ,V  , obtaining [42]: 

 
   1 1

1

, , , ' , , ,

j

I V X V Y V X

X Ve 

      


   (3) 

where ,( )Y V    is the first-harmonic admittance function at the 

observation node. To ease the reading the most significant 
symbols and quantities used in the theoretical analysis are 
presented in Table I. 
 

Table I 
Symbol Description 

,V   First harmonic amplitude and phase 

( )g V  Growth-rate function 

( )e V  Escape time density function 

( , )Y V   Admittance function evaluated at the 
first harmonic component of the two-tier 
system (3) 

1( ), , ( )pV V   Generalized eigenvalues 

( , )VF V s  Laplace-domain function whose poles 
agree with the generalized eigenvalues 

 

A. Extraction of the nonlinear admittance function 

The nonlinear admittance function ( , )Y V   is extracted in the 

following manner. First, an auxiliary generator in series with an 
ideal band-pass filter, exhibiting the admittance

( ) ( )f AGY       , is connected in parallel at the observation 

node q , as shown in Fig. 1(a). Then, a double sweep in the 

variables ( , )V  is performed, obtaining the admittance 

function ( , )Y V   as: 

 1( , ) ( , ) / , ,AG AG AG AG AGY V I V V V V        (4) 

where the first harmonic current 1( , )AG AGI V   is calculated 

through circuit-level HB simulation of the oscillator, after 
setting the amplitude and frequency of the AG to

,AG AGV V     . Due to the oscillator autonomy, the AG 

phase AG  can be arbitrarily set to zero. The amplitude V  must 

be swept in the range of amplitude values expected to be 
covered by the transient trajectory.  
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(a) 

 
(b) 

Fig. 1.  Schematic of the auxiliary generator (AG) connected to an observation 
node q of the oscillator circuit. (a) Use of the AG to calculate the admittance 
function Y(V,). (b) Inclusion of a small signal current source for pole-zero 
identification at circuit level.  
 

B. Envelope-domain equation 

During the transient state, the harmonic components of the 

voltage signal ( )v t  are time-varying: ( ) ( ) ojn t
nv t V t e  , 

where o  is the steady state-oscillation frequency. As a result 

the outer-tier function Y must include the action of a time 
differentiator [21]. Note that the circuit is not in steady state, 
which, in the frequency domain, gives rise to a complex 
frequency, which, in the envelope domain, is expressed as 

/o s j  , where o. Multiplication by s of the time-varying 

terms is equivalent to a time differentiation [21], in consistency 
with the time differentiation associated with a multiplication by 
s in the Laplace domain. Thus, departing from equation (3), one 
obtains: 

   1( ), / ( ) 0o tY V t D j X t     (5) 

where tD   is the time-derivative operator. Equation (5) enables 

the derivation of a reduced-order model, able to account for 
build-up transients. In the following, the two cases of narrow-
band and wideband envelopes will be distinguished.  

III. NARROWBAND TRANSIENT 

In previous works [19], [20] the time-varying harmonic 
component 1( )X t  was treated as a narrow-band signal, 

assuming that its high-order time derivatives were negligible. 
Under this assumption, (5) can be expressed as: 

 
1 1

1 1

( , )
( , ) (

( , )
( , ) 0

( )

)o t
o

o
o

Y V D
Y V X X

j

Y V
Y V X X

j
















 





  (6) 

For the sake of compactness, the following change of notation 
will be performed: 

0

1

( ) ( , )

( , )
( )

o

o

a V Y V

Y V
a V

j











       (7) 

Both a0 and a1 can be obtained from the numerical function 
( , )Y V   in a straightforward manner. From (6), one can extract 

the equations governing the amplitude and phase dynamics: 

       0 1 0 1

2
1

Re ( ) ( ) Im ( ) ( )
( )

m

| ( )

e I

|

Ra V a V a V a V
V g V

a V


   (8) 

 
       0 1 0 1

2
1

Re ( ) ( ) Im ( ) ( )Im Re

| ( ) |

a V a V a V a V

a V



   (9) 

where Re() and Im() indicate real and imaginary parts, 
respectively. Note that the instantaneous oscillation frequency 

is ( )o t   . Due to the oscillator autonomy, the system is 

invariant to any constant phase shift. This is because the time 
evolution of system (8)-(9) is determined by the single state 
variable V. The nonlinear function ( )g V  is a growth-rate 

function that governs the amplitude dynamics. 
In steady-state conditions, 1 0X   in (6), which is fulfilled 

by the steady-state values 0,  oV V  that make 0 ( ) 0a V  . For 

these values, which correspond to the dc solution and the 
steady-state oscillation, equations (8)-(9) predict that both the 

amplitude and phase variables fulfill 0V    .  

In narrowband conditions, the function ( )g V  will contain the 

information on the stability of the steady-state solution Vss. The 
amplitude behavior in the vicinity of Vss can be evaluated by 
expressing the first harmonic amplitude as ( ) ( )ssV t V V t   . 

Introducing this expression in the ordinary differential equation 
(ODE) [27] (8), the time evolution of the amplitude deviation is 
given by: 

 ( ) ( ) ( ) ( ) ( ) ( )ss ss ssV t g V g V V t g V V t         (10) 

where it has been taken into account that ( ) 0ssg V   . According 

to equation (10), for ( ) 0ssg V   (in the vicinity of the steady-

state solution), the amplitude deviation decreases with time and 
the system trajectories are attracted by ssV . In this case, the 

solution ssV  is stable whereas. For ( ) 0ssg V  , the amplitude 

deviation increases with time and ssV  is unstable. 

A. Application to a FET-based oscillator 

The analysis based on (8) will be illustrated by its application 
to the FET-based oscillator at 5 GHz of Fig. 2(a). The drain bias 
voltage is 1DDV   V and the varactor diode has been set to 
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1dV   V. The observation node q has been placed at the gate 

port. In Fig. 2(b), the real and imaginary parts of the function 
( , )Y V   have been represented versus the voltage amplitude V, 

which has been varied in the range [0, 1] V. The representation 
has been carried out for the frequency values 

/ 2 5of f     GHz and 40of f   MHz. As can be 

seen, for of f  the admittance function vanishes at the steady-

state amplitude 0.59oV    V. 

 
(a) 

 
(b) 

Fig. 2.  Application of the first-order technique. (a) Schematic of the FET-based 
oscillator at 5 GHz, where the variables L and W are the length and width of the 
circuit transmission lines. The time delay of each line is 1=32 ps, for L1, 
2=110 ps, for L2, 3=76 ps,, for L3, and 4=84 ps, for L4. (b) Calculation of the 
components ao(V) = Y(V,o) and a1(V). The real and imaginary parts of ( , )Y V   

(denoted by r, i) have been represented versus V for  f = fo and f = fo + 40 MHz, 
where fo = 5 GHz. For each amplitude V, the function a1(V) in (7) is obtained 
from the numerical frequency derivative of Y(V,), calculated at  = o = 2fo. 

In Fig. 3(a), the function ( )g V  has been represented for two 

different values of the varactor diode bias 1dV   V and 

1.08dV   V. Note that, since ( )V g V , this representation 

provides the system trajectory in the phase space ( , )V V  . As 

can be observed, ( )g V  vanishes at the steady state values

0, ( )o dV V V , corresponding to the dc solution and steady-state 

oscillation. According to the derivative ( )g V , the dc solution 

is unstable and the steady-state oscillation is stable. In the 
transient between both solutions the amplitude grows faster for 

1dV   V, since ( )g V  is bigger. In the same figure, the 

trajectories are validated through a comparison with circuit-
level envelope-transient simulations (and with the general 
nonlinear integration method presented in Section IV.D). In the 

circuit-level envelope-transient, to avoid the convergence to the 
coexisting unstable dc solution, the simulation has been carried 
out with the aid of an AG, connected to the circuit at the initial 
time only, as described in [43]. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  Application of the first-order technique. (a) Growth-rate function ( )g V  

for two values of the varactor bias Vd. The amplitude grows faster for Vd  = 1 V 
, since ( )g V  is bigger. The results have been validated with circuit-level 

envelope-transient (ET) simulations and with the nonlinear integration method 
in Section IV.D. (b) Escape-time density for two values of the varactor bias Vd. 
The vertical dashed lines indicate, in each case, the steady-state oscillation 
amplitude. (c) Circuit-level envelope transient simulations of the transient 
trajectory. The trajectories obtained through the LL and backward-Euler 
methods have been superimposed. The vertical lines indicate the estimated time 
to reach the 99.9% of the steady state amplitude value in each case.  
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B. Escape time 

Once the growth-rate function ( )g V  defined in (8) has been 

calculated, the transient dynamics of the oscillator amplitude, 
from any initial condition ICV V  to the steady state oV V , is 

fully determined by the first-order ODE (8). The time required 
to reach a given amplitude value V from an initial condition ICV  

can be obtained from (8) as: 

 
1

( ) ( , ), ( )
( )IC

V

ICV
t e V dV f V V e V

g V
     (11) 

where the function ( )e V  is the escape-time density, since 

( )e V dV  provides the time required to go through the interval 

[ , ]V V dV  . The growth-rate function ( )g V  vanishes when 

evaluated at any steady-state amplitude ssV . This is because, at 

the steady states, equation (3) is fulfilled, which implies 

0 ( ) ( , ) 0ss ss oa V Y V   . Thus, at the steady-state solutions, the 

escape time density ( )e V  becomes infinite, since they are fixed 

points. 
In Fig. 3(b), the escape-time density e(V) has been represented 

for two values of the varactor bias Vd. The density is smaller for 
Vd = 1 V, which implies that the oscillator response is faster. As 
seen in the figure, ( )e V   at the dc and oscillatory steady-

state solutions. 
Using the escape-time density e(V), one can obtain, for 

instance, the time required to reach a 99.9% of the amplitude of 
the stable free-running periodic steady state. It is also possible 
to analyze the impact of a given circuit parameter on the 
transient duration. In the case of the oscillator in Fig. 2(a), 
starting from VIC = 3 mV, the time required to reach a 99.9% of 
the steady-state amplitude is  t = 140 ns for Vd = 1 V, and t = 270 
ns, for Vd = 1.08 V. These results are validated with circuit-level 
envelope-transient simulations in Fig. 3(c).  

IV. WIDEBAND ANALYSIS OF THE OSCILLATOR TRANSIENT 

There are oscillators whose admittance function ( , )Y V   

exhibits a complex dependence on , which cannot be 
accurately represented with a first-order Taylor series 
expansion in the frequency . To address this situation, the 
general equation (5) will be considered, which exhibits an 
implicit dependence on both the amplitude V and frequency . 
In the following, it will be solved in two different ways: through 
a local linearization method and through a nonlinear integration 
method, based on an iterative procedure.  

A. Local linearization method 

To solve (5) through a local-linearization method, the time 
axis will be divided into subintervals, performing a linearization 
of the admittance function Y with respect to V at the initial time 
point of each subinterval.  

Let ( , )V   be the first harmonic amplitude and phase values 

corresponding to a given time point of the transient trajectory. 

After a sufficiently small time t, the amplitude and phase can be 
expressed as ( )V V t   and ( )t   , respectively, where 

( )V t  and ( )t  are small quantities. Linearizing 

 ( ), /o tY V t D j  in (5) about V, while preserving the global 

dependence on /o tD j  , one obtains: 

 
 

( , / )
( ,

(

/ )

), /

o t
o t

o t

Y V D j
Y V D j V

Y V t D j

V








 
  



 (12) 

Then, introducing (12) into (5), one obtains: 

1 1

( , / )
( , / ) ( ) ( ) ( ) 0o t

o t

Y V D j
Y V D j X t V t X t

V




 
   


 (13) 

Equation (13) is composed by two terms, which will be 
analyzed individually. The first term can be expressed as: 

 
 

1

1 1

( )

1

( , / ) ( )

( , / ) ( , ) ( ) ( , ) ( )

( , / ) ( , ) ( )

( , ) ( )

o t

o t o o

j
o t o

o

Y V D j X t

Y V D j Y V X t Y V X t

e Y V D j Y V V jV

Y V X t

 


  

  




 

    

      



 (14) 

where the time-derivative operator Dt has been applied 
neglecting high-order terms in the perturbation variables: 

 ( )1( )
( ),    0

k k
j

k k

d X t d
e V jV k

dt dt
        (15) 

The second term in (13) can be expressed as: 

 
1

( )

( , / )
( ) ( )

( , / )

o t

j o t

Y V D j
V t X t

V
Y V D j

e V
V

 





 
 


 

 


 (16) 

where, as in the previous case, Dt has been applied neglecting 
high-order terms: 

 ( )1 ( ) ( )
,    0

k k
j

k k

d X t V t d V
e V k

dt dt
  

   (17) 

Now, introducing (14) and (16) in (13), one obtains: 

 

( , / )
( , / )

( , / ) ( , ) ( , ) 0

o t
o t

o t o o

Y V D j
Y V D j V

V

Y V D j Y V jV Y V V




   

       
     

(18) 

For each amplitude V, equation (18) is a complex linear ODE 
in the real variables ( ( ), ( ))V t t  . To complete the system, 

the same procedure will be followed for the harmonic 1( )X t  

corresponding to the frequency o   . This provides: 

 
1

1

( , / ) ( )

( , / )
                  ( ) ( ) 0

o t

o t

Y V D j X t

Y V D j
V t X t

V








 
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  


 (19) 
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which, following the same procedure as in the previous case, 
leads to: 

 

( , / )
( , / )

( , / ) ( , ) ( , ) 0

o t
o t

o t o o

Y V D j
Y V D j V

V

Y V D j Y V jV Y V V




   

         
       

 (20) 

Equations (18) and (20) constitute a linear time-invariant 
(LTI) system providing the time evolution of the perturbation 
components ( ( ), ( ))V t t  . Note that this system is non-

homogeneous during the transient state but becomes 
homogeneous, as expected, at the steady-state oscillation, since

( , ) 0o oY V   . The system (18)-(20) can be solved by applying 

the theory of linear ODEs [44], so, at each stage, the amplitude 
increment ( )V t  can be expressed as: 

  ( )

1

1( ) i

p
V t

i
i

V t C e



     (21) 

where p is the number of generalized eigenvalues and the 
constants 1{ }p

i iC    are determined by the initial conditions on the 

state variables. Because Y depends implicitly in  it is not 
possible to know a priori the order p. This order will 
empirically determined through pole-zero identification [31]–
[40], as described next. 

B. Eigenvalue calculation 

In the following, we will demonstrate that the exponential 
terms in (21)  can be easily obtained through a pole-zero 
identification procedure. The rigorous demonstration has some 
complexity, but once the validity of the procedure has 
been proved, its practical application by the user is 
straightforward.   

For the derivation of the set of generalized eigenvalues 

 1( ) ( ), , ( )pV V V    , a solution of the form 

( ) st
VV t A e    and ( ) stt A e   is introduced in (18)-(20). 

Eliminating the exponential ste and assembling the terms 
effecting VA  and A , one obtains the following characteristic 

system: 

 

( , ) 0,

( , ) ( , )
( , )

( , ) ( , )

V

V

V

A
A V s

A

b V s b V s
A V s

b V s b V s







 

 

 
 

 
 

   
 

  (22) 

where: 

 

 

( , / )
( , ) ( , / ) ,

( , ) ( , / ) ( , )

o
V o

o o

Y V s j
b V s Y V s j V

V

b V s jV Y V s j Y V




 





  
   


     

  (23) 

The subscript + (-) indicates that the function is evaluated at 
o (-o). The subscript V () indicates that the function affects 

VA ( A ). At each integration stage, the generalized eigenvalues 

are the roots of the characteristic determinant det ( , )A V s . Since 

the matrix ( , )A V s  does not depend on  , the set ( )V  only 

depends on the amplitude V of the point under evaluation. As 
will be shown, this is a relevant property for the practical 
calculation of the exponential terms in (21). The matrix ( , )A V s  

fulfills ( ,0) 0,A V u V   , with [0,1]tu  , so det ( , )A V s has 

a root 0s  . This is consistent with the oscillator autonomy, 
and implies that the transient trajectory remains invariant under 
any constant shift in the phase variable  . Note that the same 

property was obtained in the narrowband case of Section III. 
From a numerical viewpoint, and because the components of 

( , )A V s  are numerically but not analytically known, better 

accuracy is obtained through the pole-zero identification of the 
components of the inverse matrix: 

 1 ( , ) ( , )
( , )

( , ) ( , )
V VF V s F V s

A V s
F V s F V s 

 


 

 
   
 

  (24) 

The set ( )V  of generalized eigenvalues can be obtained 

through the pole-zero identification [31]–[40] of ( , )VF V s , 

evaluated at s j  . The poles of this function are the roots of 

the characteristic determinant det ( , )A V s , except the 

roots s = 0. Note that the function ( , )VF V j   is derived in a 

straightforward manner from the admittance function ( , )Y V  , 

as shown in (23)-(24). 
In fact, the matrix ( , )A V s  can be expressed in terms of a 

different matrix ( , )B V s , which can be calculated both through 

the reduced-order formulation and at circuit level. To define the 
new matrix ( , )B V s  a small-signal current source, ( )ssi t , will be 

introduced in parallel at the node q (see Fig. 9). This source will 
be composed by a lower and an upper sideband about the free-
running frequency o : 

  ( ) ( )( ) Re o oj t j t
ss l ui t I e I e        (25) 

The source will give rise to the small increments 
( ) Re ( ) j tV t V e      and ( ) Re ( ) j tt e      . The matrix 

( , )B V s  will relate ( )V   and ( )   to ,l uI I  through the 

expression: 

 *

( )
( , )

( )
u

l

IV
B V j

I
    

         
  (26) 

To obtain the matrix ( , )B V j , one should introduce j t
uI e 

on the right-hand side of (13) (after the equal sign) and j t
lI e   

on the right-hand side of (19). Then, expressing 

1 ( ) jX V V jV e        and taking (23) into account, it is 

straightforward to obtain: 

 *

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
V o

V o

b V j b V j jVY V
B V j

b V j b V j jVY V







 

 

   
       

  (27) 
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where the functions ,Vb 
  agree with those conforming the 

matrix ( , )A V s  in (24), evaluated at s = jΩ.  

Once the matrix ( , )B V j  is known, the matrix ( , )A V j  

can be calculated as: 

 *

0 ( , )
( , ) ( , )

0 ( , )
o

o

Y V
A V j B V j jV

Y V




 
     

 
  (28) 

The matrix ( , )B V j  can be alternatively calculated through 

circuit-level conversion-matrix simulations [45]–[47], using an 
AG with the excitation amplitude V, plus the small-signal 
current source iss, as shown in Fig. 1(b). The results of this 
numerical technique should approach those of the analytical 
derivation in (20) to (27). However, there will be discrepancies 
due to the fact that (27) relies on a derivative of the 
fundamental-frequency admittance function Y with respect to 
the excitation amplitude V, whereas the circuit-level simulation 
is based on a conversion-matrix representation of the nonlinear 
elements.  

The analysis will be illustrated through its application to the 
dual Van der Pol-type oscillator in Fig. 4. For the parameter 
values in the caption, three stable steady-state solutions coexist: 
a dc solution and two oscillatory solutions at the frequencies 

1 907f  MHz and 2 3.9f  MHz. Note that two coexisting 

stable steady-state solutions have disjoints basins of attractions, 
so the observation of one or another depends on the initial 
conditions. Here, the transient towards the oscillatory solution 
at 1 907f   MHz will be studied, setting 12o f  . The 

steady-state amplitude is 2.76oV   V. The considered 

frequency band is (0, 2 3.5 GHz)o   , since 2 1 3f f   

GHz, and the interval in the amplitude V goes from 0 to 3 V, 
which should cover all the transient values. Fig. 5 shows the 
magnitude of ( , )VF V j  , which exhibits a resonance about the 

frequency offset 2 3    GHz. 

 

Fig. 4. Schematic of the dual Van der pol-type oscillator. The components of 
the resonators are R1 = 30 , C1 = 1 nF, R2 = 24.44 , C2 = 100 pF. The 
inductances L1,2 are set to achieve the resonance frequencies f1 = 907 MHz and 
f2 = 3.9 GHz. The respective quality factors are Q1= 171 and Q2 = 60. The 
parameters of the nonlinear current source are B = -0.044 -1/V2 and D = 0.006 
-1/V4 .  

The application of pole-zero identification [31]–[40]] to 
( , )VF V j   provides three dominant poles: 1 1( ) ( )V V  , 

2,3 2( ) ( ) ( )V V j V     . The real pole 1( )V  is responsible 

for the growth of the amplitude of the harmonic component at 
the fundamental frequency o . On the other hand, the pair of 

complex-conjugate poles 2,3 ( )V  indicate the existence of an 

additional transient-oscillation component at ( )o V  . The 

real and imaginary parts of these poles are represented versus V 
in Fig. 6, where the steady-state periodic oscillation is at 
V = Vo = 2.76 V. Between dc and this stable periodic solution, 
there is an unstable periodic solution of amplitude Vu=1.07 V, 
predicted with HB. The range of amplitude values for which the 
pair of complex-conjugate eigenvalues exhibit positive real part 
is denoted resonant range. As shown next, it will have a 
relevant impact on the oscillator transient response. 

 

Fig. 5.  Dual Van der Pol-type oscillator. Magnitude of the function ( , )VF V j 

. A resonance is observed at the frequency offset 3f   GHz, which persists 

for all the transient amplitude values, from dc to the steady-state solution at 

2.76oV   V. 

 
 

 
(a) 
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(b) 

Fig. 6.  Dual Van der Pol-type oscillator. Dominant generalized eigenvalues 
versus the first-harmonic transient amplitude V. (a) Real pole 1( )V . The 

amplitude values of the unstable ( )uV  and stable ( )oV  oscillatory solutions are 

indicated. (b) Real and imaginary parts of the complex-conjugate poles 

2,3 2 ( ) ( )V j V    . 

C. Approximate trajectory 

Once the generalized eigenvalues are available, the goal will 
be to approach the transient trajectory.  For the sake of clarity, 
the procedure will be illustrated through its application to the 
oscillator in Fig. 4, with p = 3 generalized eigenvalues 

 1 2 2( ) ( ), ( ) ( ), ( ) ( )V V V j V V j V        . The extension 

to the case p>3 is straightforward. At t = t0 = 0, the set of initial 
conditions is ( (0), (0), (0))V V V  , as corresponds to a third order 

system. Denoting V0 = V(0), in the vicinity of the initial 
conditions, the amplitude variable is approached by: 

 
     

1 0

2 0 0 2 0 0

( )
0 1 0

( ) ( ) ( ) ( )
2 0 3 0

( ) ( ) 1

( ) 1 ( ) 1

V t

V j V t V j V t

V t V C V e

C V e C V e



    

   

  
  (29) 

which fulfills the zero-order continuity condition V(t=0) = V0 , 
and the coefficients 0( )iC V  are calculated by applying the 

continuity conditions up to the p-th order at t=t0=0. In the 
neighborhood of the unstable solution Vu, the solution can be 
approached with the following linear differential equation: 

0 0 1 2 3( ) 0h V V hV h V h V          (30) 

where ih  are the coefficients of the characteristic polynomial 

whose roots are 0( )V . Expressing 0 uV V   , at t=0 the 

following equation is fulfilled: 

0 1 2 3

0 1 2
3

(0) (0) (0) 0

1
(0) (0) (0)

h hV h V h V

V h hV h V
h





   

      

  

     (31) 

Then, the coefficients 0( )iC V  can be obtained, in a 

straightforward manner, from: 

1
0 0 0 0 0 0

1 0 2 0 3 0
2 2 2

0 0 1 0 2 0 3 0
3 3 3

1 0 2 0 3 0

1 0

0 2 0

3 0

( ) ( ) ( ) ( )

(0) ( ) ( ) ( )

(0) ,   ( ) ( ) ( ) ( ) ,   

(0) ( ) ( ) ( )

( )

( ) ( )

( )

V V C V C V V V

V V V V

V V V V V V

V V V V

C V

C V C V

C V

  
  
  

    

   
        

     
 
   
 
 

 


 



 (32) 

The time interval 1 1 0t tt    for which (29) is assumed to 

be valid is determined by imposing an upper boundary to the 
increment undergone by the eigenvalue magnitudes. This is 
given by: 

1 0( ) ( ) ,     1,..3i i iV V i       (33) 

where V1 = V(t1) and i  is a small increment (e.g. 

00.1 ( )i i V  ). Once the interval 1t  has been established, 

the vector of derivatives 1V  is obtained from: 

1 0 1 2 0 1

3 0 1

( ) ( )1
1 0 1 0 2 0 2 0

( )
3 0 3 0

( ) ( ) ( ) ( )

( ) ( ) ,    i 1, 2,3

i
V t V tk k

i

V tk

d V
V C V e V C V e

dt

V C V e

 



 



 



  


(34) 

These derivatives are then used to calculate the coefficients 

of the next interval, through 1
1 1 1( ) )(C VV V    . This recursive 

procedure is applied to obtain the complete trajectory, using: 

 
     

1

2 1 2 1

( )
1 1

( ) ( ) ( ) ( )
2 3

( ) 1

( ) 1 ( ) 1

k

k k k k k k

V t
k k k

V j V t V j V t
k k

V V C V e

C V e C V e



    



   

   

  
 

 (35) 

In order to fulfill condition 1( ) ( )i k i k iV V      at each 

interval, it is convenient to use a variable time step kt . 

However, for simplicity, in this example, the criterion 
2 / ( ) 0.3 nsk kt V     has been chosen, which as detailed in 

the following fulfils 1( ) ( )i k i k iV V     . According to Fig. 

6(a) and 6(b), the fastest amplitude variation corresponds to 

1.72FV   V, for which 6
2 ( ) 278 10FV    s-1. Then, the time 

step is chosen so that, in the subinterval of fastest variation, the 

term 2 ( )1 0.1FV te   , which keeps the growth of the fastest 
term in expression (35) for each interval under 10%. Verifying 
that 2 / ( )k kt V    fulfills this condition is straightforward. 

The order of kt  is similar to the time step used in the circuit-

level envelope-transient simulation presented later in this 
section. 

The variation of the amplitude V through the transient 
trajectory, calculated from (35), has been represented in Fig. 
7(a), as well as the magnitude of the term 

 2 1( ) ( )
2( ) ( ) k k kV j V t

f k kU t C V e    
  , which gives rise to an 
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additional component at 1 2( )kf f V f   . In the resonant range 

of Fig. 6(b), fU   grows exponentially due to the positive value 

of the real part of the eigenvalues for that V interval. See the 
effect in Fig. 7(a), where the resonant range is indicated as R. R. 
Note that the initial value V has been set inside R. R. Beyond 
the resonant range, the real part of the complex-conjugate 
eigenvalues is negative, making this component decay. One 
interesting property of the LL method is that the effect of the 
generalized eigenvalues is fully determined by the amplitude V. 
It does not depend on the time value at which this amplitude is 
reached. 

The resonance effect detected in (35) has been validated with 
circuit-level envelope transient simulations using a two-tone 
basis, at f1 and f2. One must emphasize that, using a one-tone 
basis at f1, this circuit-level simulation is unable to capture this 
resonance, as will be shown in the next section. This is due to 
the large frequency difference f . The magnitude of the 

components at f1 and f2 is traced versus time in Fig. 7(a). As can 
be seen, they exhibit a good agreement with the new method. In 
fact, once the presence of  f2 has been detected, a circuit-level 
envelope transient analysis under two independent fundamental 
frequencies f1 and f2 (two-tone analysis) will provide, in 
general, a greater accuracy. Fig. 7(b) shows the full time 
domain waveform obtained from the harmonic components of 
the envelope-transient simulation, which evidences the 
resonance effects at the amplitude values predicted in Fig. 6(b) 
and Fig. 7(a). 

A relevant finding is the possibility to match the transient 
response from a sequence of pole-zero identifications versus the 
excitation amplitude V. As has been shown, the poles agree with 
the generalized eigenvalues obtained in the local linearization 
of the transient at the particular node amplitude V. From a 
practical viewpoint, in circuit-level HB analysis, this amplitude 
is forced with an AG. Due to the ideal bandpass filter 

( )AG    of this AG, its connection to the circuit has no 

impact on the poles obtained for each V.  
 

 
(a) 

 
(b) 

Fig. 7.  Dual Van der Pol-type oscillator. (a) Time evolution of the amplitude 
components 

1
( )fU t  and ( )fU t , corresponding to the frequencies 1f  and 

2 1f f f    , respectively. The trajectories approached by the LL method are 

compared with the results of a circuit-level two-tone envelope transient (ET) 
simulation, at the two fundamental frequencies 1f  and 2f . (b) Time-domain 

waveform obtained from the circuit-level envelope transient simulation. 

D. Nonlinear integration 

The nonlinear integration of equation (5), depending on a 
numerical reduced-order admittance function Y(V, ), requires 
a previous fitting of this function. This will be carried out by 
sweeping the excitation amplitude V and fitting, for each V, the 
real and imaginary parts of Y(V, ) with a quotient of 
polynomials at each V step. This fitting provides: 

1 0

1 0

( ) ( ) ( )
( , ) ( , / ) ,    

( ) ( ) ( )

( )

n
n

o m
m

o

c V s c V s c V
Y V Y V s j

d V s d V s d V

s j

 

 

  
  

  
 




(36) 

Once ( , )Y V   is represented as a quotient of polynomials, the 

derivation of the differential equation governing the transient is 
straightforward. The frequency  is expressed as  = o+Dt/j, 
where Dt is a time differentiator operator. This provides: 

1

1 1
1 0 1

( , / ) ( ) 0

( ) ( ) ( ) 0

o t

n

n n

Y V D j X t

d X dX
c V c V c V X

dtdt

   

   
 (37) 

The above equation is nonlinear in V and can be solved after 
time discretization by applying a standard algorithm, such as 
the backward-Euler rule [30].  

The method has been applied to the oscillator in Fig. 4. 
Results obtained through the integration of (37) have been 
superimposed in Fig. 8 and compared with circuit-level 
envelope transient simulation using a periodic basis at f1. Note 
that none of the two methods is able to predict the resonant 
component, which is due to the large frequency difference f. 
The same nonlinear integration has been tested in the FET-
based oscillator of Fig. 2(a). Again, as shown in Fig. 3(a) and 
Fig. 3(c), the results exhibit a very good agreement with those 
provided by circuit-level envelope-transient simulations. 
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Fig. 8. Dual Van der Pol oscillator. Comparison between circuit-level envelope 
transient simulation using a periodic basis and backward Euler integration of 
equation (37) 

V. VALIDATION WITH EXPERIMENTAL MEASUREMENTS 

In the following, the transient response of several oscillators, 
with qualitatively different behavior, will be analyzed. The aim 
is to evaluate of the generality of the method through its 
application to a variety of circuits. Experimental measurements 
will be used to validate the analysis results in the case of the 
practical FET-based oscillators.  

A. Oscillator based on two cross-coupled FET transistors 

The transient of the oscillator in Fig. 9, based on two cross-
coupled FET transistors [48] has been analyzed. The 
observation node q has been placed at the coupling network. 
The free-running steady-state oscillation is given by 1oV   V 

and 2.5of   GHz. The function ( , )VF V j   has been 

analyzed, and its magnitude is represented in Fig. 10(a), where 
a resonance at a frequency offset 700f   MHz can be noted. 

As can be seen in this figure, the effect of the resonance is more 
noticeable near the steady-state amplitude at 1oV   V. 

 

 
Fig. 9.  Schematic of the oscillator at 2.5 GHz, based on two cross-coupled FET 
transistors. The prototype is implemented on RO4003C substrate 
( 3.35, 32 )r h mil  . 

 

 
(a) 

 
(b) 

Fig. 10.  Transient stability analysis of the oscillator based on two cross-coupled 

FET transistors. (a) Magnitude of the function | ( , ) |VF V j   , showing a 

resonance at 720f   MHz. (b) Generalized eigenvalues. The pole-zero 

identification of the function ( , )VF V j   determines the presence of a dominant 

pair of complex-conjugate poles that yield an additional frequency component 
during the transient, whose value is given by the imaginary part of these poles 

( ) / 2 720V    MHz. 

 
Pole-zero identification has been applied to the function 

( , )VF V j  , and the dominant generalized eigenvalues are 

shown in Fig. 10(b). As in the previous case, there is a real pole 

1( )V  governing the amplitude transient trajectory and a pair 

of complex-conjugate poles 2,3 2( ) ( ) ( )V V j V    , yielding 

an additional frequency component at / 2 700    MHz. 
This result has been validated through an experimental 

characterization. In the measurement setup, one of the oscillator 
outputs is connected to a spectrum analyzer, for monitoring 
purposes, while the second output is connected to a Keysight 
Infiniium 90804A oscilloscope. The ON/OFF signal applied at 
the DDV  port of the oscillator corresponds to a square signal at 

1sqf   MHz (duty cycle 50%). In the experimental tests, 

frequencies in the range 1 kHz to 1 MHz were used with no 
significant changes in the results. This signal was generated by 
a TG1010A DDS function generator. In a previous step, the 
peak-to-peak voltage, and the dc offset, of the square signal are 
adjusted to suitable values in order to ensure a proper ON/OFF 
cycle. The AUX port of the function generator is connected to 
port-2 of the oscilloscope and this signal is used as a trigger for 



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 11

the measurement. The measured transient is shown in Fig. 11. 
The output signal ( )outv t  is extracted from the transistor drain 

through a directional coupler, so its steady-state amplitude 
value differs from the one at the observation node q. As can be 
observed, the transient exhibits an additional frequency 
component at 1/ 800af T   MHz. This component has been 

predicted by the dominant complex-conjugate generalized 
eigenvalues of the analysis in Fig. 10(b). In agreement with the 
resonance map of Fig. 10(a), the effect of this additional 
component is more noticeable near the steady state (higher 
difference between the waveform maxima). 
 

 
Fig. 11.  Measurement of the transient state of the oscillator based on two cross-
coupled FET transistors. The transient waveform of the output signal ( )outv t  

has been measured with a Keysight Infiniium 90804A oscilloscope, and it 
shows an additional frequency component at 1/ 800af T   MHz. As 

predicted by the resonance map of Fig. 10(a), the effect of this additional 
oscillation component is more noticeable near the steady state. 

B. Switched oscillator 

As shown in this subsection, the transient analysis method can 
also be applied to predict the response of switched oscillators. 
This will be illustrated through its application to the FET-based 
oscillator in Fig. 12(a), which is switched on and off with the 
varactor-bias voltage dV . Note that it is not possible to simulate 

this particular oscillator with circuit-level envelope transient, 
even with the aid of an auxiliary generator to set the initial 
condition. The first stage of the analysis is a HB simulation of 
the oscillator circuit versus the control voltage. The results are 
shown in Fig. 12(b), where the first harmonic amplitude oV  and 

the free-running oscillation frequency of  have been traced 

versus dV . As can be seen, as dV  increases the oscillation 

amplitude decreases, eventually becoming zero at a Hopf-type 
bifurcation point [42]. Beyond this point, the circuit does not 
oscillate. 
 

 
(a) 

 
(b) 

Fig. 12.  Switched oscillator. (a) Schematic of the FET-based oscillator, where 
the variables L and W represent the length and width of the circuit transmission 
lines. The prototype is implemented on RO4003C substrate 
( 3.35, 32 )r h mil   (b) First harmonic amplitude oV  and free-running 

frequency of  of the oscillatory solution traced versus the varactor-bias voltage 

dV . They have been calculated with circuit-level HB. 

 

Now, the ( )dV t  signal will be used to switch the oscillator on 

and off. In fact, to perform a realistic simulation, ( )dV t  will be 

given by a low-frequency square signal extracted from the 
measurement. This way, the non-idealities of this signal will be 
taken into account in the simulation. The evaluation of the 
function | ( , ) |VF V j   indicates that the oscillator transient is 

governed by a single real pole. The growth-rate function is 
calculated for each dV  value in the rectangular signal excursion, 

obtaining the bivariate function ( , )dg V V  represented in Fig. 

13(a). For each dV , the functions 0 ( , )da V V  and 1( , )da V V  in 

(7) are evaluated at the free-running frequency ( )o dV , 

obtained from the HB simulation of Fig. 12(b). 
In Fig. 13(a), the oscillator response to the time-varying signal 
( )dV t  has been represented in the phase-space ( , , )dV V V . The 

trajectory has been calculated by numerically solving the non-
autonomous ODE: 

  , ( )dV g V V t   (38) 
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All system trajectories lie in the surface determined by the 
bivariate function ( , )dg V V . In Fig. 13(b), the first harmonic 

amplitude ( )V t  resulting from the ODE (38) is compared with 

the measurement in a Keysight Infiniium 90804A oscilloscope. 
The measured time-varying voltage ( )dV t  is superimposed in 

the same figure. As can be seen in Fig. 13(b), the ODE (38)
predicts accurately the asymptotic response of the VCO to a 
step-shaped modulation signal. For this reason, the proposed 
ODE can be a good alternative in oscillator circuits where the 
envelope-transient technique is unable to converge. 
 

 
(a) 

 
(b) 

Fig. 13.  Switched oscillator. (a) Bivariate function ( , )fg V V . All the 

trajectories in the phase space ( , , )dV V V  lie in the surface determined by this 

function. (b) Oscillator response to a modulated bias voltage ( )dV t . The time 

evolution of the first harmonic amplitude ( )V t  is calculated from the ODE (38) 

and compared with the measurement in a Keysight Infiniium 90804A 
oscilloscope. The measured time-varying voltage ( )dV t  is superimposed on the 

same figure. The signal ( )dV t  has been imported from the experimental source 

TG1010A DDS. 

VI. CONCLUSION 

A new method for the understanding of the mechanisms that 
govern the oscillator transient dynamics has been presented. It 
is based on the application of the implicit-function theorem to 

the harmonic-balance system to obtain a nonlinear admittance 
function from a given observation node. The resulting reduced-
order envelope-domain equation can be solved with a local-
linearization method or, more accurately, with a nonlinear 
iterative technique. In the first case, a sequence of linear 
ordinary differential equations is derived, which depend on the 
excitation amplitude and describe the system dynamics in the 
vicinity of each point of the transient amplitude trajectory. 
Departing from this sequence of equations, a set of generalized 
eigenvalues is calculated, which govern the acceleration or 
deceleration of the oscillation growth and are responsible for 
the onset and extinction of spurious oscillations. As an 
additional contribution, the concept of escape time, or the time 
required by the transient trajectory to go through a given 
interval of amplitude values, has also been introduced.  Various 
applications of the new model have been presented, including a 
dual-frequency oscillator and a switched oscillator. The results 
in all the practical FET-based oscillator have been successfully 
compared with experimental measurements. 
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