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Abstract. Simultaneous Localization and Mapping is widespread in
both robotics and autonomous driving. This paper proposes a novel
method to identify changes in maps constructed by SLAM algorithms
without feature-to-feature comparison. We use ICP-like algorithms to
match frames and pose graph optimization to solve the SLAM prob-
lem. Finally, we analyze the residuals to localize possible alterations of
the map. The concept was tested with 2D LIDAR SLAM problems in
simulated and real-life cases.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is the basis of the navigation of
today’s mobile robots and possibly of the future’s autonomous vehicles. Mobile
robots traverse a path more than once, this offers the possibility of loop clos-
ing. Especially true this statement for automated guided vehicles (AGVs) and
the connected vehicles of the future. One autonomous car may travel on a road
just once, but others will navigate on this road continuously and can utilize the
information acquired earlier. From time-to-time, changing of the environment
is inevitable. However, one of the biggest problems of the present SLAM algo-
rithms is the robustness against moving objects (short term) and environment
change (long term). Using robust features (and RANSAC like algorithms [19])
to estimate the relative transformation can partly eliminate this problem. How-
ever, the detected features can be on moving objects as well and this would cause
incorrect relative motion estimation. In general, motion estimation is enhanced
by increasing the number of matched features, but it will certainly result in de-
creased performance if there is some change in the scenes where the match is
done. Trying to find these changes to eliminate these problems, update the map,
or construct the correct 4D reconstruction [20] can be an exhausting search. We
propose a solution to automatically detect these changes.
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1.1 Contributions

The paper contributes to the following:

– A new methodology is proposed to localize possible changes of SLAM maps
instead of brute force search.

– The method does not require any additional step, just the basic SLAM need
to be executed and error change need to be analyzed.

– Numerous 2D graph SLAM tests have been tested and evaluated to generate
the proof of concept.

1.2 Outline of the Paper

The paper is organized as follows: Section 2 surveys the literature about the
related topics. Section 3 briefly explains the theoretical backgrounds and Section
4 describes the proposed method and the concept of change localization in detail.
Sections 5 shows our test results. Finally, Section 6 draws some conclusions.

2 Related Works

Today, real-time scan matching and SLAM algorithms [7] available in industrial
and market products based on only 2D laser scanner data. However, SLAM can
be realized with many sensor types part of the autonomous driving kit. One of the
most effective algorithms is the ORB-SLAM which is applicable for mono, stereo,
and RGB-D cameras as well [12], but there are particular SLAM algorithms for
other 2.5D depth sensors like multi-layer LIDARs [3]. SLAM algorithms can be
categorized in many ways besides the sensors for which is applicable. We can
distinguish feature-based like the ORB-SLAM semi-direct [5] and direct SLAMs
[13], minimizing reprojection or photometric error. There can be 2D and 3D
methods based on the motion assumption. In the case of 2D the optimization
problem we differentiate filtering-based (e.g. extended Kalman filter - EKF)
SLAMs and graph SLAM. In this paper, we deal with direct matching (in case
of relative motion and loop closure estimation as well) and graph optimization
based SLAMs, like [10]. The motion can be arbitrary, but it will be assumed to
be two-dimensional because of ground vehicles and simplicity.

2.1 2D Pose Graph SLAM

This sub-problem alone and the related optimization is quite complex and has
been widely researched. There are different approaches to simplify the solution
of this nonlinear least squares optimization problem. One possibility can be the
linear approximation [4], others try to separate the problem to linear and nonlin-
ear parts [8] (if the orientation is known, position estimation is linear). Besides,
dimension reduction is a research direction too. H. Wang et al. proved a few
theories for graph optimization problems in the case of spherical covariance ma-
trices [23]. They proved that six-dimensional least square optimization problem
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of the trivial pose-graph (3 nodes, 3 edges) can be reduced to the optimization
of one variable and for another trivial problem (two anchor nodes) they provided
solutions in closed form. Later, they showed that one step point feature SLAM
can be also reduced to a one variable optimization [22]. Also, the general point
feature SLAM of 3m+ 2n variables to an m variables optimization problem (m
is the number of poses and n is the number of features). It can be explained
by its separable structure and with the fact that features can be considered as
poses in the graph. These are the basis of our research.

2.2 SLAM and Change Detection

Change detection is important for many reasons as surveillance, statical mon-
itoring of buildings, traffic forecasting or path planning of vehicles. It can be
realized with different sensors like mobile-laser scanners [24] or cameras [15] . It
can be done with different data structures like point-cloud generated with depth
sensors [21] or mono cameras [15] by Structure from Motion (SfM) or on 2D
image pairs with conventional methods [16] or deep networks [1]. The common
point and disadvantage of these processes are that we have to do the comparison
from frame to frame with a previous image or a submap.

Object graphs can be applied for visual place recognition [14] or solution of
the whole SLAM problem [11]. Some semantic SLAM algorithms are capable of
detecting objects which are inconsistent with previous measurements [17]. How-
ever, they require high-level interpretation and limited to objects constructing
the pose graph. Other methods just ignore the inconsistent objects. Making ro-
bust SLAM algorithms in dynamic environments and analyzing their behavior
is an actual topic [25], a survey about them can be found in [18], but these
researches deal with moving objects instead of long term changes.

3 The Problem Formulation

In the following, a brief introduction will be given to the problem of 2D graph
SLAMs. A detailed explanation can be found in [6]. We assume to have a hetero-
geneous graph with just robot poses or known data association (feature identifi-
cation is correctly done by the front-end). The quantity and effect of false loop
closures (perceptual aliasing [9]) is negligible, because of the vehicle, robot (e.g.
patrolling ones) making rounds, we have a good position estimation.

X = (p1, · · · , pn)T is a vector of position parameters, where pi = (xi, yi, θi)
describes the pose of node i. Let zi,j and Ωi,j be the mean and the informa-
tion matrix of a measurement between the node i and the node j. In case of
a given conguration of the nodes pi and pj , z̃i,j(pi, pj) is the prediction of a
measurement representing the relative transformation between two nodes. The
function of computing the difference between the expected observation and the
real observation is:

e(pi, pj , zi,j) = zi,j − z̃i,j(pi, pj) (1)
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The error has assumed to have normal distribution with zero mean. The goal
of a maximum likelihood approach is to find the conguration of the nodes p∗

that minimizes the negative log-likelihood F (p) of all observations:

F (p) =
∑
i,j

eTi,jΩi,jei,j (2)

thus, we aim to solve the following equation:

p∗ = argminpF (p) (3)

4 Proposed Method

In the following, we assume in our change localization that the relative transfor-
mation estimation between two nodes is done by some frame matching algorithm
[7] using all the points of the frames. This means relatively small change affects
on the estimated transformation too. Usually, these algorithms produce some
kind of score of the match, but these strongly depend on the frames we match
(the scene and position influences). They cannot be directly compared, used for
direct change localization (an illustrative example is shown in Fig. 1 ). However,
the environment changes will produce an extra error in the pose estimation,
which will appear in the residual error of the pose graph optimization.

4.1 Assumptions

We will investigate in the following the case when a new loop closure edge is de-
tected and added to the graph. First, we will make some theoretical assumptions
and practical simplifications:

– Loop closures mainly have local effects. This assumption is necessary to
identify the neighborhood of the loop closing edge as the location of the
change. In the investigated cases: we circle on a small graph (eg. AGVs on
material handling system); or traveling and loop closing on a ’detachable’
sub-graph of a large graph (road network).

– The uncertainty of positions will not increase with the new loop closure
edge. Let Fn(p) and Fn+1(p) the minimized log-likelihood after the nth and
(n + 1)th graph optimization and so loop closure (n is much higher than
number of rounds). F -s are assumed to be close to the optimal solution in
the current configuration and also to the global optimum in case of high n and
round numbers. Then det(Ω

n
) > det(Ω

n+1
). It is true that the uncertainty

of each new position estimates is increasing, but it will be decreasing with
every loop closure edges. This holds either in case of uncertainty derived
from the sensor model (as [2] proved) or using identity information matrix
as frequently applied in SLAM optimization back-ends.

– Approximately identical variance σe for all ei,j . Because of the locally inves-
tigated environment, we assume uniformly distributed measurements and
consequently loop closures.



Localization of map changes by exploiting SLAM residuals 5

Position A Position B Position B′

(Postion B in changed map)

(a) Robot pose A (b) Robot pose B (c) Robot pose B′

(d) LIDAR scan in A (e) LIDAR scan in B (f) LIDAR scan in B′

A→ B: A→ B′:
match score = 23.7995 match score = 20.9996

∆xe = 0.0 ∆xe = −0.75
∆ye = −0.05 ∆ye = −0.7
∆θe = 0.0063 ∆θe = 0.0063

Fig. 1: Example about changing environment can cause wrong relative motion
estimation and the uncertainty of match score (bad relative motion estima-

tion with a higher score). Ground truth relative motion: ∆xgt = −
√
2
2 , ∆ygt =

−
√
2
2 , ∆θgt = 0.0

– Residual error is supposed to have a Gaussian distribution. Let Ωi,j be the
identity matrix. After n (high enough) loop closure F (p) =

∑
eTi,jei,j , and

the sum of error squares can be approximated as a normal distribution (in-
stead of χ2) with the expected value:

µΣe2 = nσ2
e (4)

and variance square:
σ2
Σe2 = n2σ4

e (5)

where σe is the variance of ei,j and the index Σe2 refer to the sum of error
squares. The equations above can be deduced from the central limit theorem.
This simple form is true for independent and identically distributed variables
as we assumed earlier. If that is not the case, σei,j -s significantly differ, σ2

e

and σ4
e still can be substituted with one number, the mean of σ2

ei,j and

σ4
ei,j . Despite the fact the problem is not linear and p∗ node configuration is

continuously changing, we found the distribution above to be a good approx-
imation for F (p∗) as the proportion number of loop closure edges

number of not loop closure graph edges ≈ 1 (or

higher), as it can be, and was in the cases we investigated.
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Using the assumption above, the expected value of the squared error of the
next loop closure is approximated as µe2 = σ2

e and its variance σe2 =
√

2σ2
e . The

threshold for the new error term to decide whether it fits the current approxi-
mation of the distribution or not (it indicates a change in the map with 3σ rule
certainty):

th = σ2
e + 3

√
2σ2

e (6)

It is one of the main ideas of the proposed change localization. It is impor-
tant to determine a number n where we can start our inspection (previously
we are far from the optimum, the residuals are unstable and most importantly
the distribution assumption does not hold). It depends on the scale and number
of the laps (it has to be minimum 2), the unknown variance of the errors (de-
termined by the environment). We monitor the change of the specific function

f(p∗) = F (p∗)
n in order to decide this n. When the value of this function numeric

derivative approaches 0 (becoming smaller than 3 ·10−6 in our tests) we consider
n large enough. Then, we assume that the difference of residual terms will not
frequently change and the distribution of the squares can be approximated as a

Gaussian one. The reason for that d
dn

nσ2
e

n = d
dnσ

2
e = 0, the variance of the errors

assumed to be approximately identical, so it does not depend on the number of
loop closures.

4.2 Processing Steps

The steps of the proposed method:

1. Compute the earlier defined specific function f(n)|p∗ =
F (n)|p∗

n and its

derivative d
dnf(n)|p∗ to examine limit.

2. Define the threshold for change detection at n (number of loop closures)
d
dn [G ∗ f(n)|p∗ ] approaches 0. It will be a higher n value than d

dnf(n)|p∗
would result, so we will be closer to the optimum solution of the sub-graph.

3. We have to examine peaks in d
dn [G ∗ F (n)|p∗ ]. Gaussian smoothing is pro-

posed for avoiding single extreme values indicating temporarily local mini-
mums in the graph optimization. Maximums indicating changes should be
present in more than one loop closures (depending on the distance between
them), because a change in the map can be visible from more than one
viewpoint. Also, near extreme values should be checked, because periodic
maximums after the change with decreasing values are reasonable (explained
later). However, a new maximum with a higher value can mean a new change.

4. In case of an extreme value (possible change candidate) the original value
d
dnF (n)|p∗ must be compared to the threshold value defined as σ2

e(1 + 3
√

2)
(Eq. 6) to decide whether it is salient value (possible change) or not.

4.3 Illustration of the Process

In the following, we would like to introduce the change localization process
through a test representing typical data. The parameters of the test case are
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the following. Map: no. 2 (illustrated in Fig. 2), noise in robot position: 0.5 m,
number of changes in the map: 5, rounds without change - with change: 10 - 5.
Detailed explanation about the parameters and tests can be found in Section 5.

Fig. 3 shows that in this test, in the case of a unchanged environment the
residual error approximately linearly increasing with the number of loop closure
edges. This fact supports our earlier assumption that the expected value of the
matching error in a local environment is approximately the same in the case
of approximately equidistant measurements from different positions. The first
change can be detected, when there is a loop closing edge that includes a node
where the change is perceivable. This will result in an error that does not fit into
its previous distribution. This higher error introduced by the map change will be
appearing as a step in the error term. However, when the map change will not be
visible by the sensor, the approximately linear residual increase will set again,
because the consequent frame can be well-matched in the changed environment
too. Only relative motion estimation between the old and the new map (loop
closure) will result in outstanding error terms. In every round, when the new
(displaced or disappeared) objects of the map will be perceivable, a new high
error term is added to the current residual values. However, this should decrease
every time as we make the rounds. Now in the new state of the map, the edges
representing this new state will dominate (also because over time loop closures
will be linked to the changed map). Finally, the varying of the residual error
should set back to the linear increasing state, but all the error term resulted by
the change will not be eliminated. This offset represents the contradictory edges
in the graph. The edges and nodes (now outliers) can be filtered out and the
map should be updated.

(a) Reconstructed map and
path by the SLAM algorithm

(b) Original map

Fig. 2: Example map no. 2
We illustrated the specific function f(p∗) in a basic case Fig. 4 where 0 m

noise added and 0 object changed in the environment (e.g. a tram circles on a
fixed path) for comparison to the examined case with changes Fig. 3. In this
case, a decreasing tendency can be observed in the measured range.

5 Test Results

Our concept and method for change localization have been evaluated in many
test cases in a virtual environment and in real-life as well. In this section, the
circumstances of the tests and the achieved results are presented.
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(a) F (p∗) (b) f(p∗)

(c) d
dn
f(p∗) (d) d

dn
[G ∗ f(p∗)]

Fig. 3: The characteristic indicator functions of the test case in unchanged (blue)
and changed (orange) environment

Fig. 4: f(p∗) in the basic case (0 m noise and 0 object changed in the env.)

5.1 Quantitative Evaluation

In our synthetic tests, we used MATLAB environment and its robotics toolbox
for the generation of test cases, simulate the robot environment perception and
for the LIDAR SLAM [7]. First, we created some maps manually called baseMaps,
then we placed in these baseMaps objects with random shape and random posi-
tion. We used two maps with these random objects in each simulation to test our
theorem. One of the maps was used as long term unchanged environment. To ap-
proximate real-world experiments, even more, we ran our tests with noise added
to the robot path. We used three different baseMaps; three different amount of
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noise in robot position: ρ = 0m, 0.5m, 1m (robot positions in its paths are ran-
domly distributed within ρ radius of its original (first round) path); number of
changes in the map: between 0 and 100, rounds without change - with change:
both varying between 2 and 10; and we also varied the loop closure threshold
of the algorithm from very low to very high. Loop closure threshold is proposed
to set a medium value (default Matlab value is appropriate). If it is too low,
obviously, too much error will be gathered, but if it is too high loop closure
edges of changes will be dropped. (Decreasing loop closure number per round
can indicate map change too, but it will not tell its location without further ado.)
High errors in robot position, or too much change resulted in incorrect maps (or
dropped loop closures for high matching thresholds). These will be left out of
the following evaluation because in our earlier assumption we know, the robot
circles, so too much deviation from the original path can be filtered. Also, too
much change (more than 100 % of original object area appeared - about 35-40
objects) cases indicated by a significant drop of loop closure edges per round
are left out. In the final evaluation there were about 20.000 loop closures in 330
rounds.

As we have mentioned previously we evaluated the change of the residual
error of the pose graph and its normalized with the number of loop closures. Table
1 shows the detection results based on different thresholds, xc, and xuc indices
mean the function value at the position of change and unchanged, F-rateuc refer
to the detection of ”unchangingness”.

We found that, when the areas of the new objects less than 3% of the areas
of the original objects, the change does not influence much the matching and
thus the residual error respect to loop closure number. These tests with little
changes on the map cause the recall values not equal to 1.0 in Table 1.

Another conclusion we can draw from our test is that increasing the offset
to the original path can lead to variation in residual error trend because of the
completely new route. While the proposed threshold gave satisfactory results
for the ’same-path’ cases (first row of Table 1), for the ’noisy-path’ cases not
so (third row). Here, we increased this threshold value to deal with the possible
higher deviation (fourth row). This can be done, because the traversed path
is known, but the effect of the new route planned to be considered in a more
appropriate way in the future.

5.2 Real-life Experiments

We did real-life tests with an automatized forklift equipped with Sick NAV350
sensor for navigation purposes. The equipment was provided and the test was
conducted in the VVRL 3 The 2D point clouds acquired by the laser scanner was
used for SLAM and the environment change localization. The AGV has done 5-5
rounds in the original and the changed environment (just as in some simulated

3 Vehicle Vision Research Laboratory of the Faculty of Transportation Engineering
and Vehicle Engineering’s Department of Material Handling and Logistics Systems
of Budapest University of Technology and Economics
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test cases). The measurements in the different laps were executed approximately
with the same position and orientation (as the vehicle circles on the same route
in the production line). The results are presented in Fig. 5.

Table 1: Results based on different thresholds

Noise -
threshold
values

Precision Recall F-rate
Average
d
dn

F (p∗)xc

th

Maximum
d
dn

F (p∗)xuc

th

F-rateuc

0 m - th 1.0 0.83 0.91 22.14 0.57 0.99

0 m - 2.5 th 1.0 0.5 0.66 0.23 0.3325 0.99

0.5 m - th 0.46 1.0 0.63 14.29 2.22 0.96

0.5 m - 2.5 th 1.0 0.83 0.91 5.71 0.88 0.99

(a) Unchanged (blue)
and changed (orange)
env.

(b) F (p∗) (c) d
dn
F (p∗)

Fig. 5: Real-life experiment

The predicted behaviour in the residual error function can be well-observed
in both diagrams of Fig. 5. The extremum in the differential where the change in
the environment perceived first, easily can be located as it exceeds the calculated
threshold for this ’same-path’ case. After the change has been localized, if one
would like to find the exact change, it is enough to examine the corresponding
loop closure edge and the two scans of its nodes.

6 Conclusion

In the paper, a methodology is proposed to automatically localize changes in
SLAM generated maps and so avoid the brute force based feature matching.
This is extremely useful in cases where mobile robots frequently traverse ap-
proximately the same path (e.g. AGVs in a production line, vehicles with a fixed
path as a railway) or in case of more vehicles with an information network. Anal-
ysis of the optimization residual can be useful in many cases. The success of the
proposed method was proven with many 2D test cases and real-life experiments.
The method can be easily extended to 3D or adapt to other sensors. Some proof
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of concept tests of the extension was already made, in the future, we would like
to develop this extension and consider the effect of completely different paths.
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