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Abstract. In this work, we apply the local Wendland radial basis function (RBF)
for solving the time-dependent multi dimensional option pricing nonlinear PDEs.
Firstly, cross derivative terms of the PDE are removed with a change of spatial vari-
ables based in LDLT factorization of the diffusion matrix. Then, it is discussed that
the valuation of a multi-asset option up to 4D can be computed using a modified
shape parameter algorithm. In fact, several experiments containing of three and
four assets are worked out showing that the results of the presented method are in
good agreement with the literature and could be much more accurate once the shape
parameter is chosen carefully.
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1 Introduction

Multi-dimensional option pricing problems are frequent in the industry related
to real markets. After the 2008 financial crisis such as regulation, fiscal issues,
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capitalization costs and currencies’ volatilities, the number of exotic options
sold has reduced. Nonetheless, the demand of competitive and reliable nu-
merical methods for solving multidimensional problems (arising from related
models) continues claiming the attention of academia.

Monte Carlo methods are popular in spite of their slow convergence because
the computational cost scales linearly with the number of underlying variables,
[8, chapter 8] and [18, chapter 12]. Fourier expansion-based methods do not
suffer the so-called “curse” of dimensionality, but they require that the point
characteristic function of the underlying asset variables be analytic, see e.g. [10].
Finite difference methods [23, chapter 7] and binomial tree methods [2] have
better convergence rates but the computational cost and their manageabilities
are not so convenient for high dimensions. Several techniques, including Monte
Carlo, Fourier, finite difference and radial basis function methods have been
used in [24].

Meshfree collocation methods and semi-discretization schemes are particu-
larly convenient for the treatment of multidimensional partial differential equa-
tions (PDEs) because one reduces the algebraic complexity coming from the
approximation of the partial derivatives and provide flexibility with respect to
the geometry of the computational domain [5]. In addition, in terms of PDE
solvers for high-dimensional PDEs, one may refer to [28].

To be more precise, meshfree RBF methods are of interest for solving PDEs
due to alternative convergence properties [5, chapter 2], implementation advan-
tages, etc. Since 1997 in [12] several authors started applying RBF methods to
European-style financial problems and later this approach has found a wider
use for valuation of options with early-exercise features, see e.g. [3, 9]. Au-
thors in [19] presented an improved RBF method that is 20 times faster than
an adaptive finite difference method in one and two space dimensions based
several numerical experiments only.

The meshfree RBF method for the solution of PDEs is similar to the spectral
method of lines approach, i.e., we approximate the solution U corresponding
to M spatial variables y = (y1, . . . , yM ) and time τ as follows:

U(y, τ) =

N∑
j=1

αj(τ)φ
(∥∥y − yj

∥∥) ,
where time and space have been decoupled. Here centers yj form a discretiza-
tion of the domain. The coefficients αj(τ) have to be determined by impos-
ing that U(y, τ) satisfies the equation at the centers yj . The radial func-
tion φ (‖·‖) determines the approximation space as the span of the functions
φ
(∥∥· − y1

∥∥) , . . . , φ (∥∥· − yN
∥∥).

RBFs are divided into two main categories of global ones such as multi-
quadric (MQ), inverse multiquadric (IMQ) and Gaussian functions; and local
RBFs such as Wendland function, see for more [5, chapter 11]. The advan-
tage of local RBFs in contrast to the global RBFs is that they result in sparse
evaluation (interpolation) matrices which could be stored and handled much
faster than the corresponding dense ones resulted from a global RBF. More-
over, the local RBFs in contrast to the global RBFs are less sensitive to the
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choice of the shape parameter. However, the global RBFs are still the main
choice when a very sharp shape parameter is selected, which is practically hard
to find (specially for high dimensional time-dependent PDE problems).

The most useful RBF with localized feature which lead to sparse symmetric
positive definite matrices and a quicker interpolation process is Wendland’s
function [25]. Herein, the local Wendland RBF [27] is denoted by φM,k, where
M and k stand for the dimension and the smoothness. Several special cases of
the Wendland functions as well as some global RBFs are given in Table 1.

An application of Wendland RBF for pricing a class of option pricing prob-
lems via the approach of partition of unity up to two dimensions has recently
been discussed in [22]. Other modifications of RBF meshfree methods such as
RBF-FD can be found in [7].

The aim of this paper is to introduce in the RBF method, some strategies to
improve the competitiveness allowing the resolution of four spatial dimensional
option pricing problems unlike the recent pessimistic forecast of prestigious
practitioners of the method [13, p. 160]. In fact in Section 2, we transform the
original multi-asset American option problems [23]:

∂V

∂τ
=

1

2

M∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si ∂Sj
+

M∑
i=1

(r − qi)Si
∂V

∂Si
− rV + F (V ), (1.1)

by eliminating the cross derivative terms that reduces the computational cost
and eliminate numerical instabilities. Here τ , V , Si, qi, r, σi ρi,j denote the
maturity, the value of the option price, the i-th asset, the constant dividend
yield of the i-th asset, risk-free interest rate, i-th volatility, and the correla-
tion parameter between the i-th and the j-th assets, respectively. Note that
V (S, τ) = V (S1, . . . , SM , τ), τ = T − t, ρii = 1, ρij = ρji, i 6= j, and |ρij | ≤ 1.

In addition in (1.1), the initial condition for a basket put option is the payoff
function given by

V (S, 0) =
(
E −

M∑
i=1

ωiSi

)+
, (1.2)

where E is the strike price and ωi is the positive weight of the corresponding
i-th asset in the basket.

Note that the nonlinear term F in (1.1) is the penalty term applied by the
idea of penalty method [29] in order to make the original option pricing PDE
with free boundaries into a nonlinear PDE for American options. One of the
ways for introducing the penalty term is:

F (V ) = λ
(
V (S, 0)− V (S, τ)

)+
,

where λ is the non-negative penalty parameter.
Lately in [4], it is discussed that one can transform (1.1) into a multi-

dimensional PDE with constant coefficients using the following dimensionless
logarithmic transformation

xi =
1

σi
ln
Si
E
, i = 1, . . . ,M, W (x, τ) =

V (S, τ)

E
, (1.3)

Math. Model. Anal., 23(1):117–138, 2018.
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where x = [x1, . . . , xM ]T , and obtain

∂W

∂τ
=

1

2

M∑
i=1,j=1

ρij
∂2W

∂xi∂xj
+

M∑
i=1

δi
∂W

∂xi
− rW +

1

E
F (EW ),

xi ∈ R, i = 1, . . . ,M, 0 < τ ≤ T,

(1.4)

while δi = (r − qi − σ2
i /2)/σi.

In [4], it has been discussed that the LDLT factorization of the symmetric
positive semidefinite matrix R = (ρij) allows to remove the cross derivative
terms. In general, for the M -dimensional problem, we can remove the following
number of terms 1

2M(M−1) and subsequently avoid such a number of matrices
in the process of setting up meshfree RBF methods. This clearly reduces the
computational load and time for executing meshfree RBF methods for solving
high-dimensional option pricing problems.

By using the positive semi-definitive property of the correlation matrix R =
(ρij) and taking advantage of a diagonal pivoting strategy, we can apply the
stable LDLT factorization, where L is a unit lower triangular matrix and D is
a diagonal matrix with positive diagonal elements Dii, such that

PRPT = LDLT , (1.5)

wherein P is a permutation matrix. By using the linear transformation

y = [y1, . . . , yM ]T = Cx, U(y, τ) = W (x, τ), (1.6)

where C = (cij)1≤i,j≤M = L−1P , the equation (1.4) becomes

∂U

∂τ
=

1

2

M∑
i=1

Dii
∂2U

∂y2i
+

M∑
i=1

( M∑
j=1

δjcij

)∂U
∂yi
− rU +

1

E
F (EU), (1.7)

wherein the cross derivative terms have been removed. Under transformations
(1.3) and (1.6) the initial condition (1.2) takes the following form

U(y, 0) =

(
1−

M∑
i=1

ωie
σixi

)+

,

where x = [x1, ..., xM ]T = C−1y = PTLy.
A modification of Hardy’s method [11] for the choice of the shape parameter

using Wendland multidimensional RBF is proposed in Section 3. In Sections 4
and 5, we present a constructive semi-discretization procedure for obtaining the
underlying time-dependent system of ordinary differential equations (ODEs).
The approximate solution of the ODEs systems is obtained by using the expo-
nential time integration method together with Simpson’s quadrature formula
for matrix exponential integration. Section 6 illustrates with numerical ex-
amples the improvements including comparisons with the existing competitive
methods.
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Table 1. Several common RBFs. The shape parameter c controls the flatness and d is the
Euclidean distance, i.e., d = ‖·‖2

Name Definition Degree of smoothness

Gaussian exp (−( d
c

)2) C∞

Multiquadric
√

1 + ( d
c

)2 C∞

Inverse Multiquadric 1√
1+( d

c
)2

C∞

Inverse quadratic 1

1+( d
c
)2

C∞

Matérn type 0 exp (−( d
c

)) C0

Matérn type 2 exp (−( d
c

))(1 + d
c

) C2

Matérn type 4 exp (−( d
c

))(3 + 3 d
c

+ ( d
c

)2) C4

Cubic | d
c
|3 Piecewise

Thin plate spline ( d
c

)2 log ( d
c

) Piecewise

Wendland type φ3,1
(

1− d
c

)4
+

(
1 + 4 d

c

)
C2 for M ≤ 3

Wendland type φ3,2
(

1− d
c

)6
+

(
3 + 18 d

c
+ 35( d

c
)2
)

C4 for M ≤ 3

Wendland type φ5,2
(

1− d
c

)7
+

(
3 + 21 d

c
+ 48( d

c
)2
)

C4 for M ≤ 5

2 Cross derivative elimination

It is well known that the existence of the cross derivative terms in the PDEs
could cause several drawbacks such as instability and oscillation in the process
of finding their solutions. Apart from this point of view, the presence of such
terms will increase the computational effort and time for solving these PDEs.
To discuss further, in the meshfree methods, each term in a PDE must be
represented by a matrix whose entries should be calculated element-wise. As
a result, a PDE with fewer terms and specially without cross derivative terms
is subject to faster implementation in terms of meshfree RBF methodology.
There are several approaches to remove the cross derivative terms including
the algebraic and factorization ways [20].

In 2008 [15], Larsson et al. investigated several transformations on the
multi-dimensional European Black-Scholes model to transform into a multidi-
mensional parabolic time-dependent heat equation (without any mixed deriva-
tive terms), and then solve the transformed PDE with reasonable reduction of
computational load in two and three dimensional spaces.

The present procedure of removing cross-derivative terms described in (1.3)–
(1.7) is efficient and stable, see [4] and the references therein. In what follows
we extend the results of [4] by furnishing new simplified closed forms of the
coefficients in the fully transform case. This would be the contribution of this
section.

For higher-dimensional problems (M > 3) it is not a trivial task to obtain
transformation matrix C. This motivates us to search a possibility to obtain
the expression of the entries cij in terms of the data in the standard case of a
positive definite correlation matrix when no permutation of rows is needed and
consequently C = L−1.

Math. Model. Anal., 23(1):117–138, 2018.
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Let us consider the LU factorization of the (M − 1)× (M − 1) correlation
matrix LM−1UM−1 = RM−1 while

LM =

(
LM−1 0
αM 1

)
,

with αM = [ρM,1, . . . , ρM,M−1]U−1M−1, [14, p. 76].
By computing the inverse of the block matrix LM , one gets

CM = L−1M =

(
L−1M−1 0

−αML−1M−1 1

)
.

Then, we can write −αML−1M−1 = −[ρM,1, . . . , ρM,M−1]U−1M−1L
−1
M−1 and equiv-

alently −αML−1M−1 = −[ρM,1, . . . , ρM,M−1]R−1M−1. We obtain

(CM )M,j = −
M−1∑
k=1

aM,k[(R−1M−1)k,j ] =

M∑
k=1

aM,k(−1)k+j+1Mjk(RM−1)

∆M−1
,

where 1 ≤ j ≤ M − 1, ∆M−1 = det(RM−1) and Mj,k(A) denotes the com-
plementary minor of the element aj,k of matrix A. Using a development of
a determinant with elements and co-factors of a row, we have (CM )M,j =

(−1)M+jMj,M (RM )/∆M−1 and by construction, the non zero entries of the
unit lower triangular matrix CM take the form

cij = (−1)i+jMj,i(Ri)/∆i−1, cii = 1, 1 ≤ j < i ≤M. (2.1)

Moreover, it is easy to show that the elements Dii of the diagonal matrix D
are

D11 = 1, Dii = ∆i/∆i−1, 2 ≤ i ≤M, (2.2)

where Ri is the i × i sub-matrix of the correlation matrix R consisting of the
first i-th rows and columns, Mj,i(Ri) is a (j, i) complementary minor of the
matrix Ri, and ∆i is the leading principal minor of order i of matrix R.

Several examples up to 4D have been included in Section 6. For this reason,
now only the change of variables allowing the elimination of the cross derivative
terms and the resulting PDE is explicitly presented for the four-asset case as
follows. Let us consider the positive definite correlation matrix R = R4 =
(ρi,j)4×4, and consider the transformation matrix C = (cij)4×4 whose nonzero
elements are given by (2.1). After logarithmic change (1.3) together with linear
transformations (1.6), the new spatial variables and the unknown take the form

y1 =
1

σ1
ln
S1

E
, y2 =

c12
σ1

ln
S1

E
+

1

σ2
ln
S2

E
,

y3 =
c31
σ1

ln
S1

E
+
c32
σ2

ln
S2

E
+

1

σ3
ln
S3

E
,

y4 =
c41
σ1

ln
S1

E
+
c42
σ2

ln
S2

E
+
c43
σ3

ln
S3

E
+

1

σ4
ln
S4

E
,

U(y1, y2, y3, y4, τ) =
1

E
V (S1, S2, S3, S4, τ).

(2.3)



A Local Radial Basis Function Method 123

With respect to the new variables (2.3), the transformed PDE results

∂U

∂τ
=

1

2

∂2U

∂y21
+

1

2
D22

∂2U

∂y22
+

1

2
D33

∂2U

∂y23
+

1

2
D44

∂2U

∂y24

+ δ1
∂U

∂y1
+ [δ2 + c21δ1]

∂U

∂y2
+ [δ1c31 + δ2c32 + δ3]

∂U

∂y3

+ [δ1c41 + δ2c42 + δ3c43 + δ4]
∂U

∂y4
− rU,

(2.4)

where Dii are defined by (2.2). This formulation has six terms fewer than the
original form (1.1) in the case of 4D problem and it is with constant coefficients.
This advantage helps us to apply the meshfree RBF methods in solving the four
dimensional option pricing problem with RBF meshfree methods.

Note that for the cases M = 2 and M = 3, both changes of variables
and transformed PDEs are obtained from (2.3) and (2.4) by considering only
variables y1 and y2 or y1, y2 and y3, respectively.

3 A modification of Hardy’s technique for the multi-asset
case

Since the solution of the PDE (1.1) should be at least twice differentiable in
space, the general Wendland’s formula for any number of spatial variables M
takes the following form [25]

φM,1

(
d

c

)
=

(
1− d

c

)l
+

(
1 +

d

c
(l)

)
,

where l = [M/2] + 3, d is the distance between two supporting nodes (i.e., the
radius), (1− d/c)+ = max (1− d/c, 0), c stands for the shape parameter that
should be chosen carefully and [·] denotes the floor function.

In the case of one spatial variable x ∈ R, Wendland’s function can be written
as follows:

φ1,1

(
d

c

)
=

(
1− d

c

)3

+

(
1 + 3

d

c

)
. (3.1)

Furthermore, the Wendland functions of the smoothness C4 which provide
better accuracies in solving practical problems can be written as follows:

φM,2

(
d

c

)
=

(
1− d

c

)l+2

+

(
3 + (3l + 6)

d

c
+ (l2 + 4l + 3)

(
d

c

)2
)
, (3.2)

where l = [M/2]+3. It is known [5, chapters 16 and 17] that there is a connec-
tion between RBF interpolation and polynomial interpolation and because of
that the RBF interpolation also suffers from a phenomenon which is similar to
the famous Runge phenomenon for polynomial interpolation, and accordingly
a good choice of the shape parameter can alleviate this effect.

Technically speaking, the choice of the shape parameter plays an important
role in the accuracy and stability of the mesh-free RBF-type methods [6, 17].

Math. Model. Anal., 23(1):117–138, 2018.
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The problem of decreased stability as the shape parameter increases is well
known. This is important because highest accuracy is often found at some
large shape parameter, which may be in an unstable region. This relation
between accuracy and stability is occasionally called [5, p. 138] as the trade-off
principle.

In general, there are three main factors that could affect the optimal shape
parameter c for giving the most accurate results. These three factors are the
scale of supporting region, the number of supporting nodes, and the distribution
of supporting nodes.

The flexibility and potential for improved accuracy offered by the shape
parameter must be enforced into the algorithms when employing the RBF
approach for solving PDEs.

It should be remarked that in case of choosing a shape parameter with trial-
and-error approach, this freedom is often viewed as a disadvantage since we are
forced to make a decision on the choice of the shape parameter randomly. The
technique of trial-and-error is mostly used for ”academic” examples [5, p. 142].
In many cases, the selection of an optimal shape parameter via trial and error
will end up being a rather subjective process. Due to this, applying the existing
algorithms for computing a good shape parameter or introducing a new one
according to the requirements of the PDE that we are solving is indispensable.

One of the earliest techniques in order to suggest a shape parameter was
proposed by Hardy in [11] and is given by

c = 0.815θ, θ =
1

N

N∑
i=1

θi, (3.3)

where θi is the distance of the i-th data point to its nearest neighbour.
Another technique which is efficient for 1D and 2D problems was proposed

by Rippa in [21]. This technique can be illustrated as follows. By fixing c and
for any ` = 1, . . . , N , we first compute

e` = |f(y`)− P [`]
f (y`)|,

wherein

P
[`]
f (y`) =

N−1∑
j=1

α
[`]
j ϕ

(
‖y − y[`]j ‖

)
.

Now, a good shape parameter can be deduced by minimizing the cost function,
viz, e = [e1, · · · , eN ]T , via ‖e‖. It is reminded that the whole of this procedure
was simplified by Rippa via proposing the following final formula:

e` = α`/P
−1
`` , (3.4)

where P is the interpolation matrix and α is the coefficient vector of the RBF
interpolation. In addition, the initial condition of the PDE, i.e., the payoff is
used as the vector in the construction of a good shape parameter. Note that in
this technique, the choice of the shape parameter also depends on the choice of
the input interval whereas the good value of the shape parameter is predicted
to be in that area.



A Local Radial Basis Function Method 125

For high-dimensional problems, the techniques which are mostly based on
the distance of the nodes, such as (3.3) are quicker rather than methods based
on matrix-inverse computation. In order to propose a new technique for high-
dimensional problems, we can apply a modification of the Hardy’s technique
(3.3) in finding a good shape parameter for the M dimensional multi-asset
option pricing problem in what follows:

c = M(0.815θ). (3.5)

The technique (3.5) extends (3.3) and can consider more centers in the RBF
schemes for high dimensions.

To justify the reason of such a proposed variant of (3.3), it should be re-
minded that the local Wendanld RBF results in sparse interpolation matrices,
but it does not possess an exponential rate of convergence in like the global
RBFs which possessed dense ill-conditioned matrices. In between, the main ef-
fort is to choose the shape parameter to get both benefits as much as possible,
i.e., sparsity of the matrices and higher rate of convergence. Hence, the fac-
tor M , which arises from the dimension problem is multiplied to the Hardy’s
shape parameter. Based on this, more supporting nodes are involved in the
process of filling the interpolation matrices which would cause in higher rate of
convergence speed while the whole interpolation matrix is still sparse.

4 Application for one asset options

In the case of one asset, the option price is the solution of the following well-
known PDE problem for S > 0, 0 < τ ≤ T :

∂V

∂τ
=
σ2

2
S2 ∂

2V

∂S2
+ (r − q)S ∂V

∂S
− rV + λ (V (S, 0)− V (S, τ))

+
, (4.1)

where λ is the penalty parameter. Note that the case λ = 0 corresponds to
European option, while λ � 1 leads to American option. Here, the initial
condition is defined by the payoff function: V (S, 0) = (E − S)+.

Let us consider the dimensionless transformation x = ln S
E , U(x, τ) =

V (S,τ)
E . Then the problem (4.1) takes the following form:

∂U

∂τ
=
σ2

2

∂2U

∂x2
+

(
r − q − σ2

2

)
∂U

∂x
− rU + λ (U(x, 0)− U(x, τ))

+
, (4.2)

U(x, 0) = (1− ex)+.

Problem (4.2) can now be solved by using the Wendland RBF approach.
Let us choose N centers x1, x2, . . . , xN in some fixed domain [xmin, xmax],

not necessary uniformly distributed, while the numerical solution at these
points is denoted by uj(τ), 1 ≤ j ≤ N . All N values form a vector solution
u(τ) = [u1(τ), . . . , uN (τ)]T . Let pj(x) be the function defined by

pj(x) = φ1,1

(
|x− xj |

c

)
Math. Model. Anal., 23(1):117–138, 2018.
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and Pij = pj(x
i), 1 ≤ i, j ≤ N . From (3.1) one gets

Pij =

(
1− |xi − xj |

c

)3

+

(
1 + 3

|xi − xj |
c

)
≥ 0 (4.3)

and P = (Pij)N×N is the so-called interpolation matrix. Applying RBF
method, we assumed that solution of (4.2) is approximated by

u(x, τ) =

N∑
j=1

αj(τ)pj(x). (4.4)

Let P ′ij and P ′′ij denote the first and second derivatives of Pj(x) at point x = xi

respectively. From (3.1) one gets

P ′ij = −12

c2

(
1− |xi − xj |

c

)2

+

(xi − xj), (4.5)

P ′′ij = −12

c2

(
1− |xi − xj |

c

)
+

(
1− 3

|xi − xj |
c

)
. (4.6)

Matrices P ′ and P ′′ are defined by

P ′ = (P ′ij)N×N , P ′′ = (P ′′ij)N×N . (4.7)

From (4.2), (4.4)–(4.7), one gets the system of ODEs

du(τ)

dτ
= ΦP−1u(τ) + λ (u(0)− u(τ))

+
, (4.8)

where Φ ∈ RN×N is the following matrix

Φ =
σ2

2
P ′′ +

(
r − q − σ2

2

)
P ′ − rP

and vector of unknown coefficients α(τ) = [α1(τ), . . . , αN (τ)]T has been elimi-
nated by using u(τ) = Pα(τ).

In this work and just like [5, p. 114] in order to avoid any difficulties with
the computation of ill-conditioned matrices, we use the pseudo-inverse known
as Moore-Penrose inverse in our implementations.

From (4.3), (4.5) and (4.6) it follows that matrices P and P ′′ are symmetric,
Toeplitz and Hermitian, while P ′ is skew-symmetric. Moreover, since entries
of P are non-negative from (4.3), so P−1 is an M -matrix.

System (4.8) can be solved by exponential time integration. Let us denote
τn = n∆τ , where ∆τ = T

Nτ
, 0 ≤ n ≤ Nτ and Nτ is the given number of time

steps. Then, the solution on the next time level can be calculated as follows:

u(τn+1) = eΦP
−1∆τu(τn) + λ

∫ ∆τ

0

eΦP
−1s
(
u(0)− u(τn+1 − s)

)+
ds.
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Assuming the first order approximation u(τn+1 − s) is approximated by u(τn)
for 0 ≤ s ≤ ∆τ . We apply the Simpson’s rule for the numerical evaluation of
the integral using∫ ∆τ

0

eAsds ' ϕ(A,∆τ) =
∆τ

6

(
I + 4eA

∆τ
2 + eA∆τ

)
,

where the coefficient matrix is A = ΦP−1 and I is the N ×N identity matrix.
Finally, by denoting u(τn) = un, the numerical scheme for the solution of the
problem (4.2) is given by:

un+1 = eA∆τun +∆τλϕ(A,∆τ)
(
u0 − un

)+
. (4.9)

5 Application for the multi-asset case

For the multi-asset case, first we apply the transformation (1.5) in order to
eliminate the cross derivative terms to obtain (1.7). In the truncated numerical
domain Ω ⊂ RM we choose N nodes yi = (yi1, . . . , y

i
M ), i = 1, . . . , N . Then

the Eucledean distance dij between two nodes yi and yj is calculated by

dij = dji =
∥∥yi − yj

∥∥ =

√√√√ M∑
m=1

(
yim − y

j
m

)2
.

Here the numerical solution at center j is denoted by uj(τ) and the vec-
tor solution is u(τ) = [u1(τ), . . . , uN (τ)]T as in the 1D-case. Let pj(y) =

φM,2

(
‖y−yj‖

c

)
, and denote Pij = pj(y

i), 1 ≤ i, j ≤ N . From (3.2) one gets

Pij =
(

1− dij
c

)l+2

+

[
(l2 + 4l + 3)

d2ij
c2

+ (3l + 6)
dij
c

+ 3
]
,

where P = (Pij)N×N is the interpolation matrix. Applying RBF method, we

assume that solution of (1.7) is approximated by u(y, τ) =
∑N
j=1 αj(τ)pj(y).

Let (P ′m)ij and (P ′′m)ij denote the first and second partial derivative of pj(y)
with respect to ym at the point y = yi, respectively. From (3.2) one gets

(P ′m)ij =
∂pj
∂ym

(yi) = − (l+3)(l+4)

c2
(yim−yjm)

(
1−dij

c

)l+1

+

(
(l + 1)

dij
c

+ 1
)
,

(P ′′m)ij =
∂2pj
∂(ym)2

(yi) = − (l + 3)(l + 4)

c2

(
1− dij

c

)l
+

×
((

1− dij
c

)
+

(
(l + 1)

dij
c

+ 1
)
− (yim − yjm)2

c2
(l + 1)(l + 2)

)
.

For the sake of obtaining better accuracies as will be shown by numerical
experiments, we use the φ5,2 for higher dimensions up to 4D. The formulation
of φ5,2 was given in Table 1. Similarly, the matrices P and P ′′m are symmetry
while P ′m is skew-symmetry.
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By denoting A = ΦP−1, where

Φ =
1

2

M∑
m=1

DmmP
′′
m +

M∑
m=1

(
M∑
l=1

δlcml

)
P ′m − rP

and un = u(n∆τ), where ∆τ = T
Nτ

, 0 ≤ n ≤ Nτ for a given number of time
steps Nτ , then the numerical solution can be found similarly by (4.9).

Table 2. Several notations used in the paper and their descriptions based on the compu-
tation of the shape parameter.

Notation Description

VR(S∗, T ) Price using Wendland scheme
with (3.4)

VH(S∗, T ) Price using Wendland scheme
with (3.3)

VMH(S∗, T ) Price using Wendland scheme
with (3.5)

VWTE(S∗, T ) Price using Wendland scheme
with trail-and-error

VG(S∗, T ) Price using Gaussian scheme
with guessing

VGTE(S∗, T ) Price using Gaussian scheme
with trail-and-error

VFD(E)(S
∗, T ) Price using FD with equidis-

tant grid [16]
VFD(NE)(S

∗, T ) Price using FD with non-
equidistant grid [16]

VKM (S∗, T ) Price using FD with equidis-
tant grid [26]

SizeFD(E) = N = 23n Size of the equidistant grid
with FD for 3D

SizeFD(NE3) = N = 16(2n)× 4(2n)× 4(2n) Size of the non-equidistant grid
with FD for 3D

SizeFD(NE4) = N = 16(2n)× 4(2n)× 4(2n)×
4(2n)

Size of the non-equidistant grid
with FD for 4D

6 Computational experiments

In this section, the RBF strategy is employed for solving high-dimensional op-
tion pricing problems by constructing the corresponding semi-discretized sys-
tems of ODEs.

We compare the results of the proposed Wendland RBF approach with com-
petitive existing alternative methods up to 4D. It is also required to remark that
most of the existing numerical reports in the literature for three assets or more
are mostly based on the parallelization technique of sparse grid discretization,
while our approach is quite direct and without any parallelization. This means
that the computation of our new modified RBF schemes with a good shape
parameter and parallelization could even yield in much more quicker results.
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In this section, κP and κA stand for the condition numbers of the interpo-
lation and the coefficient matrices, respectively.

Here we check and illustrate that meshfree RBF methods are competitive
with respect to than the FD method for option pricing problems. They can
achieve equal or better accuracy by using fewer number of nodes in contrast
to the FD methods. In addition, it is confirmed by experiments that global
RBFs depend too much to the choice of a good shape parameter and they tend
not to provide useful numerical results since the evaluation of the coefficient
matrices become so ill-conditioned. On the contrary, the local Wendland RBF
is illustrated to be efficient for option pricing problem whenever the shape
parameter is chosen by (3.5).

Throughout the implementation of our meshfree RBF method, we do not
impose any boundaries and in fact we consider that the discretized equations
at the boundaries are the best approximations for nodes located on them. In
our simulations we apply an equidistant grid of nodes for the original coor-
dinates which after incorporating the transformations would not be anymore
equidistant in the final computational domain. In addition, several notations
which will be used later are provided in Table 2.

Example 1. In this experiment, we consider one-asset option with the following
parameters:

r = 0.1, σ = 0.2, T = 1, q = 0, E = 10. (6.1)

Results for the European and American put option pricing problems are re-
ported in Table 3.

Table 3. Numerical results in 1D case for European and American option.

N European (λ = 0) American (λ = 100)

RMSE min max RMSE min max

16 0.1567 -1.3298 -0.1 0.1595 -1.3359 -0.1949
31 0.0782 -6.0621 -0.1 0.0382 -6.0613 -0.2047
61 0.0211 -23.9371 -0.1 0.0092 -23.9379 -0.1915
121 0.0058 -95.9372 -0.1 0.0023 -95.9379 -0.1883
241 0.0018 -383.9373 -0.1 0.0005 -383.9379 -0.1875
481 0.0009 -1535.9 -0.1 0.0001 -1535.9 -0.1873

First of all, we consider the computational domain [−5, 1]× [0, T ] with the
spatial uniform grid and various step sizes h. The parameter c is chosen to be
1. We consider European (λ = 0) and American (λ = 100) options. In Table 3
the root mean square error (RMSE) and maximum and minimum of real part
of eigenvalues of matrix A are reported.

Note that for computing RMSE for European option, the exact solution is
used as the reference value. Since the exact solution of an American option
pricing problem is not known, as the reference value to the solution on the
refined grid (N = 961) is used. In both cases of European and American cases,
real parts of eigenvalues are strongly negative.
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Table 4. Accuracy of the solution and matrix properties depending on the parameter c.

c RMSE min max

0.25 1.2265 -96.0475 -0.05
0.5 0.0838 -95.9739 -0.05
1 0.0070 -95.9781 -0.05
1.5 0.0028 -95.9823 -0.05
2 0.0019 -95.9849 -0.05
4 0.0014 -96.0024 -0.05
12 0.0009 -95.9894 -0.05
12.5 0.0076 -95.9894 -0.05

In Table 4 the results for another interest rate (r = 0.05) with the remaining
parameters from (6.1) and λ = 0 (European option) are presented by varying
the shape parameter c. As it is seen from the results, the accuracy is increasing
with increasing c until certain value (c = 12). For higher values of c, the
accuracy becomes decreasing.

Example 2. The American basket put option of two assets is considered with
the following parameters and zero dividend yields [2]:

σ1 = 0.3, σ2 = 0.2, r = 0.05, ρ = 0.6, ω1 = 0.7, ω2 = 0.3, T = 1, E = 50.

As a reference value 3.9751 at the point S∗ = (50, 50), the result of the
binomial tree method of [2] is used. The numerical solution is presented in
Figure 1.
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Figure 1. Numerical solution of the 2D-basket put option.

Moreover, the comparison of C2 and C4 Wendland’s functions is presented
in Table 5 for the fixed time step ∆τ = 0.01 and several numbers N of centers,
denoted by n2 of the grid. Here, the good shape parameter for each set of
parameters is found by using Rippa’s algorithm. The CPU time in seconds is
presented to prove the efficiency of the proposed method. In the experiment,
the specifications of the PC are CPU Intel Core i5 (4th Gen) 4310U / 2.00GHz
× 4 , 8GB RAM.

It can be observed from Table 5 that although C2 functions are enough for
solving our option pricing problems but for the sake of having better accuracies
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with fewer number of nodes, we can apply C4 Wendland function for higher
dimensions.

Table 5. Results of comparisons for Example 2.

Size (n2) C2 C4

VR(S∗, T ) c CPU VR(S∗, T ) c CPU

25 3.69 34.04 0.31 3.72 28.84 0.41
100 3.97 44.18 0.71 3.97 34.26 0.76
400 3.98 54.78 4.89 3.98 38.76 4.92

The Rippa’s algorithm (3.4) works based on minimizing a function which
its output is a number but one of its argument is the computation of a Moore-
Penrose inverse. Due to this, for high-dimensional cases, or the cases at which
the total number of nodes are so many, e.g. more than 4000, the use of the
algorithm is useless due to failure by making the kernel shut down or further
tremendous computational time. As a result, using (3.4) for the 3D and 4D
cases is not recommended and we restrict the use of (3.4) up to the 2D time-
dependent PDEs. On the other hand, we focus on the use of Hardy’s algorithm
(3.3) and its modification (3.5) which provide quite good results for our high-
dimensional PDEs.

In the following experiments, we compare the results of different methods for
the 3D equation in terms of European call pricing. For computational purposes,
we consider the original computational domain to be [1, 3E]M . This domain
is discretized uniformly which will not be uniform in the final transformed
computational domain. In all further experiments, the specifications of the
PC are four Intel Xeon processors E5-4600 and a memory capacity of up to 1.5
terabytes via 48 memory sockets in a dense 2U rack system.

Table 6. Comparison of different schemes for valuing 3D option pricing problem at the
point (S∗, T ).

H and MH EFDM NEFDM

n Size VH VMH n Size V n Size V

12 1728 13.1973 13.1950 3 29 12.862 1 211 13.098
16 4096 13.2163 13.2211 4 212 13.150 2 214 13.207
20 8000 13.2277 13.2341 5 215 13.221 3 217 13.236
24 13824 13.2331 13.2398 6 218 13.239 4 220 13.243
28 21952 13.2358 13.2425 7 221 13.243

Example 3. We consider the European basket call option with no dividends and
the following parameters (see [16, p. 76])

σ1 = 0.3, σ2 = 0.35, σ3 = 0.4, r = 0.04, ρij = 0.5, ωi =
1

3
, T = 1, E = 100.

The results are presented in Table 6 comparing RBF method with Hardy (H)
and modified Hardy (MH) shape parameters and FD methods of [16, chapter 3]
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with equidistant (EFDM) and non equidistant grids (NEFDM). The reference
solution value is 13.245 computed by using accurate FFT technique [16, chapter
4]. The VFD(NE)(S

∗, T ) is based on the sparse grid solution mimics and no
stretching. The numerical solution in this case is brought forward in Figure 2
using the Wendland RBF semi-discretization and modified Hardy’s technique
by applying n = 12 uniform nodes in each dimension. The graph shows an
stable behavior of RBF application for pricing multi-dimensional problems.
The computational domain for this test is [1, 3E]× [1, 3E]× [1, 3E].

Table 7. Behavior of the Gaussian RBF for valuing 3D option pricing problem.

n Size (n3) κP κA VG(S∗, T )

5 125 54.6 19.8 5.4628
6 216 879.7 42.6 9.42048
7 343 17847.5 80.2 10.3154
8 512 470427.0 331.6 13.3034
9 729 1.62× 107 1797.7 12.3784
10 1000 7.73× 108 13936.8 13.485
11 1331 4.84× 1010 197295.0 12.7355
12 1728 3.66× 1012 1.73× 107 13.3328
13 2197 1.11× 1014 2.18× 109 −1.48× 106

14 2744 1.82× 1015 4.29× 1012 2.99× 1035

Table 7 contains the convergence history of the meshfree Gaussian RBF
with c = 1 for pricing the 3D option which clearly shows that ill-conditioning
result in the blowup and divergence of the numerical scheme.

Practically speaking, it could be observed from Tables 6–7 that meshfree
local Wendland RBF method with the choice of a good shape parameter ex-
tracted from (3.5) can converge to the true solution efficiently. Furthermore,
the total number of nodes for converging (the size of the semi-discretized sys-
tem of ODEs) is quite lower than the size of the systems obtained in the process
of applying finite difference schemes.

Table 8. Convergence history of the Gaussian RBF for valuing 3D option pricing problem
using trial and error.

n Size
(n3)

Optimal
shape
parameter

κP κA VGTE(S∗, T )

4 64 2.48433 1182.2 23.0 13.245
5 125 2.17781 237760.0 122.2 13.245
6 216 2.39314 4.97 × 108 20249.9 13.245

In Tables 8–9, we report the results of pricing the Example 3 in a very
efficient way by applying only a few nodes which resulted in a system of ODE
of low size with an optimal selection of the shape parameter. This can only be
derived by employing the trial-and-error strategy discussed in [5, p. 142].

To discuss further on the other aspects, when we discretize in the spatial
variables throughout this section we can check that all the eigenvalues have
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Table 9. Convergence history of the Wendland RBF for valuing 3D option pricing problem
using trial and error.

n Size
(n3)

Optimal
shape
parameter

κP κA VWTE(S∗, T )

3 27 13.1949 195.0 9.2 13.245
4 64 9.662 7130.2 55.4 12.666
5 125 6.87231 14326.6 92.3 13.245
6 216 138.361 2.01 × 1012 66765.2 13.245

negative real parts which ensure the minimum requirements for the stability of
the time-stepping ODE solvers.

The numerical solution is presented in Figure 2.

Figure 2. Numerical solution of the 3D-basket call option via modified Hardy’s technique
and Wendland RBF in Example 3.

Example 4. We test different methods for 3-dimensional American put option
using the following data with no dividends and the following parameters [1]

σ1 = 0.4, σ2 = 0.4, σi = 0.4, r = 0.05, ωi = 1, T = 1,

where the correlation matrix is

R =

 1.0 0.3 0.5
0.3 1.0 −0.3
0.5 −0.3 1.0

 ,

with the strike price E = 300.

The results are provided in Table 10 at S∗ = (100, 100, 100)T using the
reference solution 26.213 provided by a very refined grid [1]. Note also that we
considered λ = 1000 and ∆τ = 2.5 × 10−3 while the computational domains
for the Yousuf et al. method [26] is [0, 2.5E]× [0, 2.5E]× [0, 2.5E] and for the
proposed modified Wendland’s method is [1, 2.5E] × [1, 2.5E] × [1, 2.5E]. As
can be seen from the results, the RBF Wendland scheme using the modified
Hardy algorithm converge to the reference solution while the finite difference
technique of [26] requires more number of nodes.
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Table 10. Convergence history of different methods for valuing 3D American option pricing
problem.

n Size (n3) VMH(S∗, T ) VKM (S∗, T )

16 4096 25.656 24.425
18 5832 26.453 25.916
20 8000 26.427 26.465
22 10648 26.362 26.592
24 15552 26.234 26.421
26 17576 26.204 26.199

Example 5. In this experiment, we compare the results of applying the meshfree
Wendland function for solving the four-dimensional time-dependent PDE (2.4)
with the following inputs and zero dividend yields (see [16, p. 76])

σ1 = 0.3, σ2 = 0.35, σ3 = 0.4, σ4 = 0.45, r = 0.04, ωi =
1

4
, T = 1, E = 100,

while the correlation matrix is

R =


1 0.5 0.5 0.5

0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

 .

The results of comparisons in this case are given in Table 11 and we used
(3.5) for constructing the constant shape parameter to the reference solution
13.659. The computational domain is [1, 3E]4. Based on Table 11 numerous
nodes are required even with a non-equidistant nodal points in the parallelized
FD method to converge while with fewer number of nodes, we obtained good
results based on our proposed RBF procedure.

Table 11. Comparison of different schemes for valuing 4D option pricing problem at the
point (S∗, T ).

n Size (n4) VH(S∗, T ) VMH n SizeFD(NE4) VFD(NE)(S
∗, T )

6 1296 13.4084 13.4167 1 214 13.672
8 4096 13.6905 13.7458 2 218 13.662
10 10000 13.5984 13.6101 3 222 13.661
12 20736 13.6756 13.6834 4 226 13.659
14 38416 13.6437 13.6559

Results in Table 11 once again show that the meshfree local Wendland RBF
method along with the technique (3.5) is a good choice for solving even 4D
time-dependent option pricing problems. The numerical solution in this case
is brought forward in Figure 3 using the Wendland RBF semi-discretization
and modified Hardy’s technique by applying n = 7 uniform nodes in each
dimension. The graph shows an stable behavior of RBF application for pricing
multi-dimensional problems. In Figures 2–3, the main point is to show that the
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numerical solution even for the 3D and 4D cases do not have any spurious or
instability. In Figure 2 the solution of the 3D problem is plotted by fixing S1 = 1
and in Figure 3 the solution of the 4D problem is plotted for S1 = S2 = 1. In
both cases the current date τ = T = 1 is considered.

Figure 3. Numerical solution of the 4D case via modified Hardy’s technique and
Wendland RBF in Example 5.

Apart from the efficiency of the new RBF method, an equally important
matter is the accuracy of the proposed procedures for pricing options which
can simply be seen in the solved examples.

Once again by applying the strategy of trial-and-error for the Gaussian and
Wendland RBFs, we may obtain the optimal value of the shape parameter for
pricing 4D option pricing PDE as given in Tables 12–13. The numerical results
using this strategy are promising and fast due to considering a few nodes in each
direction. This suggests that our RBF implementations with a choice of a good
shape parameter can even be used for pricing high-dimensional time-dependent
PDEs, e.g., the 5D option pricing problems.

Table 12. Convergence history of the Gaussian RBF for valuing 4D option pricing problem
using trial and error.

n Size
(n4)

Optimal
shape
parameter

κP κA VGTE(S∗, T )

3 81 3.58671 1831.02 9.70313 13.659
4 256 2.25897 46819.2 28.2716 13.659
5 625 2.11515 3.06 × 107 909.193 13.659

Overall, it could be observed from the computational comparisons that the
new local Wendland RBF scheme along with the semi-discretization technique
and modified Hardy’s technique for the shape parameter is competitive for
pricing multi-dimensional time-dependent PDE problems.

7 Conclusions

The aim of this paper has been the construction of competitive high-dimensio-
nal RBF methods for valuation of nonlinear multiasset options problems. This
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Table 13. Convergence history of the Wendland RBF for valuing 4D option pricing problem
using trial and error.

n Size
(n4)

Optimal
shape
parameter

κP κA VWTE(S∗, T )

3 81 14.3889 1926.87 18.0281 13.659
4 256 15.4241 367008. 315.704 13.659
5 625 8.34669 136911. 202.963 13.659

has been performed by combining two strategies. First, by using an elimina-
tion of the cross-derivative terms, we have saved the computational cost and
amount of memory involved in the calculation of the RBF interpolation task.
And second, we have used the Wendland compact support functions allowing
stability when the dimension and the number of grid points grow.

As the accuracy of the RBF method is very sensible to the choice of the
shape parameter, we have suggested here an improvement of the Hardy’s tech-
nique (3.5) where the number of centers considered in the support domain
grows linearly with the dimension.

These advantages have been illustrated with numerical examples comparing
the results with other acknowledged existing methods for higher dimensions.
We can conclude that the proposed procedure can also be used for dimensions
higher than four when the choice of a good shape parameter is available.
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